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Abstract 

Sustainable agriculture production depends on the development of methods that optimize nutrient cycling, 
minimize use of external inputs, and maximize input use efficiency according to the conditions of each region. 
The principle of an integrated plant nutrition system (IPNS) is to tailor plant nutrition and soil fertility 
management, taking advantage of the combined and harmonious use of inorganic, organic and biological 
resources. This greenhouse study investigated the individual and combined use of inorganic, organic and 
biological fertilizer resources for corn (Zea mays L.). We evaluated the effects of commercial synthetic fertilizer, 
humic acid products, compost/manure teas and bioinoculant as inorganic, organic and biological resources, 
respectively, and their synergy on corn growth and soil respiration parameters under a period of water stress. The 
pots were laid out in completely randomized design and the total of sixteen treatment combinations were 
replicated four times. In general, when comparing to the control values, the use of humic acid (HA), 
biofertilizers and the integration of both compounds generated significantly greater early season plant height, 
chlorophyll content, photosynthetic efficiency and shoot/root dry biomass. The soil substrate induced respiration 
was affected by only one biofertilizer product at two different rates. Though all pots received adequate synthetic 
fertilizer, the control plants were generally smaller and less vigorous compared to the plants receiving either HA 
or biofertilizer treatments, but no additive benefit was observed for the integrated practice compared to 
individual applications. Further studies addressing different types and levels of stress along with greater stress 
duration should be conducted to validate these findings.  

Keywords: bioinoculants, compost tea, manure tea, organic fertilizer, humates, water stress, plant biostimulants 

1. Introduction 

Successful crop production relies on nutrients that are available in sufficient quantities and forms to promote 
satisfactory plant growth. Fertilization is an essential practice to enhance soil fertility, increase crop productivity 
and support agricultural intensification (Vaneeckhaute et al., 2013). Optimized fertilization schemes require 
methods to optimize nutrient cycling, minimize use of external inputs, and maximize input use efficiency 
appropriate to the conditions of each region (Cakmak, 2002; Kumwenda, Waddington, Snapp, Jones, & Blackie, 
1996). 

A huge variety of materials can serve as sources of plant nutrients. These can be inorganic, organic, recycled 
wastes or a range of biological products including compost teas and microbial inoculants. The nature and the 
characteristics of nutrient release from fertilizers derived from inorganic, organic and biological resources differ 
and thus must be managed differently (Chen, 2006; Dutta, Pal, Chakraborty, & Chakrabarti, 2003). Sustaining 
high crop yields should include not only the addition of synthetic fertilizer materials but also the integrated use 
of biological and organic nutrient resources as a way to increase nutrient use and minimize environmental 
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impacts (Hussain, Jilani, & Iqbal, 1988; Kaur, Kapoor, & Gupta, 2005). According to the Food and Agriculture 
Organization of the United Nations (FAO) (Shand, 2007), the definition of an IPNS is “the adaptation of the 
plant nutrition and soil fertility management in farming systems to site characteristics, taking advantage of the 
combined and harmonious use of inorganic, organic and biological nutrient resources to serve the concurrent 
needs of food production and economic, environmental and social viability.” The principle of IPNS requires an 
understanding of nutrient dynamics throughout the soil-microbe-plant systems in order to regulate the 
availability of nutrients derived from inorganic, organic and biological sources to address long- and short-term 
crop production and environmental impacts (Aulakh & Grant, 2008).  

Several studies addressing different crop species have shown the beneficial effects of the integrated use of 
different fertilizer or biostimulant sources on yield, shoot and root growth, and nutrient uptake on different 
species (Adesemoye, Torbert, & Kloepper, 2008; Mantelin & Touraine, 2004) such as sugarcane (Saccharum 
officinarum L.) (Bokhtiar & Sakurai, 2005; Sundara, Natarajan, & Hari, 2002) and red pepper (Capsicum 
annuum L.) (Joo, Kim, Lee, Song, & Rhee, 2004). However, in managed ecosystems, the dynamics of nutrient 
availability will vary depending on the nutrient resource applied.  

The heterogeneous and complex molecules present in humic substances have shown many positive effects on 
plant growth, nutrient uptake efficiency and soil. Commonly, these effects can be intercorrelated and 
complementary. Plant growth stimulation from the use of HA has been reported in such ways as increased berry 
size and improved fruit quality in table grapes [Vitis Vinifera (L.) cv. Italia] (Ferrara & Brunetti, 2010) and 
greater root growth on Brazilian red cloak (Megaskepasma erythrochlamys) and sanchezia (Sanchezia nobilis L.) 
(Baldotto & Baldotto, 2014) and tobacco (Nicotiana tabacum L.) (Mylonas & McCants, 1980). Humic 
compounds stimulate plant development through improving nutrient adsorption on lily (Lilium L.) (Chang, Wu, 
Xu, Nikbakht, & Xia, 2012) and gerbera (Gerbera jamesonii L.) (Nikbakht et al., 2008). Furthermore, humic 
acids can promote vegetal growth by mediating biochemical, morphological, physiological processes (Chen, 
Senesi, & Schnitzer, 1977; Tahiri, Destain, Thonart, & Druart, 2015; Vaughan & Malcolm, 1985).  

