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Abstract

The detection of diseases in oil palm crops in the Brazilian Amazon represents a great challenge for the
management of this crop in Brazil. The plantations in the State of Para provide inputs for the food, cosmetics,
agro-energy and biofuel industries, supplying Brazilian markets. In recent years, several factors such as pests,
diseases and climate have interfered in the development of oil palm in the region, generating the need to adopt
new techniques to detect and monitor such issues. In this work, spectral enhancements were carried out by
simple reflectance and vegetation indices for four plots cropped on Companhia Palmares da Amazoénia (CPA)
farm, owned by Agropalma S.A. company in the municipality of Acard, in the state of Para. The results allowed
the identification of expressive patterns minimum and maximum reflectances of the studied plots, correlating
with occurrences of diseases. The EVI index showed an excellent correlation with the occurrence of diseases.
However, the NDVI and SAVI indexes showed adequate adjustments with the occurrence of diseases in 2017.
The areas corresponding to the L36 and H27 plots showed higher occurrences of diseases, based on the analysis
of reflectance through vegetation indices. It is concluded that the reflectance enhancements, NDVI, SAVI and
EVI obtained by orbital sensors are efficient in the detection of diseases in the plots. The results allowed the
identification of diagnostic anomalies of stresses in the plots, either by disease or other factor, allowing the
decision making in an adequate time, therefore avoiding large scale eradication in the extensive areas in
commercial palm oil plantations in Brazil.
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1. Introduction

Oil palm (Elaeis guineenses Jacq.) is an oleaginous palm native to Africa, grown in large scale in the Brazilian
Amazon, in areas that have already been deforested. In the region, approximately 207 thousand hectares of
cropped area is totalized, about 88% of the Brazilian crop where the largest oil production is found (Abrapalma,
2018).

In Brazil and in the Brazilian Amazon, the state of Para is the largest producer of oil palm, particularly in the
municipalities of Acara, Baido, Bujaru, Concordia do Para, Igarapé-Acu, Moju, Sdo Domingos do Capim,
Tailandia, and Tomé-Agu. The region is favored by ideal agro-climatic conditions and governmental support
provided by the Sustainable Palm Oil Production Program in Brazil (Alves et al., 2016).

Factors such as production and palm oil extraction rate are fundamental to the viability of crop investments,
directly influencing the profitability of the companies that invest in this crop (Teles, 2014). Palm oil is obtained
from the oil palm, which is an edible and balanced oil, extracted from the mesocarp, and the palm kernel oil,
derived from the almond (Bergmann et al., 2013). The growing world’s demand for these oils is related to the
consumer market that uses them in the food, cosmetics, hygiene and cleaning, agro-energy and biofuel industries.
In this context of demand, about 80% of the production is directed to the food industry, such as margarines,
creams, ice cream, biscuits, chocolates, fillers and substitutes of cocoa butter and cooking oil (Abrapalma, 2018).
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Due to the increase in cropped areas and the recognized economic importance of the culture in the Brazilian
Amazon, especially in the state of Para (Brazil), there is a need for reliable, comprehensive, systematic and agile
information on the oil palm, which has become even more crucial in the face of phytosanitary issues that
strongly affect the productivity of these palms and decrease their expansion (Duarte et al., 2008; Pinho et al.,
2016). Among these phytosanitary limitations, we highlight insects, drill pests (Rhynchophorus palmarum,
Linnaeus, 1764; and Eupalamides cyparissias cyparissias Fabricius, 1776), defoliators (Opsiphanes invirae
Hubner, 1818), and oil palm diseases, such Fatal Yellowing (FY), red ring disease (Bursaphelenchus cocophilus
Cobb, 1919), sudden wilt (Phytomonas staheli McGhee and McGhee, 1979) and vascular wilt (Fusarium
oxysporum f. sp. elaedis) (Flood, 2006; Maciel et al., 2015; Assis Costa et al., 2018; Nascimento et al., 2018;
Martinez et al., 2019).

