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Abstract

Plant metallothioneins (MT) are cysteine-rich proteins present in plants that can improve a plant’s salt tolerance.
Therefore, a greater understanding of the MT gene in lily (Lilium pumilum), Liliaceae, is an important factor in the
development and cultivation of improved salt-tolerant varieties and enriching plant resources for saline soils. A
type 2 MT gene (GenBank access number: MH319787, designated as LpMT2) was isolated from L. pumilum
leaves. The response mechanism to stress was then investigated, which provided the basis for molecular breeding
of L. pumilum for stress tolerance. The LpMT2 gene amino acid sequence is highly homologous to that of type 2
MT protein. Quantitative real-time PCR (qPCR) determined that different plant tissues expressed the LpMT2 gene
differently and these expressions were dependent on the specific stress. Transgenic plants with LpMT2 gene
exhibited significantly increased resistance to salt and oxidative stress compared with untransgenic plants. The
LpMT2 transgenic plants had better growth, greater chlorophyll and proline content, less malondialdehyde (MDA)
content and cell membrane permeability, greater superoxide dismutase (SOD) activity, less Na" content, greater K
content and Na' efflux, and less K" efflux. These results determined that the transformed LpMT2 gene in L.
pumilium plays an important role in enhancing the plant’s salt tolerance and antioxidant capacity.
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1. Introduction
1.1 Northeast China Salinity and Lily (Lilium pumilum)

Northeast China is one of the most severe saline areas in China and one of the three largest saline soils in the world
with an area of 3.84 km? (Yao et al., 2006), accounting for 3.1% of the total area of the northeast China region (Y.
H. Wang & S. X. Wang, 1994). Only a few salt tolerant plants can survive in this saline area (Jin et al., 2017). L.
pumilum can grow well in saline soils, but there is limited research on its salt tolerant genes. The Lilium genus, in
the family Liliaceae, was established by Linnaeus in 1753 (Takhtajian, 1986), and there are about 115 species
identified worldwide (Fu, 2002). L. pumilum is a perennial herb of Lilium and distributed widely in north China. L.
pumilum research mainly focuses on plant resources (Wu et al., 2006), hybrid breeding (Yang, 2016), the flowering
biological characteristics (Fukai & Goi, 2001), tissue culture (Chen et al., 2013), and reproduction (Chojnowski,
1996). It is also reported that Lilium has resistance to drought and salt stress (Yue, 2012). However, research on the
salt tolerance and cloning salt-tolerant genes in Lilium is limited. In Phase #1 of this research the objective was to
screen a salt-tolerant Metallothionein (MT) gene from L. pumilum by qPCR under salt stress and investigate the
gene function.
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1.2 Metallothioneins

Metallothioneins (MTs) are low molecular weight proteins which are rich in cysteine and exists extensively in
organisms (Leszczyszyn et al., 2003). Plant MT was first discovered in soybean (Glycine max) roots (Quan et al.,
2006). MTs have many functions, including scavenging reactive oxygen species (ROS) (Akashi et al., 2004),
reducing heavy metal ion toxicity (Ferraz et al., 2002), participating in metal ion transport (Fujimoto et al., 2013),
remediating contaminated environments (Chen & Tang, 2013), stabilizing a plant’s internal environment (Chang
& Zhu, 2002), and participating in gene regulation (Robinson et al., 1993). MT gene molecular structures,
physiological functions and evolutionary relationship were analyzed using the bioinformatics methods for four
mushrooms (Qiang et al., 2012).

The MT gene is also related to a plant’s resistance to salt and oxidative stress. Transgenic rice plants
overexpressing OsMT1a demonstrated an enhanced tolerance to drought (Zhao et al., 2009). The OsMTle-P
transgenic tobacco plants improved the salt stress tolerance compared to the untransgenic tobacco plants (Kumar
et al., 2012). The transgenic Arabidopsis plants overexpressing cgMT1 from beefwood (Casuarina glauca)
reduced the accumulation of H,O, (Obertello et al., 2007). Transgenic tobacco (Nicotiana tabacum) plants
overexpressing GhMT3a showed increased tolerance against abiotic stresses (salt, drought, and low-temperature
stresses) compared to wild-type plants (Xue et al., 2009).

In addition, plant MT2 can directly eliminate reactive oxygen species (ROS), such as O, and H,O, (Hassinen et al.,
2011). MT protein is thought to be involved in oxidative stress protection (Ahmad et al., 2016). MTs have been
found to be responsible for oxidative stress and ROS scavenging (Naoki et al., 2006; Zhang et al., 2019). Salt stress
induced ROS generation and ROS scavenging plays an important role in plant stress resistance. We hypothesized
that the MT gene molecular pathway improved plant tolerance by inhibiting ROS production and reducing
oxidative damage to plant cells.

MT gene expression can be induced in plants, and the impact of metal ions on the MT gene expression in plants is
most often studied. Understanding the impact of the MT gene in Lilium pumilum (L. pumilum) will make a
significance impact in the development of excellent salt-tolerant varieties and enriching salt-tolerant plant
resources. In Phase #2 of this research the objective was to clone a type 2 MT gene from the L. pumilum leaf under
salt stress and determine if the gene will improve the plant’s salt tolerance.

2. Methods and Materials
2.1 Phase #1: Cloning of Full-Length LpMT?2 and the Analysis of Relative Expression

The complete transcription fragment was cloned from cDNA of L. pumilum by using sequence-specific primers.
The sequence contains an open reading frame of 234 bp and encodes 77 amino acids. The result of BLAST search
showed that amino acid sequence of LpMT2 had the highest homology of amino acid sequence with DcMT?2 in
Dendrobium catenatum (GenBank accession number: XP 020679854.1, similar degree 69%), the next were
AcMT?2 in Actinidia chinensis var. chinensis (GenBank number: PSR98280.1, similar degree 67%), PeMT2 in
Phalaenopsis equestris (GenBank number: XP 020571140.1, similar degree 65%), PtMT2 in Populus
trichocarpa (GenBank number: XP 002299873.1, similar degree 64%); GmMT2 in Glycine max (GenBank
number: NP_001235506.1, similar degree 61%), AtMT2a in Arabidopsis thaliana (GenBank number: P25860.2,
similar degree 55%), (Figure 1). Therefore, this protein was designated as LpMT2.
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Figure 1. Comparison of the LpMT2 amino acid sequences with homologs from other species

GenBank accession numbers of the aligned sequences are as follows: Dendrobium catenatum DcMT2
(XP_020679854.1), Actinidia chinensis var. chinensis AcMT2 (PSR98280.1), Phalaenopsis equestris PeMT2
(XP_020571140.1), Populus trichocarpa PtMT2 (XP_002299873.1), Glycine max GmMT2 (NP_001235506.1),
Arabidopsis thaliana AtMT2a (P25860.2).
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2.2 Phase #2: Cloning of Full-Length LpMT?2 from L. pumilum

L. pumilum plants were grown on MS basal medium (Murashige & Skoog, 1962) in an illuminated incubator at
25°C under 2000 Lux irradiation with a 16 h light/8 h dark photoperiod. The total ribonucleic acid (RNA) was
extracted from 8-week old leaves by RNeasy Plant Mini Kit (Qiagen, Hilden, Germany). First-strand cDNA was
synthesized by reverse transcribing 500 ng of total RNA with PrimeScript™ RT reagent Kit (TaKaRa Bio, Japan).

A transcript fragment was amplified by PCR from the c¢DNA with the forward primer
(5'-ATGTCTTGCTGTGGTGGAAA-3") and reverse primer (5'-TTAGCACTTGCATGGGTTG-3") based on the
transcriptome contract sequencing results of L. pumilum. Primers were designed using Primer Premier 5.0
software (Premier Biosoft, Canada). The PCR product was ligated into plasmid pMD18-T vector (Takara Bio,
Japan) and sequenced. The sequences were identified using DNAMAN 6.0 software (Lynnon Biosoft, USA). The
new gene was designated as LpMT2.