The application of HA can positively affect soil cation exchange capacity and nutrient availability which 
indicates that HA materials may serve as resources that can improve fertilization efficiency (Albiach, Canet, 
Pomares, & Ingelmo, 2001; Tahiri et al., 2015; Vaughan & MacDonald, 1976). Thus, the physicochemical 
activity and structure of HA substances might increase agriculture production through improved soil quality and 
by enhancing soil stability and resistance to erosion (Brannon & Sommers, 1985; Spaccini, Piccolo, Conte, 
Haberhauer, & Gerzabek, 2002). The dual beneficial effects of HA on soil and plant might explain the production 
increase on tomato (Solanum lycopersicum L.), cotton (Gossypium arboretum L.) and grapes (Vitis vinifera L.) 
(Brownell, Nordstrom, Marihart, & Jorgensen, 1987) as improved soil promotes better conditions for plant 
growth. 

Several studies have documented enhancement of vegetative growth, yield and nutrient uptake by improving the 
physico-chemical properties of the soil (Kim et al., 2015; Siddiqui, Islam, Naidu, & Meon, 2011) and 
incremental benefits to the microbial population for plants and soil fertility (Chen, 2015) in response to compost 
tea (CT) application. Moreover, solubilization of P or K, uptake of N and multiplication of extraradical hyphae 
biomass are effects promoted by biofertilizers that might minimize negative impacts of soil degradation, in 
addition to induction of plant growth (Bianciotto & Bonfante, 2002; Rodrı́guez & Fraga, 1999). Therefore, the 
application of microbial inoculants has shown the potential to improve sustainable production in intensive 
agriculture systems (Bhattacharyya & Jha, 2012; Chauhan, Bagyaraj, Selvakumar, & Sundaram, 2015) due to 
nutrient release, plant growth stimulation, rhizoremediation and plant stress control (Lugtenberg & Kamilova, 
2009). 

In fact, the potential benefits of HA and biofertilizers as plant-growth promoters for increased nutrient 
acquisition (Yildirim, 2007), increased stress tolerance (Zhang & Ervin, 2004), and pathogen suppression (On et 
al., 2015) are evident in the literature, and substantial work has been done in this area. Thus, plant–microbial 
symbioses are very important components of nutrient cycling in agroecosystems and enhance plant nutrient 
uptake (Peoples & Craswell, 1992; Zhu, Cavagnaro, Smith, & Dickson, 2001). Studies have shown that HA 
stimulates microbial effects on ion exchange and metal complexing (chelating) systems (Puglisi et al., 2009; 
Visser, 1985). Also, HA has increased the production of micelium by mycorrhizal fungi (Gryndler et al., 2005) 
and promoted greater nodule formation of native rhizobia (Gaur & Bhardwaj, 1971).  

Despite the recognition of the independent effects of HA and biofertilizers, few applicable studies have been 
conducted to elucidate the interaction of HA and biofertilizers on agronomic, economic and/or environmental 
outcomes. Moreover, there is a lack of knowledge regarding the effects of HA on plant–microbial symbioses. 
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Therefore, the present study evaluated the effects of the combined and individual use of HA and compost/manure 
teas and bioinoculants along with inorganic fertilizer on corn (Zea mays L.) development and soil respiration. We 
hypothesize that the synergetic effects of the combination of HA + biofertilizer will improve corn agronomic 
outcomes and increase soil respiration when comparing the application of each product alone.  

2. Materials and Methods 

In this greenhouse study, humic acid (HA) was used as an organic resource and compost/manure tea and 
bioinoculants were used as biological resources along with conventional inorganic fertilizer resources (NPK) in 
an integrated manner. 

2.1 Products Description (Treatments) 

Seven products, including inorganic, organic and biological resources, were used in this study. The inorganic 
fertilizer was Osmocote Plus®; the organic product was MicroLife Humic Acid Complex®; and the biological 
products were SoilSoup®, Microgeo® and Microgro Supreme Bioinoculant®. The MicroLife 6-2-4® and 
Nanobind® are derived from organic and biological resources. The Osmocote Plus® is a slow release synthetic 
fertilizer containing 11 essential nutrients for plants. The organic/ humic category was represented by MicroLife 
Humic Acid Complex® which was constituted of 15% humic acid and 1% fulvic acid. One of the three biological 
fertilizers was Microgeo®, which is a Brazilian patented product categorized as a manure tea. This biofertilizer 
is composed of organic compounds, active and dormant cells from various microorganisms (bacteria, yeasts, 
filamentous fungi, and algae), metabolites and organo-mineral chelates and it is produced through continuous 
anaerobic fermentation in a liquid media (D'Andrea, 2002). According to the technical manual, the preparation is 
using the CLC® (Continuous Liquid Composting) process, where 5% of the commercial biological fertilizer 
Microgeo ®, 15% of ruminal content and water are mixed in a tank exposed to sunlight. After 15 days the 
biofertilizer is ready to be applied. SoilSoup® is an aerobic compost tea generated via fermentation of 
vermicompost over 24 hours with the addition of nutrient solution (molasses, bat guano, sea bird guano, soluble 
kelp, langbeinite, natural citric acid, ancient seabed minerals, yucca) and oxygen to the system (aquarium pump). 
The Microgro Supreme Bioinoculant® is a water-soluble powder containing 76 different strains of bacteria and 
fungi including 11 different Mycorrhizal species and microbial food (sugars, humic acid, kelp, amino acids and 
yeast extract). The MicroLife 6-2-4® is a pelletized fertilizer that contains 6, 2 and 4% N, P and K, respectively. 
These nutrients are derived from a combination of organic and biological materials including fish, kelp, molasses, 
humates, bat guano, rock phosphate, wheat middlings, soy meal, cottonseed meal, alfalfa, corn meal, potassium 
sulfate, iron sulfate, Folic Acid, vitamins and bioinoculants. Nanobind® is constituted by the combination of 
humic substances and microbial inoculants. The products’ descriptions are summarized in Table 1. 

