
Journal of Agricultural Science; Vol. 12, No. 7; 2020 
ISSN 1916-9752   E-ISSN 1916-9760 

Published by Canadian Center of Science and Education 

75 

Cryopreservation of Chlorella vulgaris Using Different 
Cryoprotectant Agents 

Helder Rodrigues da Silva1, Francino Costa Palhares da Silva1, Cassio Egidio Cavenaghi Prete2, 
Rodrigo Thibes Hoshino2, Ricardo Tadeu de Faria2, Mario Sergio Mantovani3 & Carmen Luisa Barbosa Guedes1

 

1 Postgraduate Program in Bioenergy, Center for Exact Sciences, Universidade Estadual de Londrina, Londrina, 
Paraná, Brazil 
2 Center for Agricultural Sciences, Department of Agricultural Sciences, Universidade Estadual de Londrina, 
Londrina, Paraná, Brazil 
3 Center for Biological Sciences, Department of General Biology, Universidade Estadual de Londrina, Londrina, 
Paraná, Brazil 

Correspondence: Helder Rodrigues da Silva, Postgraduate Program in Bioenergy, Center for Exact Sciences, 
Universidade Estadual de Londrina, Paraná, Brazil. Tel: 55-433-371-5453. E-mail: heldersilva@uel.br 

 

Received: March 1, 2020      Accepted: April 7, 2020      Online Published: June 15, 2020 

doi:10.5539/jas.v12n7p75          URL: https://doi.org/10.5539/jas.v12n7p75 

 

The research is financed by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES-Brazil). 

 

Abstract 
The objective of this study is to evaluate the cryopreservation of Chlorella vulgaris using different substances. 
The C. vulgaris was cultured in medium MH, the microalgae were grown under a 12:12 h light: dark 
photoperiod, illumination with 40 W led lamps, and a controlled temperature of 28±1 ºC. C.vulgaris was 
cultured for 15 days and the culture was aliquoted into 3-mL cryogenic tubes. The 3-mL aliquot was centrifuged, 
the supernatant was discarded, and the pellet was resuspended in different cryoprotectant solutions, T1-PVS1, 
T2-PVS2, T3-PVS2 (1% phloroglucinol), T4 (2 M glycerol), and T5 (5% methanol). The samples were rapidly 
frozen in liquid nitrogen (-196 °C) and analyzed after 15, 150, and 300 days of freezing. Cell viability was 
determined in cultures grown for 20 days. The only effective treatment was T5, which promoted the growth of 
thawed cultures in both solid and liquid media. After 15 days of freezing in liquid nitrogen and 20 days of culture 
growth, the number of viable and nonviable cells was 3.42±0.72 × 107 and 0.06±0.009 × 107, respectively, and 
viability was 98.2%. Similar values were obtained after 150 and 300 days of freezing: 2.17±0.15 × 107 and 
2.35±0.18 × 107 viable cells, 0.05±0.02 × 107 and 0.10±0.02 × 107 nonviable cells, and viability of 97.6% and 
95.8%, respectively. The cryopreservation protocol for microalgae C. vulgaris using 5% methanol was effective; 
therefore, it is possible to maintain this strain under axenic conditions in liquid nitrogen for long periods. 
Keywords: liquid nitrogen, conservation, microorganism, microalgae, biotechnology, bioenergy, biofuels 
1. Introduction 
Microalgae are photosynthetic microorganisms that can produce different metabolites, including lipids, proteins, 
carbohydrates, and pigments. A study has demonstrated the potential of microalgae as a raw material for 
producing biofuels, nutraceuticals, cosmetics and pharmaceuticals, bioestmulants and biofertilizer for 
agricultural and for other applications (Andrade et al., 2014; Richmond, 2004; Silva et al., 2016). 

One of the challenges in microalgae production is the maintenance of strains in the laboratory. The methodology 
most commonly used for growing microalgae is subculturing samples isolated in solid or liquid medium at low 
temperatures and low-light conditions to minimize biological activity and growth (Lorenz, Friedl, & Day, 2005). 
This procedure requires the long-term and intensive use of labor and materials and presents the risk of 
contamination and changes in genetic stability because phenotypic variations occur after successive subculturing 
over time (Day et al., 2005). 

Several studies developed new techniques to preserve these microorganisms and reduce cost and labor, with 
particular emphasis on the development of effective cryopreservation techniques (Lourenço, 2006). 
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Cryopreservation is a methodology used to preserve microorganisms at ultra-low temperatures (less than -130 °C) 
and allows their growth after thawing (Day & Brand, 2005; Tessarolli, Day, & Vieira, 2017). 

The advantages of cryopreservation are long-term stability, reduced material costs, protection against genetic 
drift and contamination, and reduced cost of long-term maintenance (Fernandes et al., 2019; Prakash, Nimonkar, 
& Shouche, 2013; Tessarolli et al., 2017). Although the procedures for cryopreserving microorganisms are 
usually simple, complex cell culture protocols involving multi-stage freezing at specific cooling rates and storage 
in liquid nitrogen are required for microalgae (Day & Harding, 2008). 

