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Abstract 
In no-tillage (NT) and minimum tillage (MT) areas, spatial variability of soil physical properties may affect crop 
yield. The aim of this study was to assess the spatial distribution of soil physical properties, as well as the yield 
components and grain yield of soybean (GY), based on the mapping of areas under soil conservation farming 
systems. We assessed yield components, GY and the physical properties of an Oxisol, under NT and MT using 
the t-student test, and geostatistics to assess spatial variability. The largest population of NT plants showed no 
spatial dependence and did not influence GY, but the components related to plant height and soil properties 
differed between systems. From a spatial standpoint, the kriging maps demonstrated that mass of one thousand 
grains (MOG), total porosity (TP) and soil bulk density (BD) influenced GY under NT, whereas TP1 exerted the 
most influence under high soil moisture conditions and MT. The maps make it possible to assess the spatial 
distribution of soil physical properties and the influence on GY, making them an important tool for more 
accurate production planning in soil conservation systems. 
Keywords: Glycine max L., minimum tillage, no-tillage, soil physical properties 

1. Introduction 
The Brazil advances to become the largest producer of soybeans in the world, this should happen with greater 
investment in production technology (Pereira et al., 2018a). This is partly due to the use of conservation farming 
systems, such as NT (no-tillage) and MT (minimum tillage), which promote improved soil quality, enabling 
cropping systems to cover vast areas (Cortez et al., 2017). 

Soil conservation systems, which leave crop residue on the soil surface, include MT (using scarifiers) and NT 
(Dam et al., 2005). NT is based on the application of a set of technologies to avoid soil disturbance, the 
permanent maintenance of soil surface with crop residue and crop rotation (Moraes et al., 2017). Its worldwide 
use is increasing because it results in faster and more efficient operations, in addition to improving soil physical 
conditions for better crop development and growth (Tavares Filho et al., 2012; Pereira et al., 2018a). According 
to Kassam et al. (2018), NT encompassed 180 million hectares in 2015/16, 32 million of which were in Brazil, 
making the country’s agriculture one of the most sustainable in the world (Freitas & Landers, 2014). 

However, compacted and subcompacted layers emerge as a result of fewer soil operations (Franchini et al., 
2011), making it a limiting factor in achieving maximum crop yield (Araújo et al., 2004). With the higher BD, 
penetration resistance (PR) and microporosity (MI) increase, causing a decline in TP, macroporosity (MA) and 
hydraulic conductivity (Rosa Filho et al., 2009). Scarification has been adopted to reverse this process, based on 
the principles of NT (Bertolini & Gamero, 2010; Nunes et al., 2014). 

The effects of soil turning vary, with crops responding differently in terms of grain yield (Moraes et al. 2017; 
Pereira et al., 2018a). To better understand and analyze the spatial behavior of soil and plant properties, 
geostatistics is used to detect the variability and spatial distribution of the properties, by constructing maps 
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2.3 Experimental Design 

The area was divided in December 2015, and 3,200 m2 were allocated to MT and the rest to NT. The MT 
consisted of mechanical soil scarification, up to 0.37 m, followed by leveling and crushing. Next a sample grid 
consisting of 51 sampling points was divided into three 160 m transections, in order to cover each 3,200 m2 area. 

2.4 Crop Planting 

Soybean was planted using the M 7110 IPRO cultivar, with indeterminate growth. Between-row spacing was 
0.45 m, with a density of 15.9 plants per meter in the row. In line with crop recommendations, 250 kg ha-1 of 
04-20-20 (N-P-K) formulation was applied. The fungicide carboxin (50 g ha-1 do i.a.) + thiram (50 g ha-1 do i.a.) 
was used to treat 100 kg of seed, followed by the liquid inoculant Bradyrhizobium sp. to supply 600,000 cells per 
seed. 

2.5 Analyses of Yield Components and Grain Yield of Soybean 

Soil collections, assessments and harvests occurred in March 2016, in the phenological stage R8 soybean. The 
final population of soybean plants (POP, plants ha-1) was counted along eight meters of the crop line around each 
sampling point. The plants were manually harvested for mechanical threshing GY (kg ha-1) was calculated, 
corrected to 13.0% (wet basis), and MOG was measured on a scale accurate to±0.01 g, at 13.0% (wet basis). 
During harvesting, 10 plants were separated at each sampling point to determine the following: height of 
insertion of the first legume (HL, m), measuring the distance from the ground to the first legume, number of 
legumes per plant (LP), by counting the legumes in plants containing seeds and dividing by the number of plants 
sampled, plant height (HP, m), measuring the distance from the ground to the apex of the main stem, number of 
grains per plant (GP), by counting the seeds and dividing by the number of plants sampled, number of grains per 
legume (GL), by counting the number of seeds and dividing by the number of legumes in the sampled plants. 