Most agronomic information related to the occurrence of diseases in Amazonian oil palm plantations is obtained
manually and rudimentarily by means of field surveys performed by the so-called “pragueiros” or field agents,
who range plant-to-plant, seeking the visual recognition of pests and diseases. As a result, work becomes
expensive, time-consuming and subject to frequent mistakes. Such a model generally allows for late diagnosis,
with no other curative action to be taken, resulting in destruction of the plant (Giese et al., 1975; Goodell, et al.,
2014).

Among several techniques of aid for farm crop management, the use of remote sensing has shown promising
results for rapid and efficient detection of diseased plants in small and large geographic areas (Naue et al., 2011;
Zhang et al., 2019). It is a technology composed of sensors and platforms, capable of obtaining information from
the surface without physical contact with it, and often at long distances, from satellites and manned aircraft. Thus,
remote sensing has become an instrument of great potential, where its usefulness contributes in several studies
such as vegetation, acting in precision agriculture through the monitoring and physiological and phenological
studies of the plantation (Novo, 2010; Mahlein, 2016; Zhang et al., 2019).

For the evaluation and monitoring of agricultural crops, remote sensing allows spectral analyses through
reflectance curves and vegetation indexes, qualifying this technique as relevant for agricultural management.
Through the analysis of spectral parameters of the vegetation, with more attention to the visible and near infrared,
the several vegetation indices allow the differentiation in several points of the agricultural and forest cultivation
(Ponzoni & Shimabukuro, 2007).

The understanding of the spectral behavior allows to extract information of the vegetation distribution, canopy
structure, phenological state, stress conditions, nutrient deficiency, among others (Ponzoni et al., 2012). The
NDVI is an index that can be used in studies related to vegetation dynamics with more homogeneous values,
besides being a good estimator of biomass. However, it can be influenced by atmospheric interferences (Souza &
Silva, 2016).

By considering the successive occurrences of pests and diseases in the oil palm in recent years (Maciel et al.,
2015; Torres et al., 2016; Murguia-Gonzalez et al., 2018; Martinez et al., 2019), and the great difficulties of their
containment in the current management routines, it is important to consolidate a technique that is efficient and
shows a rapid response for the detection of diseases in the extensive plantations of the region, starting with the
present experiment carried out in plots in the municipality of Acara. Thus, this paper evaluates the efficiency of
the Sentinel-2A MSI orbital sensor for the detection of anomalies caused by diseases in the palm oil crop in the
municipality of Acara, representative of the crops in the Brazilian Amazon.

2. Methodology
2.1 Study Area

The study area is owned by Agropalma S.A., in municipality of Acara, located in the mesoregion of the
Northeastearn Para and microregion of Tomé-Agu, about 114 km away from Belém, capital of the state of Para
(PA), in the Brazilian Amazon (Figure 1). It has an estimated population of 55,513 thousand inhabitants and a
territorial area of 4,343.550 km? (IBGE, 2018a). The climate of the municipality corresponds to the megathermal,
Am type according to the classification of Koppen, that is, hot and wet equatorial, with propensity to
agropastoral activities. Besides, the favorable climate and abundance of water allowed many projects aimed at
the production of palm oil. Rainfall ranges from 2,000 to 3,000 mm annually, with higher occurrences between
December and April. The soil type is predominantly Yellow Latosol and medium clayey texture. This study was
carried out in an area of cropped plots, located by the geographic coordinates 02°18'10.1" S and 48°39'40" W.

The experiments were carried out in the L30, L36, H25 and H27 plots, with individual areas of approximately 36
hectares owned by Companhia Palmares da Amazoénia (CPA) company belonging to Agropalma S.A. (Figure 1),
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classified as mature conventional type crops at approximately 16 years of age, arranged in an equilateral triangle
with spacing of 9 x 9 m.
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Figure 1. Geographic localization of the study area

2.2 Experimental Database
2.2.1 Sentinel-2A MSI (Multi Spectral Instrument)

The Sentinel-2A image files, MSI (Multi Spectral Instrument) sensor were made available by Earth Explore
USGS, dated July 25, 2017. The following bands were acquired: B2 (Spectral range Blue—458-523 nm/490 nm)
with sensitivity to dispersion of vegetation aerosols; B3 (Green spectral range—>543-578 nm/560 nm) sensitive
to total chlorophyll of vegetation; B4 (Red spectral range—650-680 nm/665 nm) sensitive to maximum
absorption of chlorophyll; B8 (NIR spectral range—785-900 nm/842 nm) sensitive to healthy vegetation and
with full leaf structure; and B11 (Swir range—1565-1655 nm/1610 nm) sensitive to vegetation enhancement and
exposed soil. Except for B11, all images were acquired by 10-m spatial resolution and low percentage of clouds.