Another determinant factor in the success of cryopreservation is the composition of the freezing medium, in 
which reagents and concentrations depend on the sensitivity of each strain (Hubalek, 2003). In view of the 
heterogeneity of microalgae, many strains require specific protocols and standards, and many species do not 
adapt to the freezing technique (Taylor & Fletcher, 1998). 

A plant vitrification solution (PVS) is used for cryopreserving plant tissues, including embryos, protocorms, 
pollen, seeds, and cell suspensions (Sakai & Engelmann, 2007). Nonetheless, no studies have evaluated the 
potential use of PVS for microalgae.  

Given the complexity of the protocols and the need for specific equipment, the objective of this study is to 
evaluate the effectiveness of different cryoprotective agents in preserving microalgae Chlorella vulgaris. 
2. Materials and Methods 
2.1 Microalgae and Culture Conditions 

The experiments were carried out in the Laboratory of Chemistry of Biomass, Biofuels, and Bioenergy 
(Laboratório de Química da Biomassa, Biocombustíveis e Bioenergia-LAQUIBIO) and in the Laboratory of 
Crop Science of the Universidade Estadual de Londrina-UEL, Londrina, Paraná, Brazil.  

A strain of the microalga Chlorella vulgaris was obtained from the Laboratory of Crop Science of UEL and was 
maintained in solid and liquid culture media under axenic conditions. Subculture in liquid medium under aseptic 
conditions was performed to obtain the stock culture. MH medium with the following composition was used: 
0.57 g L-1 MAP, 0.075 g L-1 CaCl2, 0.36 g L-1 KNO3, 0.225 g L-1 MgSO4, 0.09 g L-1 YaraVita Rexolin BRA® 
(11.6% K2O, 1.28% S, 0.86% Mg, 2.1% B, 0.36% Cu, 2.66% Fe, 2.48% Mn, 0.036 % Mo, and 3.38% Zn) (Silva, 
2016). The pH was adjusted to 7.0 using 1 M KOH.  

The stock culture was maintained in a growth chamber for 15 days in 1-L Erlenmeyer flasks containing 500 mL 
of MH medium under a 12:12 h light: dark photoperiod, illumination with 40 W led lamps, and controlled 
temperature of 28±1 °C. 

2.2 Cryopreservation Protocols 

After initial culturing, the stock was aliquoted into 3-mL cryogenic tubes. A 3-mL aliquot was centrifuged at 
10,000 rpm for 10 min, the supernatant was discarded, and the pellet was resuspended in different freezing 
media. 

The solutions used were (1) PVS1 (19% glycerol, 13% ethylene glycol, 13% propylene glycol, 6% dimethyl 
sulfoxide [DMSO], 0.5 M sorbitol); (2) PVS2 (30% glycerol, 15% ethylene glycol, 15% DMSO, 0.4 M sucrose); 
(3) PVS2 + 1% phloroglucinol; (4) 2 M glycerol; and (5) 5% methanol. MH medium frozen in liquid nitrogen 
without cryoprotectants was used as a control.  

The pellets were resuspended in 1.4 mL of the freezing medium at 4 °C, kept in an ice bath for 20 min, and 
subjected to rapid freezing in liquid nitrogen (-196 °C). Centrifugations and the addition of the cryoprotective 
solutions were performed in a laminar flow chamber under aseptic conditions. All assays were performed in 
triplicate. 
2.3 Thawing and Recovery Growth 

Thawing was performed after 15, 150, and 300 days of freezing. The tubes were removed from the liquid 
nitrogen and thawed by manual stirring at room temperature. 

Test tubes containing 2 mL of sterile MH medium were inoculated with 200 μL of the thawed suspension, 
without performing centrifugation and washing procedures for removing the cryoprotectants. 

In the first thawing time point (15 days), 100 μL of the thawed suspension was dispersed in solid MH medium (1% 
agar) using a Drigalski loop to assess growth on semisolid medium. At 150 days of freezing, Erlenmeyer flasks 
containing 100 mL of MH medium were inoculated with 800 μL of the thawed suspension. 
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cytoplasm. The percentage of viable cells is analyzed by microscopy (Fang & Trewyn, 2012). This methodology 
has been used to distinguish between living and dead cells in different microalgae species (Huang, Lin, Pan, 
Huang, & Chu, 2015; Sánchez Mirón, Cerón Garcı́a, Garcı́a Camacho, Molina Grima, & Chisti, 2002; Song, 
Kang, Jeong, Kim, & Lim, 2018). 

Several factors may affect the efficiency of cryopreservation protocols, including cell density of stock cultures, 
number of centrifugation steps, light intensity during culturing, composition of the freezing medium, and the 
interactions of cryoprotectants with different species of microorganisms (Canavate & Lubián, 1995). 