2.6 Analyses of Soil Properties 

Sample were collected in layers 0.00-0.10 m and 0.10-0.20 m around each sampling point to determine soil 
physical properties. Undisturbed soil samples in volumetric cylinders were used to calculate MA (m3 m-3), MI 
(m3 m-3), TP (m3 m-3), and BD (kg dm-3) values, applying the tension table method described by Teixeira et al. 
(2017). An impact penetrometer was used to determine PR (MPa), according to Stolf et al. (2014). Disturbed 
samples were collected to determine gravimetric moisture (GM, kg kg-1) and volumetric moisture (VM, m3 m-3), 
in line with the methodology described by Donagema et al. (2011), and volumetric moisture using Hydrosense 
system (Vh, m3 m-3). 

2.7 Statistical Analysis 

The average values of yield components, soybean yield and soil physical properties were submitted to the 
Shapiro-Wilk test of normality, followed by analysis of variance applying the F test (p ≤ 0.05). When a 
significant difference was observed, the average plant and soil properties were compared using the t-student test 
(≤ 0.05) and R software (R Core Team, 2014). 

2.8 Geostatistical Analysis 

Statistical analysis was used to obtain the mean and frequency distribution, using SAS® software (SAS Institute, 
2002). Spatial dependence was analyzed for each property by calculating a semivariogram, the nugget effect (Co), 
range (Ao), sill (Co + C), coefficient of determination (r2) and residual sum of squares (RSS). Kriging maps were 
obtained by interpolation in order to analyze the spatial dependence between the properties, using Gamma 
Design version 7.0 (GS+, 2004). 

3. Results and Discussion 
The effects of MT and NT influenced POP, HP and HL, with no effect on GY, MOG, LP, GP and GL (Table 1). 
POP was lower in MT, and soil turning with scarifier blades likely affected seed deposition and cover in the soil, 
exposing them to heat, thereby hindering plant emergence because planting occurred after scarification. This did 
not occur in NT, since planting maintains crop residue on the soil surface, providing favorable plant emergence 
conditions. Cortez et al. (2017) also found lower POP in scarified soil compared to NT. The authors attribute this 
behavior to less seed-soil contact when exposed to higher temperatures, which affected water absorption. 
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Table 1. Effect of minimum and no-tillage on yield components and soybean yield (Mean±SD) 

Propertiesa 
 

Minimum tillage No-tillage 
Pr < wb 

Minimum tillage No-tillage 

GY (kg ha-1) NS 4.25±507.29 4.43±456.18 0.112NO 0.484NO 
MOG (g) NS 16.24±0.92 16.19±0.84 0.007IN 0.020TN 
LP NS 49.53±6.95 48.87±7.36 0.055NO 0.042TN 
GP NS 114.30±16.05 112.00±19.83 0.089NO 0.736NO 
GL NS 2.31±0.15 2.28±0.16 0.474NO 0.496NO 
HP (m) ** 1.00±0.05 a 0.95±0.07 b 0.020TN 0.015TN 
HL (m) * 0.15±0.01 b 0.16±0.01 a 0.437NO 0.347NO 
POP (pl ha-1) ** 253.15±18.19 b 281.80±20.76 a 0.798NO 0.051NO 

Note. aGY, grain yield of soybean; MOG, mass of one thousand grains; LP, number of legumes per plant; GP, 
number of grains per plant; GL, number of grains per legume; HP, plant height; HL, height of insertion of the 
first legume; POP, final population of soybean plants. bFrequency distribution: NO, normal; TN, tending to 
normal; IN, indeterminate. Different lower-case letters in each column indicate differences between farming 
systems: NS not significant; * P < 0.05% and ** P < 0.01 (with the t-student test). 

 

Table 1 shows that HL under NT was higher than that of MT, and the greatest HP was obtained in MT. Soil 
scarification may have favored root distribution, allowing greater soil exploitation and increasing plant height. 
However, since water availability was the same between systems, the best plant development did not lead to a 
rise in GY. The HL and HP are important characteristics in crop development, since plants with HL lower than 
0.15 m exhibit greater crop losses, while taller plants display a higher lodging incidence, which may limit the 
performance of harvesters. 