2.2.2 Phytosanitary and Farming Data

It was made available for the present study, the database of occurrences of diseases arranged in spreadsheets
produced by the phitosanitary sector of Agropalma S.A., referring to the occurrences of yellow and red wing
infected plants and eliminated per between the years of 2013 and 2018.

2.3 Image Pre-processing

The Sentinel-2A images were processed through the following steps: 1) atmospheric correction; 2)
transformation to 8 bits (256 NC); 3) georectification with 29 control points in the plot; 4) transformation of
digital numbers (DN) into apparent reflectance values; and 5) generation of vegetation indices and reflectance
images. The data processing phase was carried out at the Laboratory of Geoprocessing, Spatial Analysis and
Satellite Monitoring (LAGAM) of the Federal Rural University of Amazonia, in Belém, state of Para. Field work
in the study area was carried out on February 27, 2018, and consisted in the collection of control points and
verification of the records of diseases in the evaluated plots.

2.4 Vegetation Index Generation

Vegetation indexes were extracted for four plots of the oil palm management area: 130, L.36, H27 and H25.
Three vegetation indexes were evaluated: Normalized Difference Vegetation Index (NDVI), Soil Adjusted
Vegetation Index (SAVI) and Enhanced Vegetation Index (EVI).
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The Normalized Difference Vegetation Index (NDVI) is a spectral enhancement resulting from the combination
of reflectance levels of red and infrared spectral bands. The NDVI, proposed by Rouse et al. (1973) was
calculated through the following formula:

NDVI = 2NR_PRED 1)

PNIR T PRED
Where, pNIR is the reflectance of the vegetation in the near infrared band and pRED is the vegetation reflectance
in the red band. Leaf reflectivity in the NIR stems is the result of the presence of intracellular spaces in its
structure, and the larger the number of space within the leaf, the greater the radiation reflectivity (Jackson et al.,
1983).

Soil-Adjusted Vegetation Index (SAVI) is an improvement on NDVI, proposed by Heute et al. (1988). It
minimizes the effects of soil that partly influences NDVI, allowing the increase in the value of vegetation indices,
especially in canopies with average levels of green cover. The constant “L” ranges from 0 to 1, according to the
density of the vegetation. Thus, for low-density vegetation cover, the factor L is 1.0; medium coverage plant
density, the factor will be 0.5; and for high densities, the L factor will be 0.25. The index proposed by Huete et al.
(1988) is calculated through the formula:

SAVI= (1+ L) (PR — PrED) @)
(Ls +pxir * PrED)
Where, pNIR is the near infrared band, pRED is the red band and L is the adjustment factor for the canopy
substrate.

The Enhanced Vegetation Index (EVI), developed by Huete et al. (1997), seeks to improve vegetation sign by
reducing soil and atmospheric interferences. It is very sensitive in regions with high biomass concentration. It is
based on the following calculation:
— (PxiR ~ PRED)

EVI=Gx (Pxir + C1* PREp — C2% Pypye 1) )
Where, pNIR is the near infrared band, pRED is the band of red, pBlue is reflectance in the blue region, G is the
gain factor, Cl1 and C2 are adjustment coefficients for the aerosol effect of the atmosphere and L is the
adjustment factor for the canopy substrate.

