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Abstract 
The aim of this study was to evaluate the influence of different grass cultivars on physical attributes of an Oxisol 
in the Agreste region of Paraíba. The experiment was set up in 2005 in experimental areas of the Center of 
Agricultural Sciences of the Federal University of Paraíba, Areia-PB. The experimental design adopted was that 
of randomized complete blocks (RCB) with 5 treatments and 4 replications, in experimental plots of 50 m2. The 
treatments were the following: I. Brachiaria decumbens Stapf., II. Brachiaria brizantha, III. Brachiaria 
humidicola (Rendle) Schweickvr., IV. Brachiaria brizantha cv. MG5-Vitória and V. Brachiaria ruziziensis. In 
October 2018 samples of soil with disturbed and undisturbed structure were collected at the center of each 
experimental plot in the depth of 0.0-0.10 m for the determination of the following variables: soil porosity (total, 
macro and micro), bulk density, compaction degree, saturated hydraulic conductivity, field capacity, permanent 
wilting point, available water content, soil aeration capacity, clay dispersed in water, flocculation degree and 
aggregate stability index. The analysis of variance was performed and the means were compared by Tukey’s tests, 
principal component analysis and Pearson’s correlation analysis (p < 0.05). It is concluded that after the 13-year 
period, Brachiaria brizantha promoted improvements to the field capacity of the Oxisol. The other attributes 
were not physically altered. Main component analysis showed that the correlation values were more significant 
for the Brachiaria brizantha component. Pearson’s correlation was significant between field capacity and soil 
aeration capacity. 
Keywords: soil physics attributes, Brachiaria, aggregates stability index, bulk density, hydraulic conductivity 

1. Introduction 
The land usage and management system, when performed incorrectly can alter the physical attributes of the soil, 
promote degradation, reduce quality and cause damage to its sustainability. In general, the factors of greatest 
impact on the physical and structural quality of the soil are the excessive traffic of agricultural machines and 
input of agricultural implements, animal trampling (Gasparetto et al., 2009), predatