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Abstract 
Sugarcane (Saccharum officinarum L.) is one of the most important crops in Brazil and its growth and 
development can be simulated through process-based models. The current study evaluated a model based on the 
decision support system for the transfer of Agrotechnology DSSAT/CANEGRO to simulate the sugarcane crop 
productivity in the western region of São Paulo. The DSSAT/CANEGRO model was calibrated using published 
yield parameters from a selection of five Brazilian sugarcane cultivars, while sugarcane yield data (tons of stems 
per hectare) from commercial land were used as benchmark data. Other modeling inputs were derived from the 
primary regional cultivar. The root mean square error (RMSE), Willmott agreement index (d), and mean absolute 
error (MAE) were used as performance metrics. The DSSAT/CANEGRO model resulted in a good RMSE 
performance. The productivity estimates were better for the cultivars SP791010 and RB835486, with RMSE 
equal to 2.27 and 4.48 Mg ha-1, respectively. The comparison between model-based estimates and observed data 
produced d values in the range from 0.86 to 0.99, and MAE values in the range of 1.84 to 4.22 Mg ha-1. 

Keywords: Saccharum officinarum, yield forecast, modeling 

1. Introduction 
The cultivation of sugarcane (Saccharum officinarum) is among the most important crops in Brazilian 
agribusiness. Brazil is the world’s largest sugarcane producer and the second largest producer of ethanol. The 
areas under production continue to gradually increase, although at a slower pace in the midwest states in Brazil 
and southeast regions. Since 2008, industrial units of sugarcane processing facilities were installed in the west of 
São Paulo state, which facilitated developing additional sugarcane fields (CONAB, 2018). This region has some 
edaphoclimatic characteristics that are different from the other sugarcane regions of the state, such as sandy soils 
with low water retention capacity, high temperatures, heavy rains and long periods without rain (summer), which 
promote plant water stress. 

There are different models for estimating growth and evaluating the development of process-based cultures that 
can facilitate monitoring and contribute to activities related to productivity forecasting, as well as assist in 
understanding those mechanisms that are directly involved in the different responses of culture to the 
environmental conditions (Marin et al., 2011; Nassif et al., 2012). 

According to Marin et al. (2011), currently there are several models that can be used for sugarcane growth 
simulations, such as: AUSCANE (Jones et al., 1988), QCANE (Liu & Kingston, 1995), APSIM (Keating et al., 
1999), and CASUPRO (Villegas et al., 2005). One of the main and most used models is the DSSAT/CANEGRO 
(Inman-Bamber, 1991; Singels & Bezuidenhout, 2002) is also one of the main simulation models of growth of 
the sugarcane currently in use (Nassif et al., 2012). The DSSAT/CANEGRO model is based on the Ceres-Maize 
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model (Jones et al., 1986), which was developed to model the most important physiological processes related to 
sugar production processes in South Africa (Inman-Bamber, 1991). 

The DSSAT/CANEGRO model is being used in different regions of the world to analyze the different sugarcane 
production systems (Inman-Bamber, 1991; Marin et al., 2011; Singels & Bezuidenhout, 2002; Singels et al., 
2008; Nassif et al., 2012). In Brazil, Marin et al. (2011) calibrated the DSSAT/CANEGRO model for two 
cultivars in the production systems of the center-south of Brazil. 

Thus, the aim of this study is to estimate the sugarcane productivity under conditions in the western portion of 
the state of São Paulo. The following specific objectives will be developed: (i) to evaluate the DSSAT model 
under different climatic and soil conditions for sugarcane production; (ii) to evaluate the performance of the 
DSSAT model using data reported by the sugarcane mills, and (iii) to evaluate the sugarcane productivity 
estimates in the western portion of the state of São Paulo, Brazil. 

2. Method 
2.1 Model Description 

Sugarcane productivity simulations in western portion of São Paulo state were carried out with the 
DSSAT/CANEGRO version 4.5 to model the most relevant sugarcane physiological processes, whereas the 
Weatherman subroutine to analyze the climatic data. 

The DSSAT/CANEGRO model requires water balance information and daily meteorological data (i.e., solar 
radiation, maximum and minimum temperatures, and precipitation). The sugarcane growth modeling includes 
phenology, canopy development, accumulation of biomass and sucrose, partitioning, root growth, water stress 
and lodging data (Singels et al., 2008). The model also requires soil physics data (i.e., field capacity, permanent 
wilting point, water saturation and soil depth) at the entrance of the process to adjust the water balance (Nassif et 
al., 2012). 