3. Results and Discussion
3.1 Spectral Characterization Through Reflectance Enhancement

Values of average reflectance were extracted from the L30, L36, H25 and H27 plots in Sentinel-2A images
(Figure 2) (Table 1). The spectral band in the red band (RED) showed a lower reflectance average in the four
plots, therefore, a higher absorption, indicating a RED radiation reception pattern for the plots due to the
presence of photosynthetic pigments. However, the H25 plot displayed an anomalous pattern in relation to the
other plots, with a greater reduction of the RED absorption, resulting in a strong collapse of chlorophyll and
consequently an abnormal functioning of the plant, which is a response of the presence of diseases, pests or
nutritional deficiency. The L30, L36 and H27 plots also showed low RED absorption.
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Figure 2. Spectral characterization by reflectance enhancement of oil palm in L30, L36, H25 and H2 plots
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Table 1. Average reflectance values of oil palm in L30, L36, H25 and H27 plots

Bands L30 L36 H25 H27

RED 0.18175 0.17681 0.20787 0.17967
NIR 0.24479 0.25660 0.22831 0.23021
SWIR 0.19833 0.21872 0.20145 0.21092

The high reflectance in the NIR band refers to the strong interaction between radiation and internal structure of
the leaves of the oil palm, common to the vegetation. It can be seen in the Figure 2 and Table 1 that the standard
reflectance in NIR is very pronounced in L36 plot, an indicative of greater vegetative vigor. However, the H25,
H27 and L30 plots showed a low reflectance, so it can be inferred that there was more deterioration of the
cellular structure of the oil palm. When related to oil palm sanity, the short-wave infrared (SWIR) band shows
similar behavior to the NIR (Figure 2 and Table 1), corroborating with the low reflectance observed in the H25
and L30 plots and better vegetative vigor in L36. These analyses are confirmed by the incidence of infected
plants in the plots (Figure 4).

Thus, this spectral characterization represents a viable technique for the detection of spectral anomalies,
indicative of diseases, which were only identified with long field and laboratory works (Amaral et al., 2009).

Table 1 shows that the reflectances in the RED band, in the H25 and H27 plots, considered with a higher degree
of infection, are higher than those with healthy plants. The reflectance in the NIR region for more infected plots
is lower than for areas with healthy plants (L30 and L36). This evidences that the contrast between the leaf
reflectance in the RED and NIR bands can characterize the unequivocal presence of anomalies or not in the oil
palm.

3.2 Detection of Diseases in the Oil Palm Through Vegetation Indexes

The use of vegetation indices in the monitoring of oil palm plantations will allow the early detection of
anomalies associated with a variety of causes, including infection caused by red ring and fatal yellowing diseases,
pests, water stress or nutritional deficiency. From 2013 to 2017, the incidence of plants infected with Fatal
Yellowing (AF) increased, and in 2017, the highest occurrences (Figure 3) were observed. The application of the
technique allowed to determine priority areas for emergency intervention in the crop management.
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Figure 3. Fluctuation of the incidence of plants infected with Lethal Yellowing (LY) from 2013 to 2017, in oil
palm plots L.30, L.36, H25 and H27, Acara, Brazil

The three indexes evaluated in this study allowed the identification of infected plants by any collapse factor,
mainly caused by the diseases. In the four evaluated plots, anomalies referring to different symptoms or
combination of symptoms were detected, thus, highlighting the occurrence of fatal yellowing. In this area of
study, the width of canopies ranged from 8 to 16 meters for the adult plants, which generated a suitable pattern
for area detection, compatible with the spatial resolution of the Sentinel-2A and the scale of this mapping. It was
assumed that high index values (NDVI, SAVI and EVI) would be associated with increased photosynthetic
activity and therefore, they could be used to discard the occurrence of infected plants (Wulder et al., 2006b).
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By considering the moment when the plant is not healthy, it tends to respond out the normal pattern of its levels
of reflection and absorption in the leaf areas, therefore evidencing that the photosynthetic level and the absorbed
radiation were affected. Modeling of vegetation indices is based on the opposite behavior of leaf reflectance in
the RED band, that is, the higher the leaf density, the lower the reflectance as a function of the radiation
absorption through the photosynthetic pigments, and the higher the plant density, the greater the reflectance in
the different layers of the leaves (Boratto et al., 2013).