Despite the similar GY between NT and MT (Table 1), yields were higher than those reported by Rosa Filho et 
al. (2009), who assessed NT in an Oxisol, and similar to those observed by Girardello et al. (2014), who also 
found no GY difference in Oxisol under NT and a scarified area. The use of scarifiers in planting systems does 
not always increase soybean yield (Cortez et al., 2017). Soybean is considered a rustic crop, with a limited 
response to soil interventions under favorable climate conditions (Pivetta et al., 2011). The results confirm that 
changes in crop yield may not be only a function of soil, which means that the best physical soil condition may 
not necessarily result in higher yields (Nunes et al., 2014). 

Mechanical soil scarification prompted a reduction BD and an increase in GM, VM, MA, MI, TP and PR, in 
both layers (Tables 2 and 3). BD increased in NT, with a change in TP, a predominance of MI and decline in MA, 
caused by less soil turning. With no soil turning, the pressures caused by farm machinery traffic and the natural 
settlement of particles raise soil compaction, thereby reducing pore size (Godoy et al., 2015). Pereira et al. 
(2018b) assessed native forest in the Cerrado and in found BD values in natural Oxisol close to those recorded 
under MT, indicating compaction in the NT area and the effects of decompaction in MT. Additionally, higher 
GM and VM values may be related to the increase in MI under MT, retaining more water in the soil, despite the 
NT exhibiting more plant residue on the soil surface. The MA values in NT were lower than 0.10 m3 m-3 (Tables 
2 and 3), which is considered the limit for the development of most species (Collares et al., 2008). However, 
they did not restrict crop development, given that yield was similar between systems. These results are 
corroborated by Silveira et al. (2008), who found that NT obtains higher BD values, and lower MA and TP 
values, due to the absence of soil turning. Mazurana et al. (2011) observed that scarification reduced BD and PR, 
in addition to increasing water infiltration. 
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Table 2. Effect of minimum and no-tillage on soil physical properties, in the 0.00 to 0.10 m layer (Mean±SD) 

Propertiesa 
 

Minimum tillage No-tillage 
Pr<wb 

Minimum tillage No-tillage 
MA1 (m3 m-3) ** 0.126±0.04 a 0.054±0.02 b 0.941NO 0.008IN 
MI1 (m3 m-3) * 0.369±0.03 a 0.354±0.02 b 0.644NO 0.513NO 
TP1 (m3 m-3) ** 0.496±0.04 a 0.408±0.03 b 0.801NO 0.397NO 
BD1 (kg dm-3) ** 1.317±0.11 b 1.542±0.09 a 0.917NO 0.056NO 
GM1 (kg kg-1) ** 0.264±0,02 a 0.218±0.02 b 0.268NO 0.683NO 
VM1 (m3 m-3) ** 0.347±0.04 a 0.336±0.03 b 0.410NO 0.148NO 
Vh1 (m3 m-3) * 0.285±0.05 b 0.310±0.04 a 0.503NO 0.000IN 
PR1 (MPa) ** 0.381±0.20 b 0.588±0.25 a 0.155NO 0.050NO 

Note. aMA, macroporosity; MI, microporosity; TP, total porosity; BD, bulk density; GM, gravimetric moisture; 
VM, volumetric moisture; Vh, volumetric moisture using Hydrosense system; PR, penetration resistance. b 
Frequency distribution: NO, normal; TN, tending to normal; IN, indeterminate. Different lower-case letters in 
each column indicate differences between farming systems: NS not significant; * P < 0.05% and ** P < 0.01 
(with the t-student test). 

 

Table 3. Effect of minimum and no-tillage on soil physical properties, in the 0.10 to 0.20 m layer (Mean±SD) 

Propertiesa 
 

Minimum tillage No-tillage 
Pr<wb 

Minimum tillage No-tillage 
MA2 (m3 m-3) ** 0.096±0.03 a 0.054±0.01 b 0.564NO 0.345NO 
MI2 (m3 m-3) ** 0.377±0.02 a 0.346±0.02 b 0.413NO 0.897NO 
TP2 (m3 m-3) ** 0.474±0.02 a 0.401±0.02 b 0.991NO 0.055NO 
BD2 (kg dm-3) ** 1.378±0.09 b 1.554±0.05 a 0.269NO 0.900NO 
GM2 (kg kg-1) ** 0.286±0.02 a 0.230±0.21 b 0.109NO 0.065NO 
VM2 (m3 m-3) ** 0.395±0.03 a 0.357±0.30 b 0.085NO 0.006IN 
Vh2 (m3 m-3) NS 0.380±0.03 0.374±0.02 0.423NO 0.001IN 
PR2 (MPa) ** 1.018±0.37 b 1.603±0.32 a 0.002IN 0.092NO 