2.2 Input Variables by the Simulations 

The input variables were: precipitation (P) (mm), air temperature (Tmax) (Tmin) (Tmed) (maximum, minimum 
and average) (°C), solar radiation (Rs) (MJ m-2), average relative humidity (RH) (%) and average wind speed (m 
s-1) provided by the National Institute of Meteorology (INMET, http://www.inmet.gov.br) on a daily basis. The 
soil physical-chemical characteristics used to describe the soil's water storage capacity were: the permanent 
wilting point (cm3 cm-3), field capacity (cm3 cm-3), saturation point (cm3 cm-3), cation exchange capacity (cmol 
kg-1) and soil organic matter (g kg-1).  

The varieties used to perform the simulations (RB835486, SP791011, RB931530, and RB93509) were selected 
based on the sugar mill productivity data for the last 15 years. The RB867515 cultivar parameters were used to 
calibrate the model. These cultivars were selected due to their representativeness in planting sugarcane fields in 
the studied region. 

The soil profile characterizations were classified according to the Pedological Map of São Paulo state presented 
by Rossi (2017). The most representative soils of the Presidente Prudente-SP microregion were used in the 
simulation: Argilossos and Latossolos according to Brazilian System of Soil Classification (SiBCS) (Santos et al., 
2013), which are equivalent to Ultisols and Typic Hapludox subgroups, respectively, according to U.S. Soil 
Taxonomy (Soil Survey Staff, 2019). 

2.3 Method of Acquisition, Selection and Transformation of Climatic Data 

The metadata used for weather stations are shown in Table 1. The region of western São Paulo state on the 
borders with Paraná and Mato Grosso do Sul state, has a tropical climate, type CWa according to the Köppen 
climate classification, characterized by hot and rainy summers, and cold and dry winters. The average annual 
precipitation is 1,308 mm, with a maximum of 2,049 mm in 2009. January has the highest average rainfall (212 
mm), according to data recorded by the meteorological station of Presidente Prudente from 1969 to 2013. Severe 
drought events were observed, demonstrating again the great randomness and complexity of the atmospheric 
system, with the year 2001 being classified as unusual with relation to climate normals. La Niña's (a cold phase 
oscillation quasiperiodic of climate pattern that arises across the tropical Pacific Ocean on the coast of Peru and 
Ecuador every five years) (Gómez-Aguilar, 2020) years are no exception to this characteristic, even though they 
tend to be drier years. El Niño (describe the warm oceanic phase of climate pattern) (Gómez-Aguilar, 2020) 
years are characterized in most cases by the presence of extreme events in the region, such as intense rains 
(Berezuk & Neto, 2006) (Figure 2b). 
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Table 2. Description of the cultivar parameters and units needed to run the simulation in the DSSAT/CANEGRO 
model with the sugarcane cultivars representative of the western São Paulo. 

Parameter Unit Description 

Parcemáx g MJ-1 Maximum (no stress) radiation conversion efficiency expressed as assimilate produced before respiration per 
unit of photosynthetic active radiation (PAR) 

APFMX Mg Mg-1 Maximum fraction of dry mass increments that can be allocated to aerial dry mass 

STKPFmáx Mg Mg-1 Fraction of daily aerial dry mass increments partitioned to stalk at high temperatures in a mature crop 

Suca Mg Mg-1 Maximum sucrose contents in the base of stalk 

TBFT ºC Temperature at which partitioning of unstressed stalk mass increments to sucrose is 50% of the maximum value 

Tthalfo ºC d Thermal time to half canopy 

Tbase ºC Base temperature for canopy development 

LFmáx Leaves Maximum number of green leaves a healthy, adequately irrigated plant will have after it is old enough to lose 
some leaves 

MXLFArea cm2 Max leaf area assigned to all leaves above leaf number MXLFARNO 

MXLFArno Leaves Leaf number above which leaf area is limited to MXLFAREA 

Pl1 ºC d Phyllocron interval 1 (for leaf numbers below PSWITCH) 

Pl2 ºC d Phyllocron interval 2 (for leaf numbers above PSWITCH) 

Pswitch Leaves Leaf number at which the phyllocron changes 

TTPLNTEM ºC d Degree-days to emergence for a plant crop 

TTRATNEM ºC d Degree-days to emergence for a ratoon crop 

ChupiBase ºC d Degree-days from emergence to start of stalk growth 

TT_PopGrowth ºC d Degree-days from emergence to peak tiller population 

Max_Pop Mg m-2 Maximum tillers population 

PopTT16 Mg m-2 Mg population after 1.600 degree-days 

LG_AMBase Mg ha-1 Aerial or fresh mass (stalks, leaves and water attached to them) where lodging starts 

Source: Singels et al., 2008; Nassif et al., 2012; Marin et al., 2015.  

