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Abstract 

In Brazil, the state of Rio Grande do Norte has an important coastal zone and coastal Tableland areas along the 
Barreiras Formation, but there are few studies to locate and characterize soils with cohesive character. Therefore, 
this work was carried out to characterize pedons in the western and eastern mesoregions of the state, located in the 
Barreiras Formation and with different climatic conditions. The profile description and sample collection were 
carried out in March and April 2016. The characteristics of the profile identified were the sequence of horizons and 
their depth, soil color, texture, structure, consistency, and transition between horizons. The physical analyzes were 
of soil density and texture. The chemical analyzes consisted of: pH in water and in KCl, contents of available P, 
Na+, K+, Ca2+, Mg2+, potential acidity, and total organic carbon. Indices obtained were: base sum, effective cation 
exchange capacity, cation exchange capacity at pH 7.0, base saturation, exchangeable aluminum saturation, and 
exchangeable sodium percentage. The profiles were classified up to the fourth categorical level. The mineralogical 
assembly was identified in the clay fraction of the diagnostic horizons. The identification of the minerals was 
performed by X-ray diffraction. The pedons of the two regions presented distinct characteristics and pedogenesis, 
occurring laterization in the pedons of the western mesoregion and podzolization in the pedons of the eastern 
mesoregion, both without presence of cohesive character as a diagnostic attribute. 

Keywords: pedogenesis, climate, podzolization, laterization. 

1. Introduction 

The Barreiras Formation occupies the coastal zone and part of the sub-coastal zone of almost the entire Eastern and 
Northern Coast of Brazil. The deposition of sediments occurred in the Tertiary period under an arid or semiarid 
climate and ended during the Pleistocene, with a change to a hot and humid climate (Suguio et al., 1985). The 
sediments present low levels of Fe and are essentially kaolinitic, with poorly selected quartz skeleton (Melo, 
Schaefer, Singh, Novais, & Fontes, 2002). This favors the compaction of the soils of these origins, with the 
development of blocky macrostructure, and can give rise to high density soils, with greater amount of micropores 
and lower permeability, due to the arrangement of the clay fraction (Ferreira, Fernandes, & Curi, 1999a). 

Along the Barreiras Formation, the soils formed in the Coastal Tablelands are the most representative in terms of 
agricultural land use. These soils have subsurface mineral horizons, which have a friable consistency when wet, 
but when dry, they present a hard, very hard or extremely hard consistency, exhibiting a strong cohesion (Jacomine, 
1996; Ribeiro, 2001a). Its cohesion can be related to the presence of silica and other minerals that can act as 
cementing agents (oxides and clay), which would cause temporary cementing to break down when the soil is 
moistened (Ribeiro, 2001b). Another process would be the obstruction of soil micropores by the migration of fine 
materials to the lower parts of the profile (Giarola & Silva, 2002), as well as the face-to-face adjustment of the 
clays, resulting in increased soil density (Ferreira, Fernandes, & Curi, 1999b). 
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non-plastic and, in the other horizons, the soil presents slight plasticity and stickiness. The horizons in P1 
presented predominantly yellowish colors in the matrix, when dry, varying from 2.5 Y 6/4 to 2.5 Y 7/4 (Table 1). 

In the P2 profile, the soil structure is similar to that observed in P1, with the occurrence of many small pores 
along the profile (Table 1). The consistency is soft in the superficial horizons and slightly hard in the other 
horizons, keeping the characteristic of very friable in moist soil. In horizons A and AB no plasticity or stickiness 
was observed, but it was slightly plastic and sticky over the whole Bw horizon. In this profile, all horizons 
showed yellowish coloration (2.5 Y). 

In the Bw3 horizons of profiles P1 and P2 small and distinct mottles were observed, visually very similar to 
Plinthite, which is formed by a mixture of clay material with quartz grains and other minerals. This formation is 
low in carbon and rich in Fe, or Fe and Al, and consolidates irreversibly after several cycles of wetting and 
drying (Santos et al., 2018). These horizons are yellowish when dry. This facilitates the distinction of this 
horizon, which is the only one among the three studied that does not have diffuse transition. 

