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Abstract 
Soil compaction is preponderant in soil physical-hydric relationships, which in turn, exert direct effect on plant 
development. In this context, this work aimed to evaluate the initial development of shoot and roots of soybean 
plants (Glycine max (L.) Merril), cv. BMX Ícone, cultivated in different combinations of soil bulk densities and 
water availability. A greenhouse experiment was carried out at the EMBRAPA Lowland Experimental Station, 
Rio Grande do Sul, Brazil. Soybean plants were grown in seven levels of soil bulk density (1.4, 1.5, 1.6, 1.7, 1.8, 
1.9 and 2.0 kg dm-3) coupled to two soil water tensions (10 and 50 kPa). Plant height and leaf area, as well as 
root volume, decreased when soybean was cultivated at 50 kPa, associated to soil bulk densities above 1.8 kg 
dm-3. Soybean crop showed to be most sensitive to water deficit than to soil compaction, and soil water tension 
around the field capacity (10 kPa) should be associated to soil bulk density lower than 1.8 kg dm-3 to allow 
adequate soybean crop development.  
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1. Introduction 

Soil compaction is preponderant in the physical, chemical and biological relationships of the soil, which affect 
plants growth (Beutler & Centurion, 2003). As soil bulk density increases, there is a decrease in total porosity 
and soil resistance to root penetration is augmented, posing an impediment to root growth and restricting water 
and air movement throughout the soil profile (Chen, Weil, & Hill, 2014). 

Some studies show that soil compaction has a negative effect on soybean yield (Beutler & Centurion, 2003; 
Calonego, Raphael, Rigon, Oliveira Neto, & Rosolem, 2017) and root development (Cardoso et al., 2006; 
Colombi & Walter, 2015; Ramos et al., 2018); other studies evaluate the effect of water availability on soybean 
crop (Fioreze, Pivetta, Fano, Machado, & Guimarães, 2005; Sartori et al., 2016) establishing the soil moisture 
threshold levels to achieve high grain yields. However, few studies evaluate soil compaction and its association 
with the appearance of water deficit symptoms on the development of soybean plants and their root system. 

This association is important, since soil compaction reduces average pore size (Watson & Kelsey, 2006) and in 
progressively smaller pores the matric potential is lower causing the water to be adsorbed most strongly to solid 
surfaces. It makes difficult for plants to remove water from soil at rates sufficient to supply their needs (Brady & 
Weil, 1999). 

Once roots do not capture enough water, the plant should limit water loss through transpiration. For such, it is 
common for plants to decrease leaf area, both by the reduction in leaf size and by the lower production of leaves. 
According to Fernández, Mcinnes, and Cotheren (1996), the leaf area is an important factor of production and 
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majorly determines photosynthesis rate and water use by plants; its productivity potential is severely inhibited 
when exposed to water deficit. 

Another response to soil compaction occurs in plant root system. Ramos et al. (2018) evaluated soybean roots in 
areas with no compaction and with low and high compaction levels; according to the authors, three different 
forms of soil exploration were identified in soybean roots, according to the increasing soil compaction. The first 
one shows a pivotal behavior (control plants); the second is characterized by shorter primary roots and the 
presence of numerous secondary roots; and in the third type roots only explore a shallow zone of soil. 

On the other hand, the proper development of the root system, especially in depth, promotes greater water 
capture ability. According to Gliṅski and Lipiec (2018), when the upper roots are water stressed, plants tend to 
maintain the transpiration rate by compensatory increase in water uptake from lower unstressed roots. 

In this context, this work aimed to evaluate the initial development of shoot and roots of soybean plants, 
cultivated in different combinations of soil bulk densities and water availability. 

2. Method 

2.1 Experimental area and design 

The experiment was carried out in a greenhouse at Terras Baixas Experimental Station (ETB), Embrapa Clima 
Temperado, located in Rio Grande do Sul, Brazil. Soybean plants cv. BMX Ícone were cultivated in PVC pots 
(15 cm diameter, 25 cm height), being sowed in October 2017, with seven seeds per pot at a depth of 2 cm. Six 
days after emergence, thinning was done leaving the four most homogeneous plants. 

Experimental design was randomized blocks with four replications in factorial scheme 7 × 2. Factor A 
corresponded to seven levels of soil bulk density (1.4, 1.5, 1.6, 1.7, 1.8, 1.9 and 2.0 kg dm-3) and factor B to two 
levels of soil water tension (10 and 50 kPa).  

The procedure to obtain soil bulk density (BD) was to fill the pot with sieved soil in layers of 4 cm, placing in 
the volume corresponding to that layer the soil mass corresponding to the soil bulk density established, by 
physical compaction to obtain the correct mass:volume ratio. BD of 1.4 kg dm-3 corresponded to placing soil in 
pot without compaction. Soil was collected at ETB experimental field and classified, according to Santos et al. 
(2018), as Planosol. On field, at 10 cm depth, natural soil bulk density was 1.6 kg dm-3. 

In each pot, soil water tension (SWT) was monitored by using Watermark® sensors, installed at 0.10 m depth 
(vertical sensor center). Watermark® readings were performed every day, early in the morning; when necessary, 
water was added to restore predefined SWT for the treatment. 

2.2 Measures 

Plants height was measured from the soil surface to the youngest leaf point of insertion once every two days 
between 1 and 56 days after plant emergence (DAE). From 4 to 56 DAE, leaf area measurements were estimated 
twice a week by measuring the length and width of the central trifolium of each leaf and multiplying it by a 
correction factor, according to the method modeled by Richter et al. (2014). 

At the end of the experiment (56 DAE), soil penetration resistance (PR) was determined by using an impact 
penetrometer Stolf type with three measurements per pot. After determination of PR, the soil of each pot was 
divided in 4 layers for the evaluation of root development, corresponding to depths of 0-5 cm, 5-10 cm, 10-15 
cm and 15-20 cm. To separate roots, each soil layer was washed on a 2 mm sieve. After the separation, the root 
volume was evaluated by inserting them into a graduated cylinder with water and recording the change in 
volume, where 1 mL of water corresponded to 1 cm3 of roots.  

2.3 Statistics 

To evaluate the relationship between plant height and leaf area with soil bulk density and water tension, the 
locally weighted regression (LOESS) model was adjusted to each variable (Cleveland & Devlin, 1988). The 
effect of soil bulk density and water tension on roots volume was evaluated by comparing regressions based on 
their respective 95% confidence intervals (95% CI); in sections when they overlapped, there was no difference 
between regressions; where they did not touch each other, treatments differed. Similarly, for root distribution in 
soil layers, means were considered distinct when the difference between means was superior to 2 × [95% CI] 
(Reinhart, 2015). The soil resistance to penetration as a function of soil depth for different soil bulk densities was 
evaluated by 1st or 2nd degree linear regressions. All analysis were performed into the R statistical environment 
(R Development Core Team, 2016). 
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