In the scientific literature the cryoprotective potential of several substances was evaluated. The most effective 
substances were DMSO, methanol, ethylene glycol, and propylene glycol, and the least effective were glycerol, 
polyethylene glycol, PVP, and sucrose. DMSO is widely used as a freezing medium but is toxic to most 
microorganisms (Hubalek, 2003); therefore, many studies seek to define optimal combinations and 
concentrations of cryoprotectants.  

Bui et al. (2013) demonstrated the synergistic effect of DMSO combined with 200 mM sucrose. The optimal 
concentration of DMSO was 6.5%, and higher concentrations reduced cell viability in Palmellopsis sp. and 
Chlamydomonas sp. For Chlorella vulgaris, Nannochloropsis oculata, and Tetraselmis tetrathele, 2.5% or 5.0% 
DMSO in isolation has no cryoprotective effect. However, the combination of 5% DMSO and 5% ethylene 
glycol resulted in survival of 10% for Chlorella vulgaris, and survival increased to approximately 50% when 5% 
proline was added to the freezing medium (Nakanishi, Deuchi, & Kuwano, 2012). 

The viability of Chlorella sorokiniana using 7% DMSO was 80%. Nonetheless, for Desmodesmus spinosus and 
Chlamydomonas biconvexa, the combination of 5% glycerol and 5% PEG-400 resulted in viability higher than 
48% and 70%, respectively, at 24 h after thawing (Fernandes et al., 2019). 

Although the DMSO concentration in PVS1 (6%) was below the lethal concentration described in the literature, 
treatment with DMSO was ineffective. GWO et al. (Gwo, Chiu, Chou, & Cheng, 2005) showed that the toxicity 
threshold of ethylene glycol, DMSO, methanol, and polyethylene glycol as cryoprotectants for Nannochloropsis 
oculata was 20%, 30%, 30%, and 40%, respectively. However, Joseph, Panigrahi, and Chandra (2000) observed 
that these limits varied according to species and, for Chaetoceros calcitrans and Chlorella marina, DMSO or 
methanol concentrations higher than 10% were lethal during a 15-min exposure, which could justify the 
ineffectiveness of treatments using PVS2 (30% glycerol, 15% ethylene glycol, 15% DMSO, 0.4 M sucrose). 

Another critical factor to consider is the cooling rate. The above studies used slow cooling in two stages, in 
which, after adding the cryoprotectants, the tubes were transferred to freezers and frozen at a cooling rate at 
-1 °C min-1 until they reached temperatures of -40 °C to -80 °C. The tubes remained at this temperature range for 
4 to 16 h and were then immersed in liquid nitrogen. 

Buhmann, Day, and Kroth (2013) found that the cryopreservation of Planothidium frequentissimum using 5% 
DMSO was feasible by pre-freezing at -40 °C at a controlled cooling rate of 1 °C min-1 and maintenance in the 
dark for 48 hours in the post-thawing recovery phase to reduce photooxidative stress. Morschett, Reich, Wiechert, 
and Oldiges (2016) reported that direct freezing in liquid nitrogen reduced the viability of Chlorella vulgaris 
maintained in 10% DMSO, 10% ethylene glycol, and 10% L-proline.  

Another factor that may have affected the effectiveness of PVS is the step of washing and removing the 
cryoprotective agents. The steps performed after thawing included centrifuging the tubes, discarding the 
supernatants, and resuspending the pellet in culture medium or saline before inoculation in the recovery medium. 
Although decreasing the number of centrifugations increases cell viability by reducing mechanical damage (Bui 
et al., 2013), skipping the centrifugation washing step may be detrimental because of the high toxicity of the 
cryoprotectants at room temperature, even at low concentrations, diluted in the recovery medium. 

These results indicate the advantages of T5 because the cryopreservation protocol used both before and after 
freezing is simple, and some steps are unnecessary, including controlled cooling, culture maintenance at 
pre-freezing temperatures, centrifugation to remove the cryoprotective agents, and recovery growth under 
low-light conditions. These characteristics make the T5 protocol simple, fast, and effective for preserving 
Chlorella vulgaris. 

Scarbrough and Wirschell (2016) have shown that 5% methanol is better than commercial kits for preserving 
Chlamydomonas reinhardtii because the thawed culture can be directly inoculated in semisolid agar or liquid 
medium under aeration. Furthermore, aeration was essential to guarantee cell viability during culture recovery in 
liquid medium.  
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The present results demonstrate that Chlorella vulgaris can be inoculated directly in a liquid medium without the 
need for agitation or aeration. Immediately after manual thawing at room temperature, the sample (1.0-1.5 mL) 
can be used to inoculate 100 mL of liquid medium. 
4. Conclusions 
The cryopreservation of microalgae Chlorella vulgaris was effective, allowing its long-term preservation under 
axenic laboratory conditions and cell growth in a liquid culture medium, which is used for large-scale biomass 
production in different biotechnological applications.  
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