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Abstract 
Relationships between drought, carbon and water fluxes have been rarely studied in south Mediterranean forests. 
The present research focused on the determination of seasonal and annual water and carbon fluxes of Quercus 
suber L. forests in northern Tunisia. The methodology was based on the calculation of the standard precipitation 
index, measurements of trees sap flow and net photosynthesis. Estimations of photosynthesis and transpiration 
during the 1965-2003 period were used on crop coefficients and water use efficiency terms. 

Results indicate a wide evapotranspiration rates fluctuating from 354 mm y-1 to 784 mm y-1 with an average 
value of 553 mm y-1. Extreme values of the standard precipitation index were -2.4 and +2.7. The carbon flux 
ranged from 0.255 to 0.586 kg y-1 m-2 with a mean value of 0.448 kg y-1 m-2 while average water efficiency 
reached 0.8 gr C kg-1 H2O. Despite the fact, that there is a significant difference between the four studied sites 
and important annual variability of carbon fluxes, the correlations between water and carbon fluxes and drought 
index were very low. The results clearly indicate that deep transformations are occurring in the Quercus suber L. 
forests, as a result of carbon dioxide fertilization being cancelled by the drought effect.  

Keywords: Quercus suber L., draught, net photosynthesis, evapotranspiration, mediterranean forests 

1. Introduction 
Global climatic models predict a change in rainfall pattern in Tunisia, characterized mainly by a decrease in 
summer rainfall coupled with greater inter-seasonal and inter-annual variability (IPCC, 2007; Hulme et al., 2001). 
These previsions for the near future reveal an accentuation of the drought, which means that increasingly longer 
and more intense dry periods to be expected (Giannkopoulos et al., 2005). The dry period of the year and the 
succession of two or more dry years would be greater when compared to the reference period (Nasr et al., 2008). 

The study of the climate during the last century showed that drought remains a recurring and cyclical 
phenomenon in Tunisia (Benzarti, 1994). In fact, 50% of dry years were located in North of Tunisia where the 
climate is mostly humid. Severity of draught is dominated in and it is dispersed within the same region. Hajri 
(1996) showed that driest years occurred in the 1940s. However, in the 1960s it was more likely of the local type. 
The phenomenon of the isolated dry year is the most common in Northern Tunisia; it occurred 48% to 66% of 
the observed period. During the period 1985-1997, the succession of three consecutive dry years was recorded 
only in Beja province (1987-1990), but no succession of four consecutive dry years has been ever recorded. It is 
good to notice that the North-West Tunisia area is an important reserve of water and biodiversity. The Quercus 
Suber L. Forest is one of the most fragile ecosystems in this region. This forest has been an alarming 
deterioration, it now occupies an area of 90 000 hectares against 140,000 hectares 100 years ago (Boudy, 1952). 
However, it still offers several goods and services to society mainly the photosynthesis carbon capture insured by 
these forming trees which are threaten by the expected drought and the alteration of water and carbon flows. 

The determination and modeling of water and carbon flows have shown the complexity of the exchanges 
between both forest and atmosphere (Le Dantec et al., 2000; Davi, 2000). These predictive models usually 
require a lot of data and observations (Dewar, 1992; Granier et al., 2000) of daily weather, soil and vegetation 
which are often unavailable. In this study, a simple approach based on accurate measurements of 
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Table 1. Geographical Characteristics, temperature (°C) and mean precipitations (mm) of stations during the 
period 1961-1990 

Stations Lat N Long E Alt (m) Tn (°C) Tx (°C) Rainfall (mm) 

ADH 36°47' 8°43' 715 10.6  17.9 1488 

BEJ 36°44' 9°11' 360 10.5 23.9 557 

TAB 36°57' 8°45' 166 13.1 22.9 961 

JND 36°29' 8°48' 143 11.1 25.2 460 

 

2.3 Measurement of Sap Flow, Photosynthesis and Soil Moisture Content 

Four trees were equipped with thermal sensors to continuously heating Granier. Tree diameters were between 20 
and 40 cm. 2 cm deep is too shallow even after bark removal. Needles 5 and 10 cm long are available. The 
sensors were protected against radiation by an aluminum film. An acquisition unit type ΔT (DL2-e) continuously 
(every 30 sec) measures signals that are averaged over 1 hour and stored in memory. The calibration equation 
established by Granier (1987) was used to calculate flow density;  

SFd = 136.828K1.2997                                    (1) 

The index K of flux calculated by the formula;  

K	=	 dTo –	dT

dTo
                                         (2) 

Where, SFd: flow density (10-6 m/s); dTo: temperature different (°C) when flow is zero, late night in wet period; 
dT: temperature difference for a positive flow density (°C). 

An empirical relationship established in the study area connecting the tree diameter (DBh) to the sapwood 
section Sa (r = 0.65) by core sampling was used to calculate the daily flow;  

Sa = 1.058DBh1.2889                                    (3) 

The average transpiration of the trees (Tr, mm j-1) was calculated by weighting the DBhi of the tree i. The total 
daily flow was found by integrating the hourly flows and weighting by the diameters of the trees.  ∑ SFDi × DBHii=4

i=1∑ DBHii=4
i=1

                                      (4) 

Soil water content was measured monthly by a TDR30 at depths of 10 and 30 cm at eight points, thus integrating 
the undergrowth cover. A simplified water balance was calculated on the 0-40 cm layer based on the soil field 
capacity value and precipitation recorded at the same site. 