 

Table 1. Product description 

Resource Category Subcategory Name  Components 

Inorganic  Synthetic 
 

Osmocote Plus 
Polymer-coated: Ammonium Nitrate, Ammonium Phosphate, Potassium Sulfate, 
Magnesium Sulfate, Sodium Borate, Iron Phosphate, Iron EOTA, Manganese 
Sulfate, Sodium Molybdate, Aibc Sulfate, Copper Sulfate and Zinc Oxide. 

Organic Humic Fulvic 
Microlife Humic  
Acid Complex 

15% Humic Acid and 1% Fulvic Acid derived from leonardite 

O
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Manure tea Microgeo 
Recancitran Substances, Biodynamic Preparations, Pentoses, Minerals and Brans 
and the microorganisms produced in the manure tea fermentation 

Compost tea SoilSoup 
Molasses, Bat Guano, Sea Bird Guano, Soluble Kelp, Langbeinite, Natural Citric 
Acid, Ancient Seabed Minerals, Yucca and the microorganisms produced in the 
compost tea fermentation 

B
io

in
oc

ul
an

t 

Microgro Supreme 
Bioinoculant 

76 different strains of bacterias and fungi planced on dry milk carrier loaded with 
microbial food. The microorganisms included are: species of Genus Bacillus, 
Psuedomonas,Streptomycetes, Trichoderma, and Endo and Ectomycorrhizal Fungi

Microlife 6-2-4 

Fish, Kelp, Molasses, Emery Humates, Bat Guano, Rock Phosphate,Wheat 
Middling’s, Soy Meal, Cottonseed Meal,Alfalfa, Corn Meal, Potassium Sulfate, 
Iron Sulfate, Amino Acids, Folic Acid,Vitamins and MicroGro Supreme 
BioInoculant  

Nanobind 
Lactobacillus culture, Sacccharomyces Boulardii culture, Phytase enzymes, Lipase 
enzymes, Amylase enzymes, Superoxide Dismutase enzymes, Protease enzymes, 
organic carbon (humic) 
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2.2 Experimental Design and Management 

The experiment was conducted under controlled conditions in a greenhouse in Blacksburg (Virginia, USA) to 
investigate the individual and combined effects of humic acid (HA), compost/manure tea and bioinoculants on 
corn growth. Polyethylene pots (19 cm tall, 19 cm outside diameter, and 37851 cm3 volume) were lined with 
plastic bags to avoid water loss. Soil media and sand (50% Metro-mix 360 and 50% playground sand, 
respectively) were placed in a polyethylene pot and 21 g of inorganic fertilizer (Osmocote Plus®) was equally 
added in each pot. According to the bulk density provided in the physical/chemical characteristics data sheet of 
each component, we added 0.425 kg Metro-mix 360 and 3 kg sand to each pot to have an equal volume. 
Posteriorly, corn seeds were planted by hand at 3 cm depth and thinned to one seedling after germination. 

The field capacity on the soil media + sand was determined after water saturation until the first drop of water 
leached through the bottom of the pot. Then, after 1 day the weight of the pot containing the wet soil was taken 
to be used as field capacity threshold (Kirkham, 2014).  

We employed 6 treatments, each at two concentration levels, 1x and 2x the label rate of each product, depending 
on the treatment (Table 2). The trial used a completely randomized design (CRD) with four replications. Each 
treatment was applied at corn growth stages V1, V4, V6 and V8. The treatments were previously prepared in the 
laboratory and applied into each pot using an electronic pipette. Solid materials were dissolved in water and the 
appropriate rate applied to respective pots.  

 

Table 2. Treatments and application rate 

No. 
Treatments 

Product Name and Abbreviation  Rate Label Rate/pot (each application) 

1. Microgeo (M)  1x 150 l/ha 0.47 ml 

2. Microgeo (M)  2x 150 l/ha 0.94 ml 

3. Soil Soup (S)  1x 235 l/ha 0.73 ml 

4. Soil Soup (S)  2x 235 l/ha 1.46 ml 

5. Microgro Supreme Bio inoculant (MB)  1x 6.1 kg/ha 19 mg 

6. Microgro Supreme Bio inoculant (MB)  2x 6.1 kg/ha 38 mg 

7. Microlife Humic (H)  1x 14 l/ha 0.043 ml 

8. Microlife Humic (H)  2x 14 l/ha 0.086 ml 

9. Nanobind (N)  1x 4.6 l/ha 0.015 ml 

10. Nanobind (N)  2x 4.6 l/ha 0.030 ml 

11. Microlife 6-2-4(ML)  1x 975 kg/ha 3000 mg 

12. Microlife 6-2-4(ML)  2x 975 kg/ha 6000 mg 

13. Microgeo + Microlife Humic (M + H)  1x, 1x 150 l/ha and 14 l/ha 0.47 ml + 0.043 ml 

14. Soil Soup + Microlife Humic (S + H)  1x, 1x 235 l/ha and 14 l/ha 0.73 ml + 0.043 ml 

15. Microgro Supreme Bio inoculant + Microlife Humic (MB + H) 1x, 1x 6.1 kg/ha and 14 l/ha 19 mg + 0.043 ml 

16. Control (C) 0x 0 0 

Note. The surface area on top of the pot was 314 cm2.  