2.3 The gPCR Analyses of LoMT?2 Expression in Different Organs of L. pumulum and Under Different Stress

RNAs were extracted from the roots (three years old), bulbs (three years old), young leaves (eight week old),
mature leaves (three years old), flowers (three years old) and seeds (harvested from three-year old plants) of L.
pumulum using RNeasy Plant Mini Kit. First-strand cDNA was synthesized by reverse transcribing 500 ng of total
RNA with using PrimeScriptTM RT reagent Kit. The primers for gPCR were the same as primers for gene cloning
primers. Subsequent qPCR analyses were conducted using SYBR green (TaKaRa Bio, Japan). Each amplification
in a 96-well plate was performed in a 20 pL final volume containing 2.0 pL of 2x diluted cDNA template; 0.5 pL of
each specific primer pair at 10 uM; 10 pL of 2x SYBR Premix Ex Taq and 8.0 pL of distilled deionized H,O (dd
H,0). The expression level of the lily Actin (Gene Bank Accession Number: JX826390) gene was used as a
reference. All analyses were conducted under the following conditions: denaturation for 10 min at 95 °C, 40 cycles
of30sat95 °C,30sat55 °Cand 72 °C at 1 min, using an IQ5 real-time PCR instrument (Bio-Rad, Hercules, CA,
USA). Fluorescent detection was performed and the results of qPCR were analyzed by MxPro software (Agilent,
USA).

Eight-week old untransgenic L. pumilum seedlings were transferred to fresh MS medium at 25 °C under 2000 Lux
irradiation with a 16 h light/8 h dark photoperiod, supplemented with 250 mM NaCl, 20 mM NaHCO; and 11 mM
H,0,. The leaves were harvested after 0, 6, 12, 24, 36, and 48 h. The LpMT2 gene expression level in L. pumilum
seedlings under different stresses were analyzed by qRT-PCR.

2.4 Construction of Plant Expression Vectors and L. pumilum Transformation

The coding region of the LpMT2 gene was amplified from pMD18-T-LpMT2 with the BamHI forward primer
5'-GGATCCATGTCTTGCTGTGGTGGAAA-3' and Xhol reverse primer 5'-C'TCGAGTTAGCACTTGCATGG
GTTG-3". The PCR product was ligated into plasmid pMD18-T vector. The plasmids were digested with BamHI
and Xhol and then ligated into the BamHI and Xhol sites of pBI121 binary vector plasmids (We altered the vector).
The plasmid DNA of pBI121-LpMT2 was transformed into the L. pumilum bulbs by Agrobacterium tumefaciens
(strain EHA105 Takara, Tokyo, Japan) mediated transformation (Ishida et al., 1996; Zhao et al., 2002). The bulbs
were germinated on MS + 0.5 mg'mL™ BA + 0.05 mg'mL™' NAA plates containing 50 mg-L"' kanamycin (kana) to
select kana-resistance plants, and the kana-resistance plants were transferred to fresh MS medium at 25 °C under
2000 Lux irradiation with a 16 h light/8 h dark photoperiod. Finally transgenic plants were identified using
Northern blot (Jin et al., 2017). RNAs were extracted from eight-week old transgenic L. pumilum seedlings.

2.5 Stress Tolerance Analysis of the L. pumilum

Eight-week old L. pumilum untransgenic and transgenic seedlings at the same growth stage were selected for fresh
MS medium + 200 mM, 250 mM, 300 mM NaCl, 9 mM, 11 mM, 13 mM H,0,, 20 mM, 50 mM, 80 mM NaHCO;
stress treatment at 25 °C under 2000 Lux irradiation with a 16 h light/8 h dark photoperiod for 48 h to observe the
extent of leaf injury. The leaf centers were determined by SPAD-502 Plus Chlorophyll Meter Model (Konica
Minolta, Japan). The relative value of chlorophyll content in each leaf was measured. The free proline (Pro)
content was determined by the ninhydrin method (Ma et al., 2007). Malondialdehyde (MDA) content was
determined by the thiobarbituric acid method (Hodges et al., 1999). The degree of cell membrane damage was
determined by conductance (Liu et al., 2008). Superoxide dismutase (SOD) was determined by its ability to inhibit
the photochemical reduction of nitro blue tetrazolium (NBT) (Giannopolitis & Ries, 1977).

Eight-week old untransgenic and transgenic L. pumilum seedlings were treated without (control) or with each of
following solutions: 20 mM NaHCOj; and 250 mM NaCl, respectively for 48 h. Na" and K" ion content of leaves
were measured by an atomic absorption spectrophotometer (AA800, Perkin Elmer, USA) (Barragan et al., 2012).
Net flux of the roots’ K" and Na" were measured using Noninvasive Micro-test Technology (Zhao et al., 2017).
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The data were analyzed using a one-way analysis of variance using SPSS 20.0 (IBM, USA) with Duncan’s
one-way analysis of variance. The figures were drawn using SigmaPlot 12.5 (Systat Software Inc., USA).