 

The RB867515 cultivar was previously calibrated for the DSSAT/Canegro and APSIM/Sugar models using 
inputs from six different regions of Brazil (Marin et al., 2013). The values of the parameters of each cultivar used 
in the simulation for the DSSAT/CANEGRO model are summarized in Table 3.  

 

Table 3. Values of the cultivar parameters used in the simulation for the DSSAT/CANEGRO model. 

Parameter RB867515 RB835486 RB92579* RB92579 SP791011 RB931530 RB93509

Parcemáx 12.860 13.520 10.8 13.5 7.7 6.5 9.86 
APFMX 0.843 0.865 0.92 0.9 0.88 0.9 0.8 
STKPFmáx 0.699 0.760 0.88 0.88 0.55 0.55 0.69 
Suca 0.680 0.695 0.57 0.57 0.58 0.58 0.68 
TBFT 25 26 25 25 25 25 25 
Tthalfo 250.800 257.800 286 230 250 250 250.8 
Tbase 15.710 15.620 14 14 15 14 15.71 
LFmáx 9.960 9.518 8 8 12 12 9 
MXLFArea 500.200 500.900 792 680 380 680 435 
MXLFArno 17.190 15.350 22 14 14 14 14 
Pl1 89.000 90.100 109 65 90 90 110 
Pl2 150.000 149.400 117 179 179 179 200 
Pswitch 16.140 16.330 22 18 18 18 14 
TTPLNTEM 300.400 509.400 428 615 628 628 628 
TTRATNEM 290.900 211.400 620 203 203 203 290 
ChupiBase 855.000 547.600 1050 533 1050 1050 855 
TT_PopGrowth 650.400 530.200 628 789 700 700 800 
Max_Pop 20.350 19.620 28 28 15 16 19.7 
PopTT16 8.190 9.556 12 11 9.2 7.8 8.3 
LG_AMBase 220 220 220 220 200 200 220 

Note. * Standard cultivar used for comparison purposes; ** Varieties parameterized by (Barros et al., 2016).  

Source: Nassif et al., 2012. 
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2.3.2 Simulation Scenarios 

The scenarios were based on the maturation cycle of the cultivars used: early, medium and late; three harvest 
seasons June 15th (early), August 15th (medium) and September 15th (late). Ten years of planting were 
simulated for each combination of climate and soil. Thus, for each location, the five varieties and two soils were 
considered, totaling 10 scenarios per region (Table 4). The planting date in all cases was on the 15th of June. 

 

Table 4. List of items used to compose the simulation scenarios to evaluate the DSSAT/CANEGRO model 

Note. * Soil classification according to the Brazilian System of Soil Classification (SiBCS) (Santos et al., 2013) 
and its equivalent according to the closest Soil Survey Staff (2019) (in parentheses). 

 

2.3.3 Evaluation of Performance of the Models 

In this study, the agreement index (d), mean error (ME), mean absolute error (MAE), and root mean square error 
(RMSE) were used as performance statistical metrics (Willmott et al., 1985), with Equations (6 to 9) as follows: 

d	=	1 – 
∑ (Yi –	Y)

2n
i=1∑ ( Yi	–	Ym 	+ Y	–	Ym )

2n
i=1

                              (6) 

ME	=	 ∑ (Yi – Y)n
i=1

n
                                   (7) 

MAE	=	 ∑ ( Yi – Y )n
i=1

n
                                  (8) 

RMSE	=	 ∑ (Yi – Y)
2n

i=1

n
                                (9) 

Where, Yi and Y are the estimated and observed sugarcane yield, in Mg ha-1, respectively; Ym are the average of 
estimated and observed sugarcane yield, in Mg ha-1; and n is the number of observations.  

3. Results and Discusions 
3.1 Meteorological Conditions 

Weather conditions during sugarcane period scenarios from January 1969 to December 2013 are shown in Figure 
2a. The values of, ETo was lower than precipitation (P), with ETo equal to 200 mm in the summer humid season 
and 25 mm in winter (Figure 2b). 
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