 

2.3 Water Regime and Data Collection 

The pots were maintained at 60% of field capacity for the first 40 days of the experiment to ensure adequate 
moisture for corn growth. Between 40 and 50 days post-emergence (PE), watering was reduced to 30% of field 
capacity to induce mild to moderate drought stress. Plant height at the leaves within the whorl, atLEAF 
chlorophyll meter value (FT Green LLC, Wilmington, DE) and photosynthetic efficiency/OS-50II fluorometer 
(Opti-Sciences, Tyngsboro, MA) measurements were collected from the latest fully developed leaf defined using 
the leaf collar method (Abendroth, Elmore, Boyer, & Marlay, 2011) at 20, 40 and 60 days PE. At 60 days 
post-emergence, the aboveground plant material was clipped at the soil surface and dried at 70 °C until a 
constant weight was achieved so that plant dry matter yield could be calculated. Corn growth stages 
corresponding to 20, 40 and 60 days post-emergence were V4, V6 and V8, respectively. After aboveground 
biomass harvest, roots were separated from the soil media + sand by shaking and root dry matter calculated in a 
similar manner to the shoot.  
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2.4 Substrate-Induced Respiration 

A subsample of soil from the whole pot (300 g) was collected at the end of the growth period following 
aboveground and root biomass collection. Substrate-induced respiration (SIR) was performed to determine active 
microbial biomass in soil samples (Fierer, Schimel, & Holden, 2003). The collected samples were weighed (4g 
dry weight equivalent) into modified 250 ml centrifuge tubes modified with holes drilled in the tube caps and 
filled with rubber caulk to facilitate gas extraction. Soils were conditioned to an incubation temperature of 20°C 
prior to the addition of substrate. To each sample, 8 ml of yeast substrate was added (12 g BD Bacto™ yeast 
extract/liter H2O) and the sample was placed on a shaker for 1 hour. After thoroughly mixing substrate and soil, 
the tubes were tightly sealed and flushed with CO2 free air for 3 minutes. After incubation at 20°C for 5 hours, a 
syringe was used to remove 5 ml of headspace gas from the sealed tubes. Analysis of the sample was performed 
with a Licor model LI-7000 infrared gas analysis (IRGA) (LI-COR Corporate, Lincoln, NE) to determine CO2 
concentration and soil respiration rate (ug CO2/g dry soil/hour). 

2.5 Data Analysis 

Analysis of variance using PROC GLM of SAS 9.4 (SAS Institute, 2011) was conducted to evaluate treatment 
effects on plant height, atLEAF chlorophyll meter values, photosynthetic efficiency and root, shoot and total 
biomass. Differences between treatments and control means were separated using Dunnett’s test and the t-test of 
the means were deemed significant differences when F-test values were α < 0.05 for the plant parameters and α < 
0.1 for the SIR. Single-degree of freedom contrasts were used to determine significant differences between rates 
of the same product.  

3. Results and Discussion 

3.1 Plant Height 

Generally, treatments positively impacted plant height to a greater degree as the study progressed from 20 to 60 
days PE (Table 3).  

 

Table 3. Analysis of variance of the effects of IPNS treatments on plant height, atLEAF and Fluoremeter at 20, 
40 and 60 days post-emergence (PE) 

Source 
Plant height atLEAF Fluorometer 

20 days PE 40 days PE 60 days PE  20 days PE 40 days PE 60 days PE  20 days PE 40 days PE 60 days PE

Pr > f 

Rep  0.2985 0.0047 <0.0001  0.1869 0.1316 0.0095  <0.0001 0.0113 0.5537 

Treatment 0.044 0.0002 <0.0001  0.0089 0.1715 0.0265  <0.0001 <0.0001 <0.0001 

CV 13.8 7.0 8.2  7.9 7.0 3.1  4.8 3.3 2.4 

SED 6.1 4.2 10.3  4.5 3.8 2.0  0.034 0.026 0.019 

 

Progressively, the number of treatments with plant height significantly greater than the control increased as the 
study progressed. The number of treatments with plants significantly taller than the control increased from 5 to 7 
and then 11 at 20, 40 and 60 days PE, respectively (Table 4). Mbagwu and Piccolo (1997) tested the responses of 
coal-derived humic substances on corn and they also found increases in plant height, even though the plants in 
their research were generally shorter than this current study when comparing the plant height around 5 weeks 
after emergence. Several studies have shown the influence of biofertilizers on plant height stimulation of species 
like potato (Solanum tuberosum L.), tomato, maize (Bhattacharyya & Jha, 2012), tobacco (Zhang & Kong, 2014) 
and wheat (Triticum aestivum L.) (Aftab & Asghari, 2008). Moreover, a study on compost tea reported a pattern 
of increased plant height of lettuce (Lactuca sativa L.), soybean (Glycine max L.) and sweet corn as 
concentration of compost tea increased from 0.1%, 0.2%, 0.4%, to 0.8% of the total application (Kim et al., 
2015). 
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Table 4. Mean height of control plants and differences between height of treatment and control at 20, 40 and 60 
days PE 