The color of the P3 profile was yellowish in the soil background color, while in the mottles there was 
predominance of colors 10 YR 5/6 and 5 YR 4/6. In P4 there were few changes in color; 10 YR 4/1 to 2.5Y 6/3 
There were observed in the background, and 5YR 4/6 to 2.5 YR 4/8 in the mottles. In the moist soil condition, 
there was no marked difference. The transition from horizons A to Bhsm was abrupt to wavy at P3 and abrupt to 
irregular at P4, for the other cemented horizons it was clear to gradual. 

 

Table 1. Morphologic characteristics of described soil profiles from west and east of the State of Rio Grande do 
Norte, Brazil 

Horizon Depth (cm) Elevation (m) Color Parent Material Structure
Consistency 

Boundary
Dry Moist Wet 

P1-Latossolo Amarelo Distrófico típico-Lad (Xanthic Haplustox) 

Ap (0-16) 

56 

2.5Y 6/4, dry 

SANDSTONE 
(Cenozoic, Barreiras Formation)

1 Vf F C SO VFR NPL SST S D 

AB (16-49) 2.5Y 7/4, dry 2 F M Bla SHA VFR NPL SST S D 

Bw1 (49-89) 2.5 Y 6/4, dry 3 F Gr HA VFR SPL SST S D 

Bw2 (89-130) 2.5Y 6/4, dry 2 Vf F Gr SHA VFR SPL SST S G 

Bw3 (130-180+) 
Matrix 10YR 2/8 

Mot. 2.5Y 6/4, dry 
2 Vf F Gr HA VFR FI SPL SST S G 

P2-Latossolo Amarelo Distrófico típico-Lad (Xanthic Haplustox) 

Ap (0-19) 

47 

2.5Y 6/3, dry 

SANDSTONE 
(Cenozoic, Barreiras Formation)

1 F M Gr SO VFR NPL NST S D 

AB (19-55) 2.5Y 7/4, dry 2 F M Gr SO VFR NPL NST S D 

Bw1 (55-93) 2.5Y 7/4, dry 2 C Bls SO VFR SPL SST S D 

Bw2 (93-142) 2.5Y 7/4, dry 2 F M Gr SHA VFR SPL SST S D 

Bw3 (142-189+) 
Matrix 2.5Y 6/6 

Mot. 5YR 5/8, dry 
2 F M Gr SHA VFR SPL SST S G 

P3-Espodossolo Ferri-Humilúvico Hidromórfico dúrico-ESKg (Typic Fragiorthods) 

A1 (0-27) 

43 

10YR 4/3, dry 

SANDSTONE 
(Cenozoic, Barreiras Formation)

4 LO LO SPL SST S G 

A2 (27-54) 10YR 3/6, dry 3 C C Bla EHA EFI S G 

Bhsm1 (54-79) 
Matrix 2.5Y 5/3 

Mot. 10YR 5/6, dry
5 EHA EFI - I Ab 

Bhsm2 (79-128) 
Matrix 10YR 5/2 

Mot. 10YR 5/6, dry
5 EHA EFI - W C 

Bhsm3 (128-199+) 
Matrix 2.5Y 6/2 

Mot. 5YR 4/6, dry 
5 EHA EFI - S C 

P4-Espodossolo Ferri-Humilúvico Hidromórfico dúrico-ESKg (Typic Fragiorthods) 

A (0-64) 

51 

10YR 4/1, seca 

SANDSTONE 
(Cenozoic, Barreiras Formation)