ΔS = Es + P – D ± R                                 (5) 

Soil water content was measured monthly by a TDR30 at two depths (10 and 30 cm) at eight points, thus 
integrating the undergrowth cover. A simplified water balance was determined on the 0-40 cm layer based on the 
soil field capacity value and precipitation recorded at the same site. 

The measurements of net photosynthesis were carried out on the eight trees chosen, for a full year by choosing to 
make these measurements in 5 typical days of each season of the year.. Net photosynthesis was measured by a 
Li-COR6400 device (Nebraska, USA) on the 4th leaf of young twigs, one from each orientation (North and 
South) (Nasr et al., 2012). The measurements included sun lit leaves (Pns), leaves in the shade (Pno) and dark 
respiration measurements (Rn). The total resulting was then calculated assuming equal leaf surfaces in the sun 
and leaves in the shade, such as: 

Pn	=	 Pns +	Pno

2
	+	Rn                                   (6) 

2.4 Estimates of Seasonal Photosynthesis During the Climatic Period 1965-2003 

Seasonal values of water efficiency, EUE = Pn/Tr and evapotranspiration coefficients, KT = Tr/ETo and KTo = 
(Tr + Es)/ETo were determined from the measurements made in the station of Ain Snoussi during the year 
2008-2009. These values of EUE, KT and K To have been adapted after adjustment for the BJA, ADH, TAB and 
JND stations by a ratio of the vapor pressure deficits between that of Ain Snoussi and those of the other stations 
for the 2008-2009 periods. This assumes that the CO2 and H2O gas exchanges are essentially controlled by the 
stomatal conductance via the vapor air pressure deficit. These seasonal ratios ranged from 0.31 to 1.19. Thus, 
from the monthly temperature and precipitation data for the 1965-2008 periods, the terms SPI, ETo, ET and Pn 
have been calculated for each season and each station.  
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Table 5. SNK analysis of the Fc, SPI and ET parameters for the ADH, TAB, BEJ and JEN stations during the 
period 1965 and 2003 

Variable SNK group Mean Station 

Fc 

A 

BB 

BB 

B 

0.47573 

0.44859 

0.44082 

0.42797 

ADH 

JEN 

TAB 

BEJ 

ET 

AA 

A 

BB 

B 

1.80641 

1.79514 

1.26179 

1.21231 

BEJ 

ADH 

TAB 

JEN 

SPI 

AA 

AA 

AA 

A 

0.01128 

0.00256 

-0.00474 

-0.02949 

ADH 

TAB 

BEJ 

JEN 

 

Positive correlations between ET and Fc and low negative correlations with SPI were observed. It is evident that 
a significant station effect was present for the Fc and ET variables but no significant station effect at the 5% 
threshold for the SPI variable was found (Table 6).  

 

Table 6. Correlations between the Fc, SPI and ET parameters for the ADH, TAB, BEJ and JEN stations during 
the period 1965 and 2003 

 Fc SPI ET 

Fc 1.000 -0.0876 0.456 

SPI -0.0876 1.000 -0.01023 

ET 0.456 -0.01023 1.000 

 

3.4 Evolutions of Fc and SPI in 1965-2003 

From the results presented in Figure 5, it can be observed that there is certain cyclist of photosynthesis as well as 
for drought. On an annual scale, the synchronization between SPI and Fc is not established; in some cases it is 
even reversed. There is a clear downward trend in photosynthesis during major dry periods, such as that of 
1987-1993. The lowest variation of Fc was recorded in JND, the highest one in ADH, while TAB and BJA were 
overall similar.  
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For the simulations made, it was assumed that the ET/ETo and Pn/Tr ratios are constant from one year to another, 
as well as a constant value of the leaf area index (Lai) was assumed. This hypothesis remains valid for the leaf 
surface unit, but it did not allow the spatial integration of the simulated values. According to Davi et al. (2008), 
although the Lai varied slightly, it remained the main variable controlling both water and carbon flows and also 
the relationship between this parameter and the density for a Mediterranean forest of Quercus ilex and Pinus 
halepensis. Additionally, the control mechanisms for canopy transpiration are mainly stomatal regulation, 
hydraulic conductance and leaf area adjustment. The decrease in leaf area appears as the main mechanism for 
adjusting transpiration to new water conditions (Limosin, 2009) in Quercus ilex species. 

During the period 1965-2003, the rate of atmospheric CO2 had to increase approximately from 260 ppm to 380 
ppm. This enrichment did not cause a net increase in calculated carbon fluxes. As if drought have counterbalanced 
the fertilizing effect of atmospheric carbon. However, in a controlled environment, it was previously highlighted 
that the effect of carbon enrichment on oak by an increase in the net photosynthesis capacity (Vivin & Gehl, 1997).  

5. Conclusions 
The simulations carried out showed evapotranspiration flux ranging from 0.95 to 2.15 kg m-2 d-1 wile 
photosynthesis flux ranged from 0.255 to 0.586 kg m-2 year-1 , SPI were -2.41 and 2.69 for a dry and wet year, 
respectively.  

These simulations showed some inter annual variability of flows with a special site effect. However, 
synchronization with the climatic drought by the SPI index has not been established. In addition to this 
variability, it was not possible to observe clearly a trend upward or downward flows, but rather certain cyclicality 
was clearly noticed.  
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