The NDVI data were discretized in the four plots, 130, L36, H25 and H27 for 2017, in order to detect infected
areas in the mature oil palm. Results obtained in the NDVI, which are expressed with high reflectance in all plots,
especially L36 and L30, show high maximum and minimum values (Figure 4).
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Figure 4. NDVI, SAVI and EVI in oil palm plots L30, L36, H25 and H27

The spectral pattern allows to infer a low occurrence of diseases in the dates prior to this experiment. However,
for the plots H25 and H27 (Figure 5), lower values of maximum and minimum reflectance of NDVI are evident,
with the minimum limits that do not allow the attribution of occurrence of diseases.
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Figure 5. NDVI intensity spatial distribution in oil palm plots L30, L36, H25 and H27 in conventional oil palm
crops, Acara (PA), Brazil
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Visualization of the SAVI maps highlighted low reflectance areas, which were significant for the diagnosis of
disease, especially in the L30 and H27 plots, with maximum and minimum SAVI values pointing to anomalies in
these areas (Figure 6). It can be observed that SAVI maintained an excellent correlation with the occurrences of
FA observed in Figure 4. Regarding NDVI, SAVI showed better discrimination of impacted zones and intensity
of occurrences. This SAVI performance may be associated to the fact that this index minimizes the effects of soil
in the areas of the plots since an increase in the diagnosis of diseases in the last years, in some cases, resulted in
the eradication of some plants.
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Figure 6. SAVI spatial distribution intensity in oil palm plots L30, L36, H25 and H27 in conventional palm oil
crops, Acara (PA), Brazil

The analysis of the EVI reflectance (Figure 3) clarifies that the plot that presented the greatest anomaly
representative of diseases was H27. Figure 7 strongly emphasizes the pixel areas with low reflectance in the EVI
images in the L30 and H27 plots, indicative of the high presence of diseases. There were 1249 and 808
documented cases of fatal yellowing in H27 and L30 plots, respectively (Figure 3). In comparison to NDVI and
SAVI, the EVI showed an excellent performance in the discrimination of the most impacted zones as EVI
improved the vegetation signal, attenuating the influence of the atmosphere and the soil on the canopy of the oil
palm in this region in the Amazon.
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Figure 7. Spatial distribution of EVI intensity in oil palm L30, L36, H25 and H27 plots in conventional oil palm
crops, Acara (PA), Brazil

According to Santos et al. (2011), vegetation index analysis of orbital images provides general accuracy of about
80% for the mapping of disease infection in oil palm crops. The results obtained by this experiment will allow
the definition of a practical methodology or a model for the monitoring of the oil palm crop in the Brazilian
Amazon. The favorable correlation between vegetation index reflectance levels and occurrence of disease in the
assessed area shows the potential of Sentinel-2A images, confirmed by the clear expression of L36 and H27
reflectance extremes. This situation allows to minimize or confirm the occurrence of diseases.

4. Conclusions

This study approached the spectral enhancement through vegetation indices to determine the unequivocal
viability of remote sensing techniques in the detection of diseases in oil palm. In this approach, Sentinel 2-A
orbital images were effective in monitoring and indicating areas for detailed assessment, saving time and
financial resources in oil palm management. Medium-resolution orbital images can be widely used to detect
areas with disease infection or occurrence of pests in the oil palm. Enhancements through vegetation indices can
systematically discriminate the areas with healthy and infected plants.

Enhancements through simple reflectance as well as NDVI, SAVI and EVI were efficient in the detection of
diseases in the oil palm, especially the detection in L30 and H27 plots in the study area. The curves generated
through NDVI, SAVI and EVI proposed an analysis that allows the identification of diagnostic anomalies of
stresses in the plots, either by disease or other factor, allowing adequate time for remediation actions that avoid
plant eradication.

Other studies in this direction for crops in Brazil should enable spectral detailing of the diseased and healthy oil
palm, the different maturity stages and genetic varieties in the Brazilian Amazonian crops. This characterization
should improve the accuracy of detection methods through spectral analysis.
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