4 LO LO NPL SST W C 

AB (64-118) 
Matrix 2.5Y 6/6  

Mot. 5YR 4/6, dry 
3 F M Bls EHA EFI SPL ST W C 

Bhsm (118-194+) 
Matrix 2.5Y 6/3  

Mot. 2.5YR 4/8, dry
5 EHA EFI SPL ST W C 

Note. Ele.-elevation. Mot.-mottling. Structure: 1-weak; 2-moderate; 3-strong; 4-single grain; 5-massive; Vf: very 
fine; F: fine; M: medium; C: coarse; Gr: granular; Bla: angular blocky; Bls: subangular blocky. Consistence: LO: 
loose; SO: soft; SHA: slightly hard; Ha: hard; EHA: extremely hard; FI: firm; VFR: very friable; EFI: extremely 
firm. NPL: non plastic; NST: non sticky; ST: sticky; SST: slightly sticky; SPL: slightly plastic. Boundary: S: 
smooth; W: wavy; I: irregular; D: diffuse; G: gradual; A: abrupt; C: clear. 
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No observations were made that denote cohesive character in any of the profiles studied, since this attribute is 
identified by means of morphological characterization only. According to Santos et al. (2018), the cohesive 
character is used to distinguish soils with denser subsurface pedogenetic horizons, very hard to extremely hard 
when dry, becoming friable or firm when moist, being commonly observed between 30 and 70 cm from the 
surface. In the morphological characterization of the profiles P1 and P2, it was observed a slightly hard to soft 
consistency that changed to very friable when wet at depths between 30 and 70 cm. In the case of the profiles P3 
and P4 was observed characteristic of cemented horizon of the Fragipan type. Also, according to Santos et al. 
(2018), these horizons differ from those that have a cohesive character because they present brittleness 
(disintegration into smaller fragments). 

As for the granulometric composition, the sand fraction predominates in all the evaluated profiles, with higher 
levels in the superficial horizons, presenting initially a sandy texture (Table 2). The relationship between fine 
sand and coarse sand shows no divergence which may indicate some heterogeneity of parent material. Therefore, 
it can be affirmed that the soil formation processes occurred basically on the influence of the landform, or more 
specifically on the internal drainage of the soil. 

 

Table 2. Physical attributes of described soil profiles from west and east of the State of Rio Grande do Norte, 
Brazil 

Horizon and Depth (cm) 
Sand¹ (g kg-1) 

Clay Silt Textural Class SD (g cm-³) 
VC C M F VF 

P1-Latossolo Amarelo Distrófico típico-Lad (Xanthic Haplustox) 

Ap (0-16) 33 143 415 136 85 159 32 SANDY LOAM 1.41 

AB (16-49) 17 130 434 160 90 159 10 SANDY LOAM 1.51 

Bw1 (49-89) 41 151 367 161 92 166 22 SANDY LOAM 1.65 

Bw2 (89-130) 41 170 286 117 86 242 58 SANDY CLAY LOAM 1.44 

Bw3 (130-180+) 45 147 315 97 73 317 6 SANDY CLAY LOAM 1.35 

P2-Latossolo Amarelo Distrófico típico-Lad (Xanthic Haplustox) 

Ap (0-19) 39 212 448 133 66 77 25 SAND 1.69 

AB (19-55) 23 162 429 171 81 118 16 LOAMY SAND 1.65 

Bw1 (55-93) 35 153 351 154 85 162 60 SANDY LOAM 1.49 

Bw2 (93-142) 35 157 288 127 96 244 53 SANDY CLAY LOAM 1.14 

Bw3 (142-189+) 27 136 296 109 89 285 58 SANDY CLAY LOAM 1.51 

P3-Espodossolo Ferri-Humilúvico Hidromórfico dúrico-ESKg (Typic Fragiorthods) 

A1(0-27) 35 114 236 352 136 78 48 LOAMY SAND 1.30 

A2(27-54) 36 116 240 358 138 78 34 LOAMY SAND 1.79 

Bhsm1(54-79) 37 114 241 348 134 87 39 LOAMY SAND 1.99 

Bhsm2(79-128) 33 112 238 339 139 111 28 LOAMY SAND 1.99 

Bhsm3(128-199+) 37 118 234 324 140 124 23 LOAMY SAND 1.68 

P4-Espodossolo Ferri-Humilúvico Hidromórfico dúrico-ESKg (Typic Fragiorthods) 

A(0-64) 35 114 236 352 136 116 10 LOAMY SAND 1.46 

AB (64-118) 36 115 239 341 139 121 9 LOAMY SAND 1.69 

Bhsm (118-194+) 33 116 236 335 140 132 8 LOAMY SAND 1.77 

Note. VC: very coarse, C: coarse, M: medium, F: fine, VF: very fine. SD: soil density.  