Category Treatment comparison 
Difference between treatments and control values 

20 days PE 40 days PE 60 days PE 

-------------------------- Plant height, cm -------------------------

Biofertilizer 

M-C (1x) 13.0 * 11.8 * 28.0 * 

M-C (2x) 14.9 * 11.8 * 31.5 * 

S-C (1x) 9.1  10.0 * 32.0 * 

S-C (2x) 12.1  14.8 * 37.2 * 

MB-C (1x) 11.1  14.3 * 32.6 * 

MB-C (2x) 10.8  10.8 * 36.2 * 

Humic  
H-C (1x) 8.9  7.0  30.6 * 

H-C (2x) 13 * 8.3  21.0  

Humic + Biofertilizer 

N-C (1x) 11.4  4.0  3.4  

N-C (2x) 4.8  4.5  16.2  

ML-C (1x) 10.8  9.0 * 25.8 * 

ML-C (2x) 5.4  1.3  21.6 * 

M+H-C (1x,1x) 11.7  6.8  21.3 

S+H-C (1x,1x) 15.9 * 8.8  22.9 * 

MB+H-C (1x,1x) 15.6 * 8.5  21.9 * 

Actual Control values (C) 33.3 52.3  102.5 

Note. * denotes significant differences, α < 0.05.  

M = Microgeo; S = SoilSoup; MB = Microgro Supreme Bio Inoculant; H = Microlife Humic; N = Nanobind; 
ML = Microlife 6-2-4; C = Control.  

 

 
Figure 1. Plant height visual contrast between control (left) and Microgeo 2x treated plants (right)  

at 60 days post-emergence 

 

3.2 Chlorophyll Content (atLAEF) and Photosynthetic Efficiency (Fv/Fm) 

The total photosynthetic pigments or chlorophyll content has been used to assess the physiological status of 
plants and to detect stress conditions such as high salt level in soil (Taïbi et al., 2016) and drought (Zhang et al., 
2011). The statistical significance of atLEAF values were less drastic than that of fluorometer (Table 3). 
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Generally, atLEAF values did not differ between treatments and the control with some values lower than the 
control (Table 5). At 40 days PE, water content in the pots was dropped to 30% of field capacity and the 
treatments combining HA + biofertilizer had greater atLEAF values at 60 days PE in response (Table 5). This 
may indicate that corn plants receiving these treatments suffered less stress from water limitation. In contrast to 
our results where differences in indirect measures of chlorophyll content were scarce, other studies have reported 
that HA consistently increases chlorophyll content in potato leaf tissue (Selim, Shedeed, Asaad, & El-Neklawy, 
2012) and roselle (Hibiscus sabdariffa L.) (Sanjari, Sirousmehr, & Fakheri, 2015) under hydric stress conditions. 
Azab (2016) revealed that biofertilizers alone and in combination with NPK increased chlorophyll content of 
corn under moderate, intermediate and severe water deficit. Also, the same study showed that biofertilizer + 50% 
NPK produced greater chlorophyll content than the application of biofertilizer + 100% NPK under normal 
irrigation and water deficit. Abdelraouf, El-Habbasha, Hozayn, and Hoballah (2013) found that the application 
of biofertilizer to wheat significantly increased total chlorophyll under 100%, 80%, 60% and 40% irrigation 
requirements compared to treatments without biofertilizer. Furthermore, to clarify the relationship between 
atLEAF and the actual chlorophyll content, devices that provide a non-destructive estimate of the amount of 
chlorophyll present in the plant leaf (Gianquinto et al., 2004) and strong relationships between these chlorophyll 
meters readings and the actual chlorophyll content in the leaves in many different crops (Pellizzaro, Ventura, 
Arca, & Canu, 1998) including corn (Castelli, Contillo, & Miceli, 1996; Markwell, Osterman, & Mitchell, 1995) 
have been reported. The SPAD-502 Chlorophyll meter (Soil Plant Analysis Development, Minolta Camera Co., 
Ltd., Japan) is the most used device, however the atLEAF Chl meter (FT Green LLC, Wilmington, DE) used in 
this study can be an affordable alternative to the SPAD-502 meter (Zhu, Tremblay, & Liang, 2012). 

Photosynthetic efficiency values were higher than control values for most treatments in all three data collection 
periods (Table 6). A more energetic photosynthesis process could affect plant development such as greater plant 
height and biomass values measured in this study. According to Björkman and Demmig (1987) the optimal value 
of Fv/Fm is around 0.83 for most species, depending on the developmental stage of the leaves, with lower values 
indicating plant stress. Thus, the photosynthetic efficiency readings collected in the most mature period (60 days 
PE) showed that the treatments presenting significant differences between control were much closer to the 
optimal/non-stress threshold. Lotfi et al. (2018) tested the effects of HA on photosynthetic efficiency of rapeseed 
(Brassica napus subsp. napus) plants in different water regimes and the application of HA resulted in increased 
maximum quantum yield of PSII photochemistry (Fv/Fm), where the highest discrepancy between non-humic 
acid and HA treatments appeared in response to the most severe water stress. Shool and Shamshiri (2014) tested 
the interaction effect of mycorrhizal fungi Glomus mosseae and the bacterial strain Pseudomonas fluorescens P52 
in pistachio (Pistacia vera) cv. Qazvini plants under water regimes of 100%, 75%, 50% and 25% of field 
capacity and the highest discrepancy of Fv/Fm values between non-biological and biological fertilization appeared 
in the treatments managed under 25% of field capacity. 