3. Results
3.1 LpMT?2 Gene Expression in L. pumilum

LpMT2 gene had the greatest expression in flowers, followed by young leaves, seeds, mature leaves, bulbs and
roots (Figure 2a). It was confirmed that the expression of LpMT?2 gene was greater in the aboveground plant parts
(flowers, leaves, and seeds). Under 250 mM NaCl stress, the LpMT2 expression reached the greatest level at 36 h,
about 18 times greater than the gene expression in the control (Figure 2b). The LpMT2 expression for 250 mM
NaCl tended to stabilize from 12 to 24 h and then dramatically increased at 36 h. When exposed to 20 mM
NaHCO;j stress, the gene expression was relatively low (less than 2) until 48 h, when it was about 14 times greater
than the control (Figure 2¢). The LpMT2 expression due to 11 mM H,0, stress increased gradually with treatment
time, reaching the greatest level at 48 h, which was about 4.5 times greater than the control (Figure 2d).
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Figure 2. Relative expression of LpMT?2. (a) Relative expression of LpMT2 in different organs of L. pumilum. (b)
Relative expression of LpMT2 gene under NaCl treatment. (c) Relative expression of LpMT?2 gene under NaHCO;
treatment. (d) Relative expression of LpMT2 gene under H,O, treatment

3.2 Identification of Transgenic L. pumilum Lines Using Northern Blot

Three transgenic L. pumilum lines (#1, #2 and #3) were selected for Northern blot analysis. The overexpression of
the LpMT2 gene in transgenic L. pumilum was due to the CaM V35S promoter. The transgenic lines had a greater
LpMT?2 gene expression than the untransgenic plants due to the stronger hybridization signals (Figure 3).
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Figure 3. Northern blot analysis of LpMT?2 gene expression in transgenic plants

Untransgenic plant genotype was negative control (CK), and transgenic plants were #1, #2, #3. Total RNA (lower
panel of the picture) was isolated from leaves and hybridized with DIG-labelled cDNA probe for LpMT?2. Sug
RNA was used into each lane. Full-length blot and gel are presented in Supplementary Figure 1.

3.3 Analysis of Plant Phenotype, Physiological Index, Icon Content, and Flux Under Various Stress Treatments

After 48 h, under different stress concentrations, the leaves showed injury signs at low concentrations with
increasing injury as the stress levels increased. Phenotype observation determined that the transgenic lines were
more stress tolerant than the untransgenic plants (Figure 4). As the stress concentrations increased, the plant
chlorophyll content gradually decreased. The chlorophyll content of the untransgenic plants was generally less
than the transgenic plants under the same stress conditions. These results indicate that the LpMT2 gene enhanced
the plant’s photosynthesis to varying levels (Figure 5a). The proline content in the plants increased significantly
after stress treatments and the increase was greater for the transgenic plants. It was determined that transgenic
plants could produce more proline under stress, and, therefore, had a greater resistance to stress (Figure 5b). With
the increase of stress concentration, the content of MDA increased first and then decreased for both the transgenic
and untransgenic plants (Figure 5¢). When under stress, the increase MDA content was greater for the untransgenic
plants than the transgenic plants. The MDA content in untransgenic plants was 140%, 48%, and 26% greater than
the transgenic plants under 250 mM NacCl, 80 mM NaHCO; and 11 mM H,0,, respectively.
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CK 200mM NaCl 250mM NaCl 300mM NaCl

Figure 4. Phenotype of untransgenic and transgenic plants under different stress

Eight-week old L. pumilum untransgenic and transgenic seedlings at the same growth stage were selected for fresh
MS medium + 200 mM, 250 mM, 300 mM NaCl, 9 mM, 11 mM, 13 mM H,0,, 20 mM, 50 mM, 80 mM NaHCO;
stress treatment at 25 °C under 2000 Lux irradiation with a 16 h light/8 h dark photoperiod for 48 h. The plant on
the left is the untransgenic plant and the transgenic one is on the right.

The change in electrical conductivity (EC) may reflect the degree of plasma membrane damage and the strength of
the plant’s resistance to stress. The change in EC of transgenic plants was less than the untransgenic plants when
under stress. The plant’s EC increased as the stress concentration increased, indicating that the degree of cell
membrane damage is more serious in untransgenic plants (Figure 5d).

