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Abstract

>

Abiotic and biotic factors can cause great damage to crops. So, a key approach is to investigate whether the crops
wild relatives are more flexible to withstand abiotic and biotic stress. As well as to evaluate their phenotypic
variability and productivity in response to changing climatic conditions.

In this study, red clover germplasm was collected from natural red clover habitats and a field trial was arranged
ex situ. Twelve phenotypic traits and their effects on final harvest were analysed in 2018-2019. Principal
component analysis (PCA) demonstrated that the most important trait for biomass yield was the height of the
plant during the first season of harvest (2018). Interestingly, that the most significant trait in the second year of
harvest (2019) was growth habit. Meantime, two way-joining analysis was performed to extent of phenotypic
variation within and among red clover accessions, based on the most important trait for biomass yield. We found
three main groups based on variation in plant height: “cultivars”, “wilds” and “mediators”. This analysis leads to
identify typical populations of wild type red clover, which has not been done yet. Finally, the feed value of each
red clover accession was analysed. It was found that “cultivars” have a higher level of crude proteins, while
“wilds” contains higher levels of crude fibre. This indicates that there is a relationship between plant structure
elements and forage value which is particularly important to select a breeding material.
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1. Introduction

Red clover (Trifolium pratense L.) is quite a common species, well-recognized by the public. Historically red
clover is native to the Mediterranean basin. It spread around the world from the 16" century as a consequence of
expeditions of exploration and the settlement of new lands, projects which were at their most intense up to the
18" century (Annicchiarico, Barrett, Brummer, Julier, & Marshall, 2015; Taylor & Quesenberry, 1996; Taylor,
2008).

Red clover became favoured due to its beneficial health properties. Its chemical composition was identified as
equipment and laboratory methods improved at the turn of the 20™ century. It was found that red clover is rich in
secondary metabolites: isoflavones, flavonoids, coumarin derivatives, cyanogenic glycosides, volatile oils, etc.
(Vlaisavljevi¢ et al., 2017; Butkuté et al., 2018). Even before this scientific validation, the value of red clover
was recognized in organic farming, due to its ability convert and absorb atmospheric nitrogen in symbiosis with
Rhizobium (Thilakarathna et al., 2016). Moreover, red clover is highly valued due to its high level of crude
proteins and other feed qualities, therefore this species is widely used to implement greening programs and to
feed cattle (Cassida et al., 2000). There are also beckeepers, who grown red clover for its high provision of
nectar, although researchers report that red clover is a more suitable source of nectar for bumble bees than honey
bees, who cannot reach the nectar from its long corolla tubes (Sands & Rowntree, 2016; Vanommeslaeghe et al.,
2018). While other studies have shown that bees pollinate red clover quite readily, especially the wild forms that
have a shorter corolla tube than the cultivars (Rao & Stephen, 2009; Vleugels et al., 2019).

Currently, there is a demand to breed new cultivars to meet the needs of consumers. It is desirable that new
cultivar could be sustainable, functional, productive and flexible to address the challenges of global warming.
Hopefully, the era of genomics can suggest different methods to improve and speed up the breeding process
either within genome engineering using the CRISPR-Cas9 system or other genetic transformations (Beying,
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Schmidt, Pacher, Houben, & Puchta, 2020). However, new and original genetic material is needed for breeding
programmes. We are in agreement with researchers, that this need can be met by constant monitoring and by
collecting germplasm from wild communities (Morris & Greene, 2001; Solberg et al., 2017; Jones et al., 2020).

Unfortunately, information on the morphology of wild type red clover is not abundant and phenotyping of such
crops wild relative is limited by lack of efficient techniques in situ (Moreira, Oliveira, Volenec, Rainey, & Brito,
2020). Despite this challenge, it is important to assess and understand the potential of crops wild relative for
adaptation to a changing climate and new habitats. Longitudinal monitoring is an effective method of assessing
the most important traits and a basis on which to construct a model of future requirements under climate change
(Moreira et al., 2020). The model would be useful if harvests were assessed and the most promising populations
were chosen for breeding programs according to the selected traits. Inter alia, longitudinal monitoring can detect
and demonstrate phenotypic variation within and between populations or cultivars. Moreover, a good model
would promote reliable renewal of breeding material or complete elimination old cultivars from the market.