 

Texture is one of the most stable soil characteristics, that is why it is so relevant both for the identification and 
classification of the soils, and for the prediction of its behavior (Ferreira, 2010). In this aspect, the sand fraction 
identifies the presence of minerals more resistant to the processes of weathering, and the silt, by its instability, is 
presented as an indicator of the degree of soil weathering.  

In the profiles P1 and P2, higher clay content prevailed in the Bw3 horizon, however, the condition necessary to 
characterize it as a B textural horizon was not observed. Low levels of silt were observed, probably due to the 
weathering process and consequent mineralogical transformation.  

The soil density confirms the morphological results obtained in the field. In the profiles P1 and P2, soil densities 
between 1.14 and 1.69 g cm-3 were observed, and the total porosity was between 32.48 to 57.89 cm3 100 cm-3, 
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and the subsurface horizons showed a higher porosity (Table 2). In this way it is verified that the soil is perfectly 
drained, not occurring any restriction to aeration, which favors the flow of rain water or irrigation. 

The profiles P1 and P2 were classified as Latossolo Amarelo Distrófico típico-Lad (Xanthic Haplustox), 
Ferralsols (WRB/FAO), product of the pedogenic process of laterization, reaching approximately 200 cm depth. 
They have anthropic horizon A, due to the continuous use of the soil for a long time. They are very developed 
soils, in which is perceived the intense pedogenetic transformation of the parent material, which, together with a 
level landform, favors soil drainage.  

In profiles 3 and 4 the texture of the horizons was classified predominantly as loamy sand. The clay fraction has 
values between 78 to 132 g kg-1, with higher contents in the subsurface horizons (Table 2). Typic Fragiorthods 
have materials of origin that are usually very poor in clay, such as quartzites, sandstones or sandy quartzeous 
sediments, resulting in sandy textured soils along the profile (Carvalho, Ribeiro, Souza Júnior, & Brilhante, 
2013). 

The profiles P3 and P4 were classified as Espodossolo Ferri-Humilúvico Hidromórfico dúrico-ESKg (Typic 
Fragiorthods), Podzols (WRB/FAO), which is the product of the podzolization process. These soils have, as 
main characteristic, cemented subsurface horizons, massive and with strong presence of mottles, leading to the 
formation of fragipan type horizons, starting at 60 cm depth. They have a dark thick A humic horizon with 
higher soil organic carbon content when compared to P1 and P2 profiles. 

According to Souza (1997), the compacted layers may be the result of the predominance of the finer fractions of 
sand, associated to other factors, such as cementing agents, amorphous organic material and the clay fraction 
itself. However, the high proportion of fine sand allows a better infiltration of the water and favors the eluviation 
of the clay to subsurface horizons of the soil (Corrêa et al., 2008). These data contribute to the understanding of 
the pedogenesis of Typic Fragiorthods, since normally these soil classes have a parent material poor in clay and 
develop in more sandy sediments. 

The density of the soil in the Typic Fragiorthods varied between 1.30 and 1.99 g cm-3, showing increase with 
depth and consequently demonstrating that this behavior is associated to the horizons with massive structure and 
extremely hard consistency. The B spodic horizon showed a relatively higher density increase, characteristic 
related to the greater density of the particles in this horizon. It can be observed that the increase of the soil 
density in depth caused a reduction in the number and size of the pores. Consequently, was observed a reduction 
of the soil carbon with depth. 