The chlorophyll works as a photoreceptor in photosynthesis, thus there are studies showing the correlation 
between total chlorophyll content and Fv/Fm in aloe vera (Aloe vera) (Hazrati, Tahmasebi-Sarvestani, 
Modarres-Sanavy, Mokhtassi-Bidgoli, & Nicola, 2016), olive tree (Olea europaea) (Khaleghi, Arzani, Moallemi, 
& Barzegar, 2012) and wheat (Sharma, Andersen, Ottosen, & Rosenqvist, 2015). These studies showed lower 
values of total chlorophyll and Fv/Fm during water or heat stress and higher values when the plants were 
experiencing ideal conditions. When comparing these previous studies with this current study, we found similar 
relationships for chlorophyll content and Fv/Fm. However, the chlorophyll content and Fv/Fm relationships in our 
study were not as evident as the values presented in the three studies mentioned before. In fact, the difference 
between control and treatments was more evident in the Fv/Fm than atLEAF / chlorophyll content readings 
(Tables 5 and 6). 
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Table 5. atLEAF readings represented by the actual control values and the difference between treatment and 
control values 

Category Treatment comparison 
Difference between treatments and control values 

20 days PE 40 days PE 60 days PE 

----------------------------- atLEAF, unit ----------------------------- 

Biofertilizer 

M-C (1x) 3.63   7.73   2.08   

M-C (2x) 2.95   5.55   1.93   

S-C (1x) 5.10   7.20   3.53   

S-C (2x) 4.15   6.70   1.33   

MB-C (1x) 3.85   7.92 * 3.03   

MB-C (2x) 5.08   5.33   3.93   

Humic 
H-C (1x) 7.28   5.30   4.15   

H-C (2x) -0.03   6.88   3.93   

Humic + Biofertilizer 

N-C (1x) -2.48   3.15   2.83   

N-C (2x) 9.08   4.45   4.03   

ML-C (1x) 8.03   5.93   4.98 * 

ML-C (2x) 8.80   5.20   1.48   

M+H-C (1x,1x) 6.78   7.48   4.80 * 

S+H-C (1x,1x) 10.15 * 10.02 * 4.87 * 

MB+H-C (1x,1x) 6.20   6.98   4.30 * 

Actual Control Values (C) 52.23   47.85   60.88   

Note. * denotes significant differences, α < 0.05.  

M = Microgeo; S = SoilSoup; MB = Microgro Supreme Bio Inoculant; H = Microlife Humic; N = Nanobind; 
ML = Microlife 6-2-4; C = Control.  

 

Table 6. OS-50II fluorometer readings (Photosynthetic efficiency) represented by the actual control values and 
the difference between treatment and control values 

Category Treatment comparison 
Difference between treatments and control values 

20 days PE 40 days PE 60 days PE 

------------------------- Fluorometer, Fv/Fm --------------------------

Biofertilizer 

M-C (1x) 0.258 * 0.112 * 0.057 * 

M-C (2x) 0.260 * 0.123 * 0.070 * 

S-C (1x) 0.125 * 0.048   0.008   

S-C (2x) 0.136 * 0.049   0.003   

MB-C (1x) 0.248 * 0.117 * 0.074 * 

MB-C (2x) 0.272 * 0.129 * 0.069 * 

Humic 
H-C (1x) 0.238 * 0.131 * 0.031   

H-C (2x) 0.211 * 0.106 * 0.031   

Humic + Biofertilizer 

N-C (1x) 0.134 * 0.101 * 0.013   

N-C (2x) 0.159 * 0.069 * 0.006   

ML-C (1x) 0.248 * 0.114 * 0.070 * 

ML-C (2x) 0.246 * 0.133 * 0.049 * 

M+H-C (1x,1x) 0.311 * 0.136 * 0.071 * 

S+H-C (1x,1x) 0.225 * 0.113 * 0.046 * 

MB+H-C (1x,1x) 0.289 * 0.130 * 0.070 * 

Actual Control Values (C) 0.489   0.669   0.742   

Note. * denotes significant differences, α < 0.05. 

M = Microgeo; S = SoilSoup; MB = Microgro Supreme Bio Inoculant; H = Microlife Humic; N = Nanobind; 
ML = Microlife 6-2-4; C = Control.  
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3.3 Plant Biomass 

Final shoot, root and total dry biomass were all significantly affected by IPNS treatment (Table 3). The greatest 
effect of IPNS treatment occurred for root biomass receiving HA treatments and shoot biomass receiving the 
biofertilizer treatments (Table 7). Total biomass was also affected by most of the treatments, where only 3 
treatments did not present significantly higher value than control. Previous studies have reported increased shoot 
and root biomass when HA and/or biofertilizers were applied, especially under stress conditions (Dimkpa, 
Weinand, & Asch, 2009; Prado et al., 2016).  

Shoot and root dry weight are commonly used to measure the effects of humic substances (Chen & Aviad, 1990) 
and in this corn study, the HA treatments resulted in the greatest root biomass. Chen and Aviad (1990) mentioned 
that the increased root growth promoted by HA is generally more evident than shoot growth, which is also what 
we observed in the current study. Other researchers have documented increased root biomass when HA was 
applied in soybeans (Prado et al., 2016), lettuce (Young & Chen, 1997), bentgrass (Agrostis palutris) (Dorer & 
Peacock, 1997), forage turnips (Brassica rapa L.) (Albayrak & Camas, 2005) and tomato (Adani, Genevini, 
Zaccheo, & Zocchi, 1998). In contrast, (Hartz & Bottoms, 2010) tested five commercial HA formulas and found 
no significant effect on tomato dry mass accumulation. Therefore, the effectiveness of HA will depend on 
product rate, severity of stress, organic matter content of the soil, HA composition and extraction method. 
According to Tahiri et al. (2015), humic substances influence two main mechanisms of plant growth: 
improvement of nutrient availability and phyto-stimulation. The use of HA enhanced the adsorption of macro 
and micro nutrients of gerbera (Nikbakht et al., 2008) and the presence of physiologically active concentrations 
of cytokinin in humic substances was demonstrated in a study using radish (Raphanus sativus L.) and corn plants 
(Pizzeghello, Francioso, Ertani, Muscolo, & Nardi, 2013). Though the effects of humic substances on root 
biomass have solid evidence, a number of studies also present beneficial effects of HA on length and fresh and 
dry weight of shoots (Nardi, Carletti, Pizzeghello, & Muscolo, 2009). 