Statistically the model could be implemented, because expressed variation determines the power of variability
which describes the potential for variation in population (Willmore et al., 2007). Solberg et al. (2017) have noted
that variation in wild red clover may be a response to natural or artificial selection or even genetic drift, while the
effects of climate change have forced the flora to adapt to abiotic and biotic factors (Gratani, 2014). Meantime,
the most plastic individuals are adapted to survive, while these factors are acting in plant communities (Gratani,
2014; Pagnotta, Annicchiarico, Farina, & Proietti, 2011). We believe this is strongly expressed in red clover
populations because this species has different phenotypic types.

In this study, the phenotypic variability of wild red clover and its biological expression by integrating germplasm
ex situ was analysed. In addition, the most important trait for biomass yield was distinguished and forage value
was evaluated. Ultimately, a prototype for breeding was identified.

2. Materials and Methods

The research was carried out from 2016 to 2019. In the first year (2016) seeds were collected from wild
populations inventoried as NATURA 2000 (codes 6510, 6530, 6270 and 6210) across Lithuania. Full ripened
flower heads were threshed, and the seeds were sorted from admixture in each population. The seeds were dried
for three months at 20 °C temperature during 15% relative humidity and then stored at +4 °C until sowing began
on 18 April 2017. Totally 49 accession of populations and cultivars were sown. Either, seeds of wild red clover
which had been stored in the Lithuanian Plant Gene Bank (PGB) were used in this study. The seeds from PGB
had been dried to 3-6% relative humidity and stored at -18°C temperature for at least 10 years. Also, diploid
cultivars of red clover bred in Lithuania (‘Arimaiciai’, ‘Kamaniai’ and ‘Vytis’) were used as accessions along
with two diploid cultivars (2887 and 2889) that were received from other countries” PGBs. One tetraploid
cultivar (2908) was used as control in relation to the diploid cultivars. Finally, cultivar ‘Liepsna’ was selected as
a standard; this cultivar is one of the oldest and has been grown in Lithuania over long time period, therefore, it
is likely that germplasm of ‘Liepsna’ have been spread to wild populations.

In the second year, on 18 April 2017 wild red clover seeds were sown in growing trays filled with a peat and soil
mixture (30:70). While plants were transplanted ex situ on 10 July 2017. The field trial was arranged in a
randomized complete block design with four replications, located at 55°23'35.0"N, 23°52'38.6"E.
Endocalcari-Epihypogleyic Cambisol soil with a moderately heavy loam texture predominates in the field. The
soil pHgc 7.5, humus content 2.64%, available P,O5 220 mg kg™ and K,0 156 mg kg™'. Fertilizers of NgP K4
(24 kg N, 31 kg P,05 and 113 kg K,0) at a dose of 400 kg ha" were spread before planting, while no fertilizer
was used during the experiment. However, weeds were controlled mechanically and using active agent (a.i.
bentazone 480 g I™") at dose of 960 g ha™ twice per season.

Twelve different agro-morphological parameters were evaluated during the first (2018) and second (2019) year
of harvest. Abbreviations of measured and scored characteristics are shown in Table 1. Visual assessment of
plant traits was performed based on the guidelines of the International Union for the Protection of New Varieties
of Plants (2016).
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Table 1. Phenotypic and quality traits and their abbreviations

Abbreviation, units

Trait description

Determination method

#GRH, no Growth habit Score

#NPH, cm Natural plant height Direct measurement
#STL, cm Stem length Direct measurement
#NOI, pcs Number of internodes Direct counting
#MLL, cm Length of central leaflet Direct measurement
#MLD, cm Width of central leaflet Direct measurement
#ALM, no Relative area of leaf markings Score

#ILM, no Intensity of leaf markings Score

#LSH, no Leaf shape Score

#FHN, pcs Flower heads per plant Direct counting
#FHC, no Intensity of flower head colour ~ Score

#STC, no Intensity of stem colour Score

#GMY, g Green matter yield Direct weighing
#DMY, g Dry matter yield Direct weighing
#CP, % Crude protein IR spectrometry
#CF, % Crude fibre IR spectrometry
#WSC, % Water-soluble carbohydrates IR spectrometry

Green matter yield (GMY) and dry matter yield (DMY) were also measured during the second year of
experiment (2018). Five plants per accession were cut manually. Each plant was put in a gauze bag and weighed
separately with metrology calibration scales PNS-60 (Romasas, Lithuania). DMY was determined by drying the
plants in a greenhouse and finishing them in an oven (at 105 °C temperature) to fully dry.

