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Abstract 
Plant metallothioneins (MT) are cysteine-rich proteins present in plants that can improve a plant’s salt tolerance. 
Therefore, a greater understanding of the MT gene in lily (Lilium pumilum), Liliaceae, is an important factor in the 
development and cultivation of improved salt-tolerant varieties and enriching plant resources for saline soils. A 
type 2 MT gene (GenBank access number: MH319787, designated as LpMT2) was isolated from L. pumilum 
leaves. The response mechanism to stress was then investigated, which provided the basis for molecular breeding 
of L. pumilum for stress tolerance. The LpMT2 gene amino acid sequence is highly homologous to that of type 2 
MT protein. Quantitative real-time PCR (qPCR) determined that different plant tissues expressed the LpMT2 gene 
differently and these expressions were dependent on the specific stress. Transgenic plants with LpMT2 gene 
exhibited significantly increased resistance to salt and oxidative stress compared with untransgenic plants. The 
LpMT2 transgenic plants had better growth, greater chlorophyll and proline content, less malondialdehyde (MDA) 
content and cell membrane permeability, greater superoxide dismutase (SOD) activity, less Na+ content, greater K+ 
content and Na+ efflux, and less K+ efflux. These results determined that the transformed LpMT2 gene in L. 
pumilium plays an important role in enhancing the plant’s salt tolerance and antioxidant capacity.  
Keywords: Lilium pumilum, lily, oxidant stress, metallothionein, salinity, salt tolerance 

1. Introduction 
1.1 Northeast China Salinity and Lily (Lilium pumilum) 

Northeast China is one of the most severe saline areas in China and one of the three largest saline soils in the world 
with an area of 3.84 km2 (Yao et al., 2006), accounting for 3.1% of the total area of the northeast China region (Y. 
H. Wang & S. X. Wang, 1994). Only a few salt tolerant plants can survive in this saline area (Jin et al., 2017). L. 
pumilum can grow well in saline soils, but there is limited research on its salt tolerant genes. The Lilium genus, in 
the family Liliaceae, was established by Linnaeus in 1753 (Takhtajian, 1986), and there are about 115 species 
identified worldwide (Fu, 2002). L. pumilum is a perennial herb of Lilium and distributed widely in north China. L. 
pumilum research mainly focuses on plant resources (Wu et al., 2006), hybrid breeding (Yang, 2016), the flowering 
biological characteristics (Fukai & Goi, 2001), tissue culture (Chen et al., 2013), and reproduction (Chojnowski, 
1996). It is also reported that Lilium has resistance to drought and salt stress (Yue, 2012). However, research on the 
salt tolerance and cloning salt-tolerant genes in Lilium is limited. In Phase #1 of this research the objective was to 
screen a salt-tolerant Metallothionein (MT) gene from L. pumilum by qPCR under salt stress and investigate the 
gene function. 
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2.2 Phase #2: Cloning of Full-Length LpMT2 from L. pumilum 

L. pumilum plants were grown on MS basal medium (Murashige & Skoog, 1962) in an illuminated incubator at 
25°C under 2000 Lux irradiation with a 16 h light/8 h dark photoperiod. The total ribonucleic acid (RNA) was 
extracted from 8-week old leaves by RNeasy Plant Mini Kit (Qiagen, Hilden, Germany). First-strand cDNA was 
synthesized by reverse transcribing 500 ng of total RNA with PrimeScriptTM RT reagent Kit (TaKaRa Bio, Japan). 

A transcript fragment was amplified by PCR from the cDNA with the forward primer 
(5'-ATGTCTTGCTGTGGTGGAAA-3') and reverse primer (5'-TTAGCACTTGCATGGGTTG-3') based on the 
transcriptome contract sequencing results of L. pumilum. Primers were designed using Primer Premier 5.0 
software (Premier Biosoft, Canada). The PCR product was ligated into plasmid pMD18-T vector (Takara Bio, 
Japan) and sequenced. The sequences were identified using DNAMAN 6.0 software (Lynnon Biosoft, USA). The 
new gene was designated as LpMT2. 