Biofertilizers most often affected shoot biomass (Table 7). Previous studies have reported significant increases in 
shoot dry biomass for wheat (Singh & Prasad, 2011), rice (Oryza sativa L.) (Yuwono, Handayani, & Soedarsono, 
2005) and lettuce (Kohler, Caravaca, & Roldán, 2010) when various biofertilizers were applied. Application of 
biofertilizers derived from vermicompost tea also outperformed the control in terms of shoot biomass on 
tomatoes (Edwards, Arancon, & Greytak, 2006; Fritz, Franke-Whittle, Haindl, Insam, & Braun, 2012). The plant 
growth effects caused by the use of biofertilizers have been attributed to increased microbial population, 
biologically active substances and nutrition promotion by accelerating mineralization processes (Rodrı́guez & 
Fraga, 1999; Somers, Vanderleyden, & Srinivasan, 2004). It was also postulated that the growth stimulation 
might be due to the phytohormones synthesizing as auxins (Dobbelaere, Croonenborghs, Thys, Broek, & 
Vanderleyden, 1999), gibberellic acids (Turan et al., 2014), and cytokinins (Zhang et al., 2014). Biofertilizer 
treatments alone affect root biomass to a much lesser extent comparing to the other materials (Table 7), however 
there are several studies showing the benefits of biofertilizers on root growth in several crops (Bhardwaj, Ansari, 
Sahoo, & Tuteja, 2014) and wheat (Dobbelaere et al., 1999).  

In general, the use of HA and/or biofertilizers increased total plant biomass compared to the control, however the 
integrated use of these compounds interestingly resulted in plants with more proportional above/belowground 
biomass ratio. A lower shoot:root ratio (Table 7) could indicate greater stress tolerance at a more mature growth 
stage because a proportional root system may have improved ability to send nutrients/water to the aboveground 
biomass. In both greenhouse and field trials, Canellas et al. (2013) validated a synergistic effect of biofertilizer 
and HA, where corn grain yield was 45% and 48% higher with the integrated use of both compounds when 
comparing with the independent use of biofertilizer and HA, respectively. 
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Table 7. Shoot, root and total dry biomass readings represented by the actual control values and the difference 
between treatment and control values. Shoot-root ratio is an absolute value 

Category Treatment comparison
Difference between treatments and control values 

Shoot biomass Root biomass Total biomass Shoot-root ratio 

---------------------------------------- g -----------------------------------------

Biofertilizer 

M-C (1x) 25.25 * 4.65 * 29.90 * 3.77 

M-C (2x) 33.80 * 2.23   36.03 * 4.92 

S-C (1x) 34.75 * 1.68   36.43 * 5.17 

S-C (2x) 33.67 * 0.25   33.92 * 5.63 

MB-C (1x) 24.72 * 1.65   26.37 * 4.50 

MB-C (2x) 13.33   2.38   15.71   3.56 

Humic 
H-C (1x) 18.60   6.25 * 24.85 * 3.12 

H-C (2x) 11.78   7.02 * 18.80   2.66 

Humic + Biofertilizer 

N-C (1x) 14.13   6.60 * 20.73 * 2.84 

N-C (2x) 8.08   6.00 * 14.08   2.61 

ML-C (1x) 24.67 * 5.57 * 30.24 * 3.56 

ML-C (2x) 13.00   3.40   16.40   3.32 

M+H-C (1x,1x) 12.10   8.77 * 20.87 * 2.47 

S+H-C (1x,1x) 17.90   6.95 * 24.85 * 2.98 

MB+H-C (1x,1x) 12.28   12.27 * 24.55 * 2.13 

Actual Control Values (C) 42.10   13.23   55.33   3.19 

Note. * denotes significant differences, α < 0.05.  

M = Microgeo; S = SoilSoup; MB = Microgro Supreme Bio Inoculant; H = Microlife Humic; N = Nanobind; 
ML = Microlife 6-2-4; C = Control.  

 

 
Figure 2. Root biomass visual contrast between control (left) and Microgro Supreme Bio Inoculant + Microlife 

Humic (right) 

 

3.4 Differences between the Two Application Rates of the Same Product 

The treatments using only one product were tested at 1x and 2x the label rate per application. The statistically 
significant differences between the two application rates (1x and 2x) were scarce considering the products tested 
and parameters collected. MicroLife 6-2-4 at the lower rate (1x) resulted in greater differences in total biomass, 
plant height (40 days PE) and atLeaf (60 days PE) (Table 8). Lower rates (1x) of Microlife humic produced 
greater atLEAF values at (20 days PE) (Table 8). The only product where doubling the rate generated significant 
greater difference was the application of Nanobind (2x) on atLEAF (20 days PE) (Table 8). Thus, it might be 
reasonable to affirm that the companies are providing a proper label rate for each product considering the two 
rates tested in this study. Nikbakht et al. (2008) have tested five different levels of HA and found that higher 
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levels decreased absorption of some nutrients, confirming the importance of suitable application rate. 
Furthermore, Vallini, Pera, Avio, Valdrighi, and Giovannetti (1993) found the optimal dose of humic acid + 
Glomus mosseae and the treatments where HA concentration was above the optimal dose the laurel (Laurus 
nobilis L.) shoot and root fresh weight decreased to values lower than the control in which no HA was applied.  