The content of crude protein (CP), crude fibre (CF) and water-soluble carbohydrates (WSC) was determined by
infrared spectrometer NIRS-6500 (Sensortech Systems Inc., USA) (Butkuté et al., 2003). Five plants from each
accession were taken and chopped into pieces of 3-5 cm length then dried at 105 °C for 15 min and finished at
65+5 °C for 24 h. Dry matter was ground in a cyclone mill and mixed well.

Meteorological conditions were observed during the evaluation and measurement of phenotypic traits in 2018—
2019 (Figure 1). Climatic conditions were quite similar in 2018 and 2019 when there was severe drought,
because of the low precipitation during the vegetation period plants were under stress.
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Figure 1. Meteorological conditions during 2018 and 2019 seasons at Dotnuva site

(55°23'35.0"N, 23°52'38.6"E), Lithuania
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Statistical analysis was performed using the softwares SAS, version 9.4 (SAS Institute Inc., USA) and R, version
4.0.0 (R Core Team). Principal component analysis (PCA) was used to determine the role of phenotypic traits in
all data set during the first (2018) and second (2019) harvest year. Two-way joining cluster analysis was used to
identify the variability of accessions and to group those accessions into clusters based on the factors that played
the most important role in yield production. Each accession was compared to standard cultivar ‘Liepsna’, based
on Dunnett’s test, to identify significant differences (P < 0.05).

3. Results and Discussion

PCA is a useful method to process a large number of traits; it creates independent variables called “principal
components”, that explains the variation in the whole dataset. Afterwards, the principal components become the
new dependent variables in a multiple trait model (Mrode, 2014; Moreira et al., 2020), which is why PCAs are
widely used to analyse multiple phenotyping traits.

3.1 Importance of Phenotypic Traits for Yield

The PCA results for phenotypic traits revealed that the first and second component explained less than 50% (only
47.86%) of cases from whole dataset of red clover traits in 2018 (Figure 2), while 38.12% of cases was
explained by the first and second component during 2019 season. The first principal component had the largest
positive association with NPH, MLL, STL and MLD in 2018. So, this component primarily scored the most
important traits for biomass yield. Thus, maximum weight of biomass is a complex of stems and leaves, which
strongly correlate within NPH. Meantime, the second component has shown the highest negative association
with FHN and NOI. As a result, this component primarily evaluated the traits that are not irrelevant for biomass
yield, for instance as FHN. However, FHN is a priority indicator for seed yield, while the NOI is less important
for biomass yield than NPH. Since biomass yield is more dependent on stem length, which consists of the sum of
each individual internode length. Although, only 15.18% of cases in the total dataset during the harvest season of
2018 were explained by the second component, so it is less relevant to the final result then the first component.
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Figure 2. Principal component analysis (PCA) of phenotypic traits of red clover in 2018 and 2019

Note. Abbreviations of traits are explained in Table 1.

Current study revealed that GRH in the second year of harvest (2019) was the most important trait for biomass
yield, NPH was the second most important trait, and STL was taken 5™ position of importance. Width and length
of leaves were more influential than STL, which can be explained by the fact that NPH was lower and accessions
had shorter STL during the second year of harvest. Meanwhile the effect of leaf size for the final biomass yield
in the second year (2019) did not change significantly in compared to the first year of harvest (2018).
Consequently, foliage and GRH played a more important role regarding final biomass yield during the 2019
season. As expected, the highest negative association was found in FHN and LSH in relation to the second
component. Petrauskas et al. (2020) have reported that FHN is one of the major components for the hight seed
yield production, while it is not so relevant for the biomass yield in this study. Finally, no significant role was
found for LSH in relationship to foliage between harvest seasons.
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Summarizing, the PCA of the 12 phenotypic traits, demonstrates that NPH is the most important trait for biomass
productivity in the first year of harvest (2018). While FHN is one of the least significant traits in regard to
biomass, it is the most important trait for seed yield (Petrauskas et al., 2020). Although, the most important
impact was made by GRH in the second year of harvest (2019).

3.2 Phenotypic Variation Within and Among Populations

Cluster analysis of two-way joining method was performed based on the most important trait of PCA for biomass
yield. This two-way joining cluster is simultaneously based on both predictor and outcome variables. In
population genetics this sort of application could be used to examine both phenotypic and genetic heterogeneity
and homogeneity (Carja & Plotkin, 2017). A major benefit of two-way joining method is that, it can be applied to
create a model for variation in other phenotypic traits of this species and follow changes during years or
generations.