Note. aMA, macroporosity; MI, microporosity; TP, total porosity; BD, bulk density; UG, gravimetric moisture; 
VM, volumetric moisture; Vh, volumetric moisture using Hydrosense system; PR, penetration resistance. 
bFrequency distribution: NO, normal; TN, tending to normal; IN, indeterminate. Different lower-case letters in 
each column indicate differences between farming systems: NS not significant; * P < 0.05% and ** P < 0.01 
(with the t-student test). 

 

Scarification was efficient in diminishing PR, which is lower than under NT (Tables 2 and 3). One of the main 
objectives of mechanical scarification is to decrease PR in soil (Girardello et al., 2014). Scarification helped 
break up compacted layers, increased MI and favored GM and VM, reducing cohesion between soil particles and 
PR values. Since the latter is greater in dry periods (Collares et al., 2008). Similar results were obtained by Souza 
et al. (2010), who also observed a drop in PR to 0.15 m, in an Oxisol, due to soil turning under conventional 
tillage. The PR that limits root growth is 2 MPa and no limitation to plant development was observed in either 
treatment. Higher PR values were reported by Dalchiavon et al. (2011) in Oxisol under NT. However, Almeida 
et al. (2008) studied Oxisol under NT and conventional tillage and found no difference for BD and GM up to 
0.20 m. These results indicate that the effect of scarification could be temporary, and that physical properties 
may not improve after a certain time (Nicoloso et al., 2008).  

Except for HL in MT (Table 4) and GP, HL and POP in NT (Table 5), which exhibited a pure nugget effect, the 
remaining plant and soil properties (Tables 6 and 7) showed spatial dependence. These were fitted in the 
spherical and exponential model, indicating that spatial distributions were not random. Similar behavior was 
observed by Dalchiavon et al. (2011), who found a spherical model for LP, GP and seed weight per plant, in 
Oxisol planted with soybean under NT. The spherical model has been applied primarily to describe the 
variability of soil properties (Cambardella et al., 1994; Oliveira et al., 2013; Ribeiro et al., 2016). Cortez et al. 
(2017) reported greater exponential model fit for PR, in both NT and scarification. Ribeiro et al. (2016) observed 
spatial dependence, with spherical models for BD and moisture in Oxisol, under NT and conventional tillage. 
The nugget effect showed a value of zero for all the components and properties assessed. Nugget effect values 
close to zero indicate more accurate estimates using kriging (Cortez et al., 2018). This occurs because the lower 
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the nugget effect in relation to the variogram baseline, the higher the continuity of the phenomenon and variance 
of the estimate, and the more reliable the estimate (Bottega et al., 2013; Cortez et al., 2018). 

 

Table 4. Simple semivariogram parameters of the yield components and soybean yield under minimum tillage 

Propertiesa Modelb Nugget Effect (C0) Sill (C0 + C) Range (m) r2 RSSc 
GY (kg ha-1) sph (79) 5.750 × 104 2.467 × 105 31.3 0.863 1.430 × 109 
MOG (g) sph (82) 4.220 × 10-1 1.13 56.5 0.966 1.000 × 10-2 
LP sph (66) 1.961 × 10 4.020 × 10 43.7 0.980 3.83 
GP exp (67) 2.360 × 10 1.783 × 102 24.9 0.709 7.340 × 102 
GL exp (66) 2.620 × 10-3 1.544 × 10-2 23.4 0.845 2.031 × 10-6 
HP (m) sph (67) 8.210 × 10-4 2.572 × 10-3 43.9 0.959 5.558 × 10-8 
HL (m) nef. 3.690 × 10-4 3.690 × 10-4 - - - 
POP exp (67) 4.010 × 107 2.880 × 108 30.3 0.901 8.970 × 1014 

Note. aGY, grain yield of soybean; MOG, mass of one thousand grains; LP, number of legumes per plant; GP, 
number of grains per plant; GL, number of grains per legume; HP, plant height; HL, height of insertion of the 
first legume; POP, final population of soybean plants. bModels; exp, exponential; sph, spherical; nef, pure nugget 
effect and in parentheses the number of pairs in the first lag. cRSS, Residual sum of squares. 