2.3 The qPCR Analyses of LpMT2 Expression in Different Organs of L. pumulum and Under Different Stress 

RNAs were extracted from the roots (three years old), bulbs (three years old), young leaves (eight week old), 
mature leaves (three years old), flowers (three years old) and seeds (harvested from three-year old plants) of L. 
pumulum using RNeasy Plant Mini Kit. First-strand cDNA was synthesized by reverse transcribing 500 ng of total 
RNA with using PrimeScriptTM RT reagent Kit. The primers for qPCR were the same as primers for gene cloning 
primers. Subsequent qPCR analyses were conducted using SYBR green (TaKaRa Bio, Japan). Each amplification 
in a 96-well plate was performed in a 20 μL final volume containing 2.0 μL of 2× diluted cDNA template; 0.5 μL of 
each specific primer pair at 10 μM; 10 μL of 2× SYBR Premix Ex Taq and 8.0 μL of distilled deionized H2O (dd 
H2O). The expression level of the lily Actin (Gene Bank Accession Number: JX826390) gene was used as a 
reference. All analyses were conducted under the following conditions: denaturation for 10 min at 95 °C, 40 cycles 
of 30 s at 95 °C, 30 s at 55 °C and 72 °C at 1 min, using an IQ5 real-time PCR instrument (Bio-Rad, Hercules, CA, 
USA). Fluorescent detection was performed and the results of qPCR were analyzed by MxPro software (Agilent, 
USA).  

Eight-week old untransgenic L. pumilum seedlings were transferred to fresh MS medium at 25 °C under 2000 Lux 
irradiation with a 16 h light/8 h dark photoperiod, supplemented with 250 mM NaCl, 20 mM NaHCO3 and 11 mM 
H2O2. The leaves were harvested after 0, 6, 12, 24, 36, and 48 h. The LpMT2 gene expression level in L. pumilum 
seedlings under different stresses were analyzed by qRT-PCR. 

2.4 Construction of Plant Expression Vectors and L. pumilum Transformation 

The coding region of the LpMT2 gene was amplified from pMD18-T-LpMT2 with the BamHI forward primer 
5'-GGATCCATGTCTTGCTGTGGTGGAAA-3' and XhoI reverse primer 5'-C'TCGAGTTAGCACTTGCATGG 
GTTG-3'. The PCR product was ligated into plasmid pMD18-T vector. The plasmids were digested with BamHI 
and XhoI and then ligated into the BamHI and XhoI sites of pBI121 binary vector plasmids (We altered the vector). 
The plasmid DNA of pBI121-LpMT2 was transformed into the L. pumilum bulbs by Agrobacterium tumefaciens 
(strain EHA105 Takara, Tokyo, Japan) mediated transformation (Ishida et al., 1996; Zhao et al., 2002). The bulbs 
were germinated on MS + 0.5 mg·mL-1 BA + 0.05 mg·mL-1 NAA plates containing 50 mg·L-1 kanamycin (kana) to 
select kana-resistance plants, and the kana-resistance plants were transferred to fresh MS medium at 25 °C under 
2000 Lux irradiation with a 16 h light/8 h dark photoperiod. Finally transgenic plants were identified using 
Northern blot (Jin et al., 2017). RNAs were extracted from eight-week old transgenic L. pumilum seedlings. 

2.5 Stress Tolerance Analysis of the L. pumilum 

Eight-week old L. pumilum untransgenic and transgenic seedlings at the same growth stage were selected for fresh 
MS medium + 200 mM, 250 mM, 300 mM NaCl, 9 mM, 11 mM, 13 mM H2O2, 20 mM, 50 mM, 80 mM NaHCO3 
stress treatment at 25 °C under 2000 Lux irradiation with a 16 h light/8 h dark photoperiod for 48 h to observe the 
extent of leaf injury. The leaf centers were determined by SPAD-502 Plus Chlorophyll Meter Model (Konica 
Minolta, Japan). The relative value of chlorophyll content in each leaf was measured. The free proline (Pro) 
content was determined by the ninhydrin method (Ma et al., 2007). Malondialdehyde (MDA) content was 
determined by the thiobarbituric acid method (Hodges et al., 1999). The degree of cell membrane damage was 
determined by conductance (Liu et al., 2008). Superoxide dismutase (SOD) was determined by its ability to inhibit 
the photochemical reduction of nitro blue tetrazolium (NBT) (Giannopolitis & Ries, 1977).  

Eight-week old untransgenic and transgenic L. pumilum seedlings were treated without (control) or with each of 
following solutions: 20 mM NaHCO3 and 250 mM NaCl, respectively for 48 h. Na+ and K+ ion content of leaves 
were measured by an atomic absorption spectrophotometer (AA800, Perkin Elmer, USA) (Barragan et al., 2012). 
Net flux of the roots’ K+ and Na+ were measured using Noninvasive Micro-test Technology (Zhao et al., 2017). 
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leaves increased gradually with the increase time exposed to NaHCO3 and H2O2 stress. While under the NaCl 
stress, the LpMT2 gene expression in leaves increased and then decreased. These results indicate that the induction 
of LpMT2 gene expression was related to the salt and oxidative stresses.  