In this study, 15 individual plants were assessed from each population. It was found that most majority of
populations exhibited a higher variation than cultivars. Those populations and cultivars were grouped into three
large groups (Figure 3). The first group, named “cultivars”, consisted of cultivars and populations very closely
related to them; it had low variation within accessions. The second group, named “wilds”, consisted only of
accessions referred to be as wild populations; the level of variation was quite similar to that of the group
“cultivars”, the only difference being that “wilds” are significantly different from “cultivars”. Finally, the third
group, the “mediators”, consisted of accessions that were semi wild populations and had a high within group
variation. Interestingly that, all the groups identified using two-way joining cluster analysis basically conformed
to the statistical evaluation by Dunnett’s test, so this model leads us to draw firm conclusions about the
phenotypic hetero-homogeneity of the population according to the selected trait. In addition, this method enables
outliers to be singled out that can be adopted for breeding programs or other research.
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Figure 3. Two-way joining cluster analysis of natural plant height (NPH) variation within and among red clover
accessions in 2018

Note. **: significantly higher, *: significantly lower than standard cultivar ‘Liepsna’, P < 0.05 (Dunnett’s test).

The old Lithuanian cultivar ‘Kamaniai’ and two foreign cultivars 2908 and 2889 did not differ significantly in
height compared to the standard cultivar ‘Liepsna’, whereas ‘Arimaiciai’ and ‘Vytis’ plants were significantly
taller than ‘Liepsna’ in 2018. Moreover, no significant differences were found in NPH in relation to ‘Liepsna’
and populations 2904, 2872, 2905, 2898, 2881 and 2878. Such morphological feature of NPH is not typical for
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wild type red clover. Most likely that these populations contain cultivars or they may be a consequence of gene
flow from crossbreeding with cultivars (Taylor, Quesenberry, 1996; Van Minnebruggen et al., 2013). Meantime,
no significant differences were found in the remaining 37 populations.

Further, the cultivars ‘Kamaniai’, 2887, 2908 and two populations 2872, 2883 did not differ significantly from
the standard in height during the second year of harvest (2019) (Figure 4). However, ‘Arimaiciai’, ‘Vytis’, 2889
and all remaining 40 populations were significantly shorter than ‘Liepsna’.

56 46 36 26 16
EEEN BN EE interval of plant height, cm

Accessions

Figure 4. Two-way joining cluster analysis of natural plant height (NPH) variation within and among red clover
accessions in 2019

Note. **: significantly higher, *: significantly lower than standard cultivar ‘Liepsna’, P < 0.05 (Dunnett’s test).

Phenotypic variation in NPH within populations remained quite similar, while variation among populations
decreased in the second year of harvest (2019). In other words, the plants got smaller in the second year (2019),
and this way especially true of the cultivars. This outcome could be explained by plants plasticity in regard to
regrowth after being cut (Herbert, Ekschmitt, Wissemann, & Becker, 2018; Van Minnebruggen, Roldan-Ruiz,
Van Bockstaele, Haesaert, & Cnops, 2015). It is very likely that plants cannot regrow as tall as in the first year,
and as a result, populations become more similar to the cultivars. Nonetheless, the cultivars were still taller than
wild type red clover. The same result was noted by Jones et al. (2020), where wild populations failed to adapt to
the cutting regime and regrowth was very poor.

Interestingly, that NPH of ‘Arimaiciai’ and “Vytis’ were significantly smaller in the second year (2019) although,
these two cultivars were significantly taller than ‘Liepsna’ during the first harvesting season (2018). This
suggests that ‘Arimaiciai’ and ‘Vytis’ are possibly less flexible in response to genotype and environment
interaction (G x E) than ‘Liepsna’. They may have been affected by abiotic factors such as overwintering
conditions or drought stress. On the other hand, these two cultivars differ by genotypes, and as a result, they can
have lower regrowth potential after being cut (Pagnotta et al., 2011; Jones et al., 2020). Another possible
explanation for this outcome is that ‘Arimaiciai’ and ‘Vytis’ are newer breeds than ‘Liepsna’ and have lower
capacity to cross-breed with other cultivars. In addition, ‘Arimaiciai’ and ‘Vytis’ have had less chance to pass on
genetic changes to their progeny. (De Vega et al., 2015; Pagnotta et al., 2011).