The four profiles presented acid reaction, with pH values ranging from 3.64 to 6.2 (Table 3). The values of pH in 
KCl were lower than in water in almost all horizons, mainly in the surface horizons, resulting in negative ΔpH, 
which indicates negative net charge, with a predominance of cation exchange in the colloidal fraction. The ΔpH 
presented more negative values in the superficial horizons, a behavior that may be related to the high content of 
organic matter, mainly in the Typic Fragiorthods, and the occurrence of argillominerals, mainly of the 2: 1 
filossilicate group in the subsurface horizons. According to Gomes, Resende, Rezende, & Mendonça (1998), the 
surface horizons present, in most cases, higher pH than the spodic horizons, because they are more leached and 
practically devoid of organic matter, which is the main source acidity of these soils. 

The organic carbon contents were low in profiles P1 and P2. This fact may be related to the semiarid climatic 
condition to which they are exposed, and it is possible to observe in the horizons Ap the highest amounts of TOC, 
with approximately 8.7 g kg-1. This is due to the influence of the environment, since P1 is located in an area 
managed with melon for a long period, and P2 in a preserved area with cashew tree occurrence. In the 
Espodossolos (P3 and P4) the TOC was higher than in P1 and P2, presenting levels between 13.9 and 24.5 g 
kg-1.  
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Table 3. Chemical attributes of described soil profiles from west and east of the State of Rio Grande do Norte, 
Brazil 

Horizon Depth  pH(H2O) pH(KCl) ∆pH TOC(1) P Ca2+ Mg2+ Na+ K+ Al3+ H+Al T(2) SB t V(3) m(4) PST(5)

cm g/kg mg/kg --------------------------- cmolc kg-1 --------------------------- --------- % ---------

P1-Latossolo Amarelo Distrófico típico-Lad (Xanthic Haplustox) 

Ap (0-16) 5.4 4.4 -0.93 8.73 1.12 0.47 0.28 0 0.18 0.40 2.00 2.93 0.93 1.33 32 30 0 

AB (16-49) 5.3 4.5 -0.76 4.13 0.52 0.33 0.24 0.04 0.12 0.13 1.10 1.83 0.73 0.86 40 15 2 

Bw1 (49-89) 4.1 4.1 -0.06 3.92 0.16 0.40 0.24 0.09 0.15 0.77 2.20 3.10 0.90 1.67 29 46 4 

Bw2 (89-130) 4.0 4.1 0.10 3.60 0.16 0.37 0.23 0.21 0.13 1.17 2.20 3.14 0.94 2.10 30 56 7 

Bw3 (130-180+) 4.2 4.1 -0.03 3.47 0.20 0.60 0.22 0.05 0.09 1.53 2.50 3.45 0.95 2.48 28 62 1 

P2-Latossolo Amarelo Distrófico típico-Lad (Xanthic Haplustox) 

Ap (0-19) 5.3 4.3 -1.00 8.79 2.90 0.95 0.26 0.03 0.08 0.43 1.70 3.29 1.59 2.02 48 21 9 

AB (19-55) 4.5 4.3 -0.28 4.09 2.76 0.86 0.29 0.18 0.03 0.93 2.30 3.66 1.36 2.30 37 41 5 

Bw1 (55-93) 4.2 4.2 0.00 3.03 1.69 0.56 0.20 0.15 0.02 1.57 2.10 3.04 0.94 2.50 31 63 5 

Bw2 (93-142) 3.8 4.2 0.38 2.47 1.69 0.73 0.23 0.04 0.02 0.97 2.70 4.08 1.38 2.34 34 41 10 

Bw3 (142-189+) 3.6 4.2 0.56 2.27 0.54 0.42 0.19 0.04 0.02 1.37 2.70 3.73 1.03 2.39 28 57 11 

P3-Espodossolo Ferri-Humilúvico Hidromórfico dúric-ESKg (Typic Fragiorthods) 

A1 (0-27) 5.7 4.3 -1.40 20.5 - 0.03 0.09 0.04 0.07 0.55 5.48 5.70 0.23 0.78 4 71 1 

A2 (27-54) 6.2 4.9 -1.30 24.5 - 0.09 0.11 0.06 0.04 0.55 7.88 8.18 0.30 0.85 4 65 1 

Bhsm1 (54-79) 5.7 5.2 -0.50 21.4 - 0.07 0.01 0.04 0.03 0.05 6.15 6.30 0.15 0.20 2 25 1 