Under certain stress levels, a plant’s cytochrome system will be destroyed, leading to a decrease in chlorophyll 
content (Li et al., 2016). The chlorophyll content of untransgenic plants’ leaves had a greater decreasing trend than 
the transgenic L. pumilum plants under salt stress. This is an indication that LpMT2 has a significant impact on 
plant chlorophyll content. Proline, as an effective plant osmotic regulator, can scavenge reactive oxygen species 
(ROS), reduce lipid peroxidation, and prevent toxic amino acids accumulation (Li et al., 2011). When plants are 
subjected to environmental stress, the accumulation of proline increases significantly, which can enhance plant 
resistance to stress (Zhang et al., 2006). When under stress, the proline content was greater in the transgenic plants 
compared to the untransgenic plants. Various adverse environments often first influence the cell membrane (Xu et 
al., 2007). Relative conductivity reflects the cell membrane integrity, while MDA is an indicator of membrane lipid 
peroxidation, which together reflects the degree of cellular damage (Verslues et al., 2006). The increase in MDA 
content in the early stage of stress indicates that the membrane lipid peroxidation occurred. As the treatment 
concentration increased, the MDA content decreased, which may be due to the excessive lipid peroxidation 
consumption due to respiration. The cell membrane destruction in transgenic plants was less than the untransgenic 
plants. SOD plays a very important role in protecting cells from oxidative damage (Giannopolitis & Ries, 1977). 
SOD activity decreased more in transgenic plants than that in the untransgenic plants as a result of stress. This is an 
indication that the LpMT2 gene transfer reduced membrane peroxidation and protected the plants. When 
comparing the physiological indexes between the transgenic and untransgenic L.pumilum, the transgenic resistant 
plants were significantly greater than the untransgenic plants. 

Salt stress destroys the plant’s intracellular nutritional balance, primarily due to the excessive Na+ accumulation, 
which causes ion poisoning and other elemental deficits (Flowers et al., 2010). K+ is an essential nutrient for plant 
growth, but because of the antagonism between Na+ and K+, it is necessary to maintain a high K+ content in order 
to improve the salt tolerance of plants (Adams et al., 1992). Under salt stress, due to the accumulation of Na+, K+ 
uptake is inhibited and there is a decrease in plant K+. The Na+ concentration in the transgenic plants was less than 
the untransgetic plants, while the K+ concentration was greater under saline stress. These results demonstrate that 
transgenic plants can control Na+ uptake, maintain K+ content in leaves, and ensure normal growth under stress. 

Salt stress weakens Na+ absorption and transport, and accelerates the Na+ poisoning (Guo et al., 2005). The 
transgenic plant Na+ efflux rate under salt stress was significantly greater than the untransgenic plants, while K+ 
efflux rate was the opposite. This is an indication that the transgenic plants can adapt to a saline environment by 
increasing the Na+ efflux rate and reducing the K+ efflux rate, therefore, the transgenic plants had greater stress 
resistance.  

The biological MT protein has been studied for over 60 years, but its exact function is still unclear. In recent years 
the function of the MT gene and protein relationship to abiotic stress has been predominantly understood, but the 
molecular mechanism of how the MT gene regulates a plant response to stress is not clear, therefore, the 
investigation of plant MT continues to be important.  

The over expression of LpMT2 gene improves the salt tolerance of L. pumilum, but the impact of high salt stress on 
plant growth and development is very complex. Halophytes can grow in a saline environment as the result of a 
combination of various salt-tolerant mechanisms. In addition, the function of MT in abiotic stress has been 
primarily understood in recent years, but the molecular mechanism of how the MT regulates a plant’s response to 
stress is not yet clear. Further research on the physiological metabolism and cell structure of transgenic L. pumilum 
will be helpful to reveal the role of MT accumulation in plants and its relationship to salt tolerance in plants. 

5. Conclusions 
In this research we isolated a LpMT2 gene from L. pumilum, proved that the gene expression was different in 
different plant organs or under different stresses, and characterized its function in L. pumilum. This study indicates 
that the LpMT2 gene enhanced the transgenic plants’ tolerance to salts (NaCl and NaHCO3) and oxidative (H2O2) 
stress. The following conclusions can be drawn from this research: 1) A 234bp long MT2 gene encoding 77 amino 
acids was cloned by PCR using cDNA of L. pumilum leaves as a template. QRT-PCR results showed that the 
LpMT2 gene has the greatest expression in flowers and the expression was significantly induced under salt and 
oxidative stress. 2) The plant expression vector pBI121-LpMT2 was constructed and transferred into the bulbs of L. 
pumilum by Agrobacterium-mediated successfully. 3) The untransgenic and transgenic L. pumilum were treated 
with different concentrations of NaCl, NaHCO3, and H2O2 for 48 h. Compared with untransgenic plants, transgenic 
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plants had better growth, greater chlorophyll and proline content, less MDA content, smaller cell membrane 
permeability, greater SOD activity, less Na+ content, greater K+ content, greater Na+ efflux and less K+ efflux. 
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