 

Table 8. Plant height contrast between 1x and 2x of the label application rate 

Product 
Plant height atLEAF Shoot  

biomass 
Root  
biomass 

Total  
biomass20 days  40 days 60 days 20 days 40 days 60 days

---------------------------------------------------------- Pr>f ----------------------------------------------------------

Microgeo 1x vs. 2x 0.659 1.000 0.631 0.833 0.420 0.917 0.194 0.070 0.376 

SoilSoup 1x vs. 2x 0.490 0.120 0.482 0.767 0.852 0.129 0.869 0.281 0.717 

MicroGro Bioinoculant 1x vs. 2x 0.941 0.249 0.629 0.702 0.336 0.531 0.086 0.582 0.126 

MicroLife Humic 1x vs. 2x 0.305 0.678 0.196 0.026 * 0.559 0.875 0.298 0.556 0.382 

Nanobind 1x vs. 2x 0.127 0.868 0.084 0.001 * 0.629 0.404 0.356 0.648 0.337 

MicroLife 6-2-4 1x vs. 2x 0.215 0.013 * 0.568 0.809 0.787 0.018 * 0.079 0.103 0.049 * 

Note. * denotes significant differences, α < 0.05. 

 

3.5 Substrate-Induced Respiration (SIR) 

Substrate-induced respiration uses the physiological respiration reactions of the microorganisms from the soil to 
measure microbial activity (Anderson & Domsch, 1978). According to Swaina, Bastiraya, Jitendraa, and Haibrub 
(2014), the SIR method offers a reliable and easy assessment of the microbial biomass and other aspects of 
microbial growth in the soil. The use of this method to evaluate the treatments tested in this study showed 
statistically significant differences (Table 9). Though SIR was positive for 11 of 15 IPNS treatments, only two 
treatments were significantly higher than the control (Table 10) and responses in general did not follow the same 
trend as the plant parameters. The two rates of Microgro Supreme Bioinoculant were the only treatments with 
SIR values greater than the control. Khan et al. (2015) reported a study testing different bioinoculants and 
vermicompost in combination and alone, where all treatments had higher soil respiration values than the control 
which did not receive bioinoculants and vermicompost. Moreover, the same study presented soil respiration 
increment varying from 29.4% to 53.6% over the control value, depending on the treatment.  

Application of HA did not significantly affect the SIR results. Hartz and Bottoms (2010) tested the effects of HA 
on microbial respiration in two different soils containing high and low organic matter. In their study, the addition 
of HA enhanced microbial respiration only in the low organic matter soil. Therefore, the high organic matter 
content present in our soil media may have decreased any potential HA influence on microbial respiration. 

 

Table 9. Analysis of variance of the IPNS treatments on substrate-induced respiration 

Source ĈIR 

Pr > f 

Rep  0.1012 

Treatment 0.00 

CV 50.0 

SED 2.9 
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Table 10. Substrate-induced respiration (SIR) values represented by the actual control values and the difference 
between treatment and control values 

Category Treatment comparison 
Difference between treatments and control values
Substrate-induced respiration (SIR) 
ug CO2/g dry soil/hour 

Biofertilizer 

M-C (1x) -0.50
M-C (2x) 0.40
S-C (1x) 0.10
S-C (2x) 0.20
MB-C (1x) 9.10
MB-C (2x) 5.80

Humic 
H-C (1x) -0.70
H-C (2x) -0.20

Humic + Biofertilizer 

N-C (1x) 0.20
N-C (2x) -0.20
ML-C (1x) 1.00
ML-C (2x) 1.60
M+H-C (1x,1x) 0.10
S+H-C (1x,1x) 0.90
MB+H-C (1x,1x) 2.90

Actual Control Values (C) 4.50

Note. * denotes significant differences, α < 0.01.  

 

4. Conclusions 

The individual and combined use of HA and biofertilizers generally increase corn growth and development 
parameters under the conditions of this study. Though all pots received adequate synthetic fertilizer, the control 
plants were generally smaller and less vigorous compared to the plants receiving either HA or biofertilizer 
treatments, but no additive benefit was observed for the integrated practice compared to individual applications. 
At 40 and 60 days PE the biofertilizer products consistently produced plants that were taller than the control. In 
general, shoot dry matter was increased by the biofertilizer products, while root dry matter was most positively 
affected by HA products. Impacts on total biomass were mixed based on contributions of increased root biomass, 
shoot biomass or both with 11 of 15 treatments exhibiting greater total biomass than the control. Differences in 
atLeaf chlorophyll meter readings were uncommon for any treatment in our study. However, all treatments had 
higher fluorometer readings at 20 days PE and higher readings for 13 of 15 treatments at 40 days PE. Although 
the current study cannot affirm that the conjunctive use of HA and biofertilizers is a better practice than the 
application of each compound alone, we did find positive benefits from the application of these compounds to 
corn. Further studies addressing different types and levels of stress and greater stress duration should be 
conducted to validate these findings and contribute further understanding of the value of the IPNS approach. 
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