3.3 Biomass Yield and Feed Value

Significantly higher green (GMY) and dry (DMY) matter yields per plant was found in three populations (2405,
2407 and 2899) and three cultivars (‘Arimaiciai’, ‘Vytis’ and 2889) than that which the standard cultivar
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‘Liepsna’ produced (Table 2). Meanwhile, four populations had a significantly higher DMY than ‘Liepsna’ but
did not differ significantly in GMY. There was no significant different in GMY and DMY between all the
remaining populations and the standard. The lowest GMY and DMY were found in population 2886 (0.334 and
0.094 g, respectively), while the highest difference between GMY and DMY was found in the cultivar ‘Kamaniai’
(0.996 g). Thus, it can be stated that wild forms of red clover tend to produce a lower biomass yield; however, a
significant difference depends on the relationship to that standard cultivar. Nevertheless, wild forms and
landraces can be used to breed highly productive cultivars. Likewise, Hoekstra et al. (2018) reported that
Switzerland locally adapted red clover landrace called “Mattenklees” produced a higher biomass yield than
traditional cultivars of “Ackerklees” type.

Table 2. Values of biomass yield and forage quality in 2018

CP, CF, WSC, CP, CF, WSC,
Accession Mean of Meanof SEof SE of %of Yof % of Accession Mean of Meanof SEof SE of % of Y% of % of
GMY,kg DMY,kg GMY DMY DMY DMY DMY GMY,kg DMY,kg GMY DMY DMY DMY DMY

Liepsna 0.656 0.154 0.098 0.021 17.6 28.6 9.06 2882 0.56 0.154 0.079 0.015 15.6 31.8 7.43
2207 0.464 0.128 0.035 0.008 148 272 6.67 2883 0.596 0.148 0.088  0.020 15.0 289 6.72
2366 0.778 0.188 0.032  0.011 16.8 283 8.53 2884 0.53 0.132 0.086 0.016 163 26.0 7.69
2368 0.844 0.168 0.081 0.019 154 30.3 6.76 2885 0.49 0.148 0.081 0.017 158 33.0 5.99
2370 0.836 0.234 0.102  0.037 14.0 29.3 6.90 2886 0.334 0.094 0.024  0.009 163 30.8 6.51
2405 1.208* 0.306* 0.088  0.028 14.0 329 6.43 2887 0.466 0.128 0.064 0.015 19.7 243 8.67
2407 1.19* 0.322* 0.154  0.013 14.1 31.4 7.20 2889 1.024* 0.306* 0.156  0.040 139 30.6 9.84
2410 0.794 0.256 0.104 0.036 142 29.6 8.37 2892 0.384 0.12 0.099  0.021 17.8 29.5 6.75
2412 0.696 0.182 0.095 0.020 183 275 7.81 2893 0.57 0.322* 0.075 0.046 173 259 9.26
2865 0.74 0.194 0.089 0.017 183 28.5 7.51 2894 0.392 0.114 0.048 0.011 169 30.2 6.21
2866 0.64 0.168 0.055 0.015 16.6 28.5 7.26 2896 1.13 0.346* 0.119  0.047 12.7 29.3 7.48
2867 0.598 0.170 0.125  0.033 16.0 30.3 737 2897 0.814 0.226 0.114  0.048 123 27.6 6.88
2868 0.516 0.136 0.057 0.012 138 323 7.40 2898 0.864 0.172 0.132  0.031 16.7 28.7 9.24
2869 0.882 0.234 0.087 0.025 148 30.9 6.42 2899 1.146* 0.356* 0.128  0.048 13.8 32.1 6.36
2870 0.59 0.152 0.068 0.019 154 31.1 7.70 2900 0.556 0.232 0.080 0.029 152 283 5.90
2871 0.384 0.112 0.060 0.014 152 32.3 7.68 2902 0.646 0.244 0.061 0.013 10.6 27.8 7.76
2872 0.594 0.172 0.090 0.021 184 27.1 8.17 2903 0.654 0.148 0.050 0.010 154 28.5 7.85
2874 0.698 0.258 0.079  0.029 148 28.9 8.98 2904 0.91 0.204 0.184 0.037 13.1 30.6 6.59
2875 0.898 0.322* 0.153  0.046 149 29.9 6.36 2905 0.82 0.164 0.098 0.025 179 28.5 7.78
2876 0.554 0.140 0.085 0.021 177 28.5 5.71 2907 0.86 0.278* 0.106  0.024 13.6 31.1 6.93
2877 0.444 0.138 0.083 0.022 16.0 29.8 6.81 2908 0.812 0.164 0.130  0.020 185 26.2 9.02
2878 0.666 0.172 0.082 0.018 154 30.7 8.36 Arimaidiai  1.142* 0.336* 0.106 0.016 14.0 29.7 8.87
2879 0.578 0.138 0.118  0.019 173 272 7.57 Kamaniai  1.226* 0.230 0.114  0.031 145 29.6 8.76
2880 0.514 0.132 0.150  0.031 16.8 29.0 6.90 Vytis 1.318* 0.382* 0.047  0.028 16.7 28.2 10.2
2881 0.676 0.198 0.036 0.017 172 29.0 8.12