Bhsm2 (79-128) 4.8 5.0 0.20 17.1 - 0.07 0.01 0.06 0.04 0.40 4.73 4.91 0.18 0.58 4 69 1 

Bhsm3(128-199+) 4.6 4.8 0.20 14.9 - 0.08 0.01 0.03 0.03 0.70 4.13 4.28 0.16 0.86 4 82 1 

P4-Espodossolo Ferri-Humilúvico Hidromórfico dúric-ESKg (Typic Fragiorthods) 

A (0-49) 5.3 4.3 -1.00 17 - 0.14 0.04 0.02 0.05 1.05 4.50 4.75 0.25 1.30 5 81 0 

AB (79-118) 4.7 4.5 -0.20 21.2 - 0.20 0.07 0.05 0.05 1.60 7.05 7.42 0.37 1.97 5 81 1 

Bhsm (118-194+) 4.8 4.5 -0.30 13.9 - 0.22 0.20 0.05 0.05 0.25 3.08 3.60 0.52 0.77 15 32 2 

Note. TOC = total organic carbon; H+Al = potential acidity; T = cation exchange capacity at pH 7.0; SB = sum 
of bases. t = effective cation exchange capacity; V = base saturation; m = aluminum saturation; ESP = 
exchangeable sodium percentage. 

 

The difference in TOC between regions is related to different rainfall and vegetation. In this sense, the 
municipality of Mossoró-RN presents an average annual rainfall of 500 mm. The water deficit for prolonged 
periods favors the decomposition of the vegetal material in surface, not allowing its illuviation to greater depths. 
In the municipality of Baía Formosa, whose annual precipitation is approximately 1,600 mm, there is a greater 
availability of water and, consequently, the maintenance of the organic matter input on the soil surface, which 
allows the addition of carbon to the soil system and its illuviation to deeper layers. The highest levels of TOC in 
P3 and P4 were always accompanied by high values of potential acidity, whose maximum value was 7.88 cmolc 
kg-1, while in P1 and P2 it reached 2.70 cmolc kg-1. A positive correlation of the potential acidity with the 
organic carbon contents was obtained by Carvalho et al. (2013), in a study of the characterization of 
Espodossolos in the states of Paraíba and Pernambuco, in northeastern Brazil, probably due to the organic acids 
present in these soils. 

The illuviation of the organic matter to the soil subsurface layers favors a greater loss of bases, having in the 
complexes of exchange a greater concentration of hydrogen ions, making the soil more acid, and consequently 
with low saturation by bases. This attribute reached up to 48% in the profiles P1 and P2, and in P3 and P4 the 
maximum value of 15% emphasized the dystrophic character in all horizons (V < 50%). According to Kampf 
and Curi (2009), soils originating from quartz sandstones tend to be poor in bases, with little reserve of nutrients, 
especially in humid climates, because the good soil permeability favors leaching. According to Carvalho et al. 
(2013), the low fertility of these soils is reflected by the sum of exchangeable bases, which rarely reach levels 
greater than 1 cmolc kg-1. That is why these soils are most often characterized as Alic or dystrophic. 

The exchangeable aluminum contents were similar in the four profiles, not exceeding 1.60 cmolc kg-1 of soil. In 
all horizons, potassium contents between 0.02 and 0.18 cmolc kg-1 of soil were observed, and sodium contents 
between 0.00 and 0.40 cmolc kg-1 were observed. In the profiles P1 and P2 the calcium contents varied between 
0.33 and 0.95 cmolc kg-1, whereas in P3 and P4, they varied between 0.03 to 0.22 cmolc kg-1. This is attributed 
to the fact that the basic cations calcium, magnesium, sodium and potassium form more soluble complexes and 
can be lost more easily by leaching. 
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