 

Table 5. Simple semivariogram parameters of the yield components and soybean yield under no-tillage 

Propertiesa Modelb Nugget Effect (C0) Sill (C0 + C) Range (m) r2 RSSc 
GY (kg ha-1) sph (70) 8.300 × 103 1.851 × 105 21.1 0.815 7.530 × 108 
MOG (g) sph (64) 3.310 × 10-1 6.720 × 10-1 31.1 0.632 1.750 × 10-2 
LP sph (75) 2.190 × 10 5.596 × 10 32 0.839 6.070 × 10 
GP sph (72) 1.641 × 102 3.359 × 102 36.4 0.957 4.410 × 102 
GL nef. 2.898 × 10-2 2.898 × 10-2 - - - 
HP (m) sph (69) 2.210 × 10-3 5.440 × 10-3 94.6 0.929 7.570 × 10-7 
HL (m) nef. 2.630 × 10-4 2.630 × 10-4 - - - 
POP nef. 4.187 × 108 4.187 × 108 - - - 

Note. aGY, grain yield of soybean; MOG, mass of one thousand grains; LP, number of legumes per plant; GP, 
number of grains per plant; GL, number of grains per legume; HP, plant height; HL, height of insertion of the 
first legume; POP, final population of soybean plants. bModels; exp, exponential; sph, spherical; nef, pure nugget 
effect and in parentheses the number of pairs in the first lag. cRSS, Residual sum of squares. 

 

Table 6. Simple semivariogram parameters of soil properties under minimum tillage 

Propertiesa Modelb Nugget Effect (C0) Sill (C0 + C) Range (m) r2 RSSc 
TP1 (m3 m-3) sph (76) 8.150 × 10-4 1.640 × 10-3 77.40 0.814 1.086 × 10-7 
BD2 (kg dm-3) sph (75) 4.930 × 10-3 1.046 × 10-2 59.40 0.870 3.226 × 10-6 
PR1 (MPa) exp (62) 1.024 × 10-2 3.308 × 10-2 49.80 0.804 3.496 × 10-5 
PR2 (MPa) exp (78) 1.780 × 10-2 1.1416 × 10-1 35.40 0.878 3.509 × 10-4 

Note. aTP, total porosity; BD, bulk density; PR, penetration resistance. 1 and 2 are soil layers 0.00-0.10 m and 
0.10-0.20 m, respectively. bModels; exp, exponential; sph, spherical; nef, pure nugget effect and in parentheses 
the number of pairs in the first lag. cRSS, Residual sum of squares. 

 

Table 7. Simple semivariogram parameters of soil properties under no-tillage 

Propertiesa Modelb Nugget Effect (C0) Sill (C0 + C) Range (m) r2 RSSc 
TP1 (m3 m-3) sph (68) 4.300 × 10-4 8.610 × 10-4 68.2 0.853 2.339 × 10-8 
BD1 (kg dm-3) exp (82) 1.200 × 10-3 9.700 × 10-3 23.1 0.502 3.726 × 10-6 
VM1 (m3 m-3) sph (68) 4.100 × 10-4 8.400 × 10-4 56.2 0.885 1.411 × 10-8 
Vh1 (m3 m-3) sph (72) 7.750 × 10-4 1.560 × 10-3 34.4 0.889 2.246 × 10-8 

Note. aTP, total porosity; BD, bulk density; VM, volumetric moisture; Vh, volumetric moisture using 
Hydrosense system. 1 and 2 are soil layers 0.00-0.10 m and 0.10-0.20 m, respectively. bModels; exp, exponential; 
sph, spherical; nef, pure nugget effect and in parentheses the number of pairs in the first lag. cRSS, Residual sum 
of squares. 
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suggesting the importance of plant residues on the soil surface, since direct relationships were observed between 
soil moisture and GY, in order to create more accurate kriging maps, HP, GP and TP1 can be used under high 
soil soil moisture conditions. 

3. Conclusion 
The largest population of NT plants showed no spatial dependence and did not influence GY, but the 
components related to plant height were different between systems. 

The MA, MI, TP, BD, GM, VM and PR, in the layers assessed were higher with scarification. 

Spatially, the maps show that in MT, GY was influenced by MOG and GL, and greater in areas with higher TP1 
and BD2 values, demonstrating that using some of these properties may produce more accurate maps. 

The kriging maps illustrate the distribution of soil physical properties and their influence on soybean yield, 
making them an important tool for more accurate seed production planning in these areas. 
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