The SOD activity for untransgenic plants was significantly less than that the transgenic lines under stress. The
SOD activity first increased and then decreased with increasing stress (Figure 5e). Under 250 mM NaCl, 50mM
NaHCOj; and 11 mM H,O; stress treatments, the SOD activity in transgenic plants was 60%, 10% and 60% greater
than the untransgenic plants, respectively.
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Figure 5. Physiological index of untransgenic and transgenic plants under stress conditions. (a) SPAD readings
(SPAD is a unit of relative value of chlorophyll content measured using SPAD-502 Plus Chlorophyll Meter Model).
(b) Proline content. (c) MDA content. (d) Cytomembrane permeability. (¢) SOD activity. Asterisks indicate
significant differences between untransgenic and transgenic plants (P < 0.05)
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Compared with the control, the Na" content and salt concentration significantly increased after saline stress. The
increasing trend of transgenic plants was less than that the untransgenic plants (Figure 6a). The K content of the
transgenic plants decreased significantly and was less than the untransgenic plants (Figure 6b). NMT flux data
revealed that Na™ efflux in the roots’ apical regions significantly increased in all plants under saline conditions.
Under 250 mM NaCl and 20 mM NaHCOj treatments, the Na* efflux rate in transgenic plants was 15% and 20%
greater than the untransgenic plants (Figure 6¢). NaCl and NaHCO; treatment changed the K™ flux from influx to
efflux. The K™ efflux rate in untransgenic plants was 46% and 26% greater than the untransgenic plants (Figure
6d).
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Figure 6. Na" and K" content and Fluxes of leaves in untransgenic and transgenic plants under NaCl and NaHCOs
stress. (a) Na' content. (b) K” content. (c) Net Na" Fluxes. (d) Net K' Fluxes. Positive values represent efflux.
Asterisks indicate significant differences between untransgenic and transgenic plants (P < 0.05)

4. Discussion

Depending on the position and arrangement of the cysteine residues, type 2 MTs sequence has three characteristics,
the first and second Cys, which appear in the form of Cys-Cys contiguous, and most of them exist in the 3rd and
4th position of the N-terminal, a highly conserved sequence MSCCGGNCGCG exists in the N-terminal, and three
Cys-X-Cys elements are arranged in the structure domain of C-terminal (Cobbett & Goldsbrough, 2002). The
cysteine arrangement in the LpMT2 gene has the characteristics of type 2 MTs, and LpMT2 belongs to the type 2
metallothionein family.

Different MTs often exhibit different expression patterns. The specific expression of MhMT2 gene in Malus
hupehensis was analyzed by Wang et al. (2012). The results showed that the MhMT2 gene expression was the
greatest in leaves, followed by roots, and least in stems. Our results showed that LpMT2 transcripts were
preferentially expressed in flowers, followed by mature leaves, young leaves and seeds, but also expressed to a
lesser extent in the underground plant tissues.

One of the basic characteristics of MT genes is inducibility (Jin et al., 2006). MT genes are expressed in response
to salinity, ROS, heavy metals, environmental stress, hormones, damage, and virus infection in some plants
(Nishiuchi et al., 2007). The MT stress resistance is primarily focused on metal resistance. Although there are
studies related to salt stress, there are few related to oxidative stress. Liu et al. (2011) cloned the metallothionein
gene of Limonium sinense and analyzed its expression pattern under high salt exposure. When treated with ABA,
H,0,, mechanical damage, and NaCl, the MhMT2 gene expression was up-regulated in Malus hupehensis leaves,
among which H,O, treatment was the most obvious. In our research, L. pumilum was treated with different salts
(NaCl and NaHCO;) and oxidative (H,O,) stressors and treatment exposer times. LpMT2 gene expression in
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leaves increased gradually with the increase time exposed to NaHCO; and H,0, stress. While under the NaCl
stress, the LpMT2 gene expression in leaves increased and then decreased. These results indicate that the induction
of LpMT?2 gene expression was related to the salt and oxidative stresses.