Note. *: significantly higher than standard cultivar ‘Liepsna’ P < 0.05 (Dunnett’s test).

In terms of feed quality indicators, the lowest amount of CP was found in the population 2902 (10.6%), and the
highest in cultivar 2887 (19.7%), while ‘Liepsna’ tended to produce 17.6% CP which is higher than that found in
other Lithuanian bred cultivars. The lowest content of CF was found in cultivar 2887, while the highest quantity
was produced by population 2885. Meantime ‘Liepsna’ had 28.6% CF, which was a lower amount than
‘Kamaniai’, ‘Arimaiciai’ and the remaining 27 populations produced.

It was found that population 2876 had the lowest water-soluble carbohydrates (WSC) content (5.71%), while
‘Vytis’ tended to produce 10.2%, which was the highest amount of WSC among all accessions, including the
standard cultivar ‘Liepsna’ (9.06%). Meanwhile, two populations (2893 and 2898) were characterized by higher
WSC content than the standard. Thus, we may conclude that red clover tends to produce higher levels of WSC in
response to G x E interaction.

Results of our experiment showed that those populations tend to form more stems with smaller leaves than
cultivars, and those stems contain a higher percentage of CF than leaves, whereas cultivars have a higher percent
of CP due to their higher leaf to stem ratio (Hoekstra et al., 2018; Tucak, Popovi¢, Cupi¢, Spani¢, & Megli¢,
2013). Meantime, WSC content is more dependent on the environmental factors such as drought and even
depends on the time of day (Kagan et al., 2020; Ruckle et al., 2017). Thus, the highest amounts of CP are
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accumulated in the leaves (Taylor, Quesenberry, 1996). CF strongly negatively correlates with CP, so populations
with higher CP level tend to have lower CF levels and vice versa (Hai-xia et al., 2013). Similar trends of CP
were noted by Hoekstra et al. (2018), who reported that CP concentration differed slightly between cultivars,
while there was a significant difference between cultivars and landrace type.

However, there is a lack of information about the feed quality of wild type red clover, while there is more data
about breeding lines which are bred for several generations ex sifu and seemed to differ from their ancestors.

4. Conclusions

Natural plant height (NPH) in the first year of harvest (2018) was the most important trait for biomass yield.
Whereas grow habit (GRH) became the most important indicator in the second year of harvest (2019), with NPH
and all other traits becoming less influential.

High variation of NPH was found within populations, while the low variation was identified among those
populations in terms of NPH. This shows that NPH lost relevance in the second year of harvest (2019) and all
accessions became more resemble.

GRH was constrained by the biological potential of plants to regrow after being cut. Results of our experiment
confirms the claim that cultivars’ regrowth ratio is higher than that of wild populations.
Two way joining analysis based on the most important traits for biomass yield have clustered red clover

accessions in three groups “cultivars”, “wilds” and “mediators”. The largest group between them all was
“mediators”, who stood out with a high phenotypic variability within each population.

The vast majority of the populations in the field trial produced a lower green (GMY) and dry (DMY) matter
yields than the standard cultivar ‘Liepsna’ but did not differ significantly.

The cultivars attended to produce higher rate of foliage; as a result, plants had higher crude protein (CP) content.
Meantime, wild red clover populations were found to have a high stem-leaf ratio, thus producing a higher
proportion of crude fibre (CF) than that of cultivars.
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