Under certain stress levels, a plant’s cytochrome system will be destroyed, leading to a decrease in chlorophyll
content (Li et al., 2016). The chlorophyll content of untransgenic plants’ leaves had a greater decreasing trend than
the transgenic L. pumilum plants under salt stress. This is an indication that LpMT?2 has a significant impact on
plant chlorophyll content. Proline, as an effective plant osmotic regulator, can scavenge reactive oxygen species
(ROS), reduce lipid peroxidation, and prevent toxic amino acids accumulation (Li et al., 2011). When plants are
subjected to environmental stress, the accumulation of proline increases significantly, which can enhance plant
resistance to stress (Zhang et al., 2006). When under stress, the proline content was greater in the transgenic plants
compared to the untransgenic plants. Various adverse environments often first influence the cell membrane (Xu et
al., 2007). Relative conductivity reflects the cell membrane integrity, while MDA is an indicator of membrane lipid
peroxidation, which together reflects the degree of cellular damage (Verslues et al., 2006). The increase in MDA
content in the early stage of stress indicates that the membrane lipid peroxidation occurred. As the treatment
concentration increased, the MDA content decreased, which may be due to the excessive lipid peroxidation
consumption due to respiration. The cell membrane destruction in transgenic plants was less than the untransgenic
plants. SOD plays a very important role in protecting cells from oxidative damage (Giannopolitis & Ries, 1977).
SOD activity decreased more in transgenic plants than that in the untransgenic plants as a result of stress. This is an
indication that the LpMT2 gene transfer reduced membrane peroxidation and protected the plants. When
comparing the physiological indexes between the transgenic and untransgenic L.pumilum, the transgenic resistant
plants were significantly greater than the untransgenic plants.

Salt stress destroys the plant’s intracellular nutritional balance, primarily due to the excessive Na" accumulation,
which causes ion poisoning and other elemental deficits (Flowers et al., 2010). K™ is an essential nutrient for plant
growth, but because of the antagonism between Na™ and K, it is necessary to maintain a high K™ content in order
to improve the salt tolerance of plants (Adams et al., 1992). Under salt stress, due to the accumulation of Na*, K*
uptake is inhibited and there is a decrease in plant K*. The Na" concentration in the transgenic plants was less than
the untransgetic plants, while the K™ concentration was greater under saline stress. These results demonstrate that
transgenic plants can control Na" uptake, maintain K" content in leaves, and ensure normal growth under stress.

Salt stress weakens Na™ absorption and transport, and accelerates the Na™ poisoning (Guo et al., 2005). The
transgenic plant Na" efflux rate under salt stress was significantly greater than the untransgenic plants, while K*
efflux rate was the opposite. This is an indication that the transgenic plants can adapt to a saline environment by
increasing the Na' efflux rate and reducing the K efflux rate, therefore, the transgenic plants had greater stress
resistance.

The biological MT protein has been studied for over 60 years, but its exact function is still unclear. In recent years
the function of the MT gene and protein relationship to abiotic stress has been predominantly understood, but the
molecular mechanism of how the MT gene regulates a plant response to stress is not clear, therefore, the
investigation of plant MT continues to be important.

The over expression of LpMT2 gene improves the salt tolerance of L. pumilum, but the impact of high salt stress on
plant growth and development is very complex. Halophytes can grow in a saline environment as the result of a
combination of various salt-tolerant mechanisms. In addition, the function of MT in abiotic stress has been
primarily understood in recent years, but the molecular mechanism of how the MT regulates a plant’s response to
stress is not yet clear. Further research on the physiological metabolism and cell structure of transgenic L. pumilum
will be helpful to reveal the role of MT accumulation in plants and its relationship to salt tolerance in plants.

5. Conclusions

In this research we isolated a LpMT2 gene from L. pumilum, proved that the gene expression was different in
different plant organs or under different stresses, and characterized its function in L. pumilum. This study indicates
that the LpMT2 gene enhanced the transgenic plants’ tolerance to salts (NaCl and NaHCO3) and oxidative (H,0,)
stress. The following conclusions can be drawn from this research: 1) A 234bp long MT2 gene encoding 77 amino
acids was cloned by PCR using cDNA of L. pumilum leaves as a template. QRT-PCR results showed that the
LpMT2 gene has the greatest expression in flowers and the expression was significantly induced under salt and
oxidative stress. 2) The plant expression vector pBI121-LpMT?2 was constructed and transferred into the bulbs of L.
pumilum by Agrobacterium-mediated successfully. 3) The untransgenic and transgenic L. pumilum were treated
with different concentrations of NaCl, NaHCO3, and H,0, for 48 h. Compared with untransgenic plants, transgenic
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plants had better growth, greater chlorophyll and proline content, less MDA content, smaller cell membrane
permeability, greater SOD activity, less Na' content, greater K content, greater Na' efflux and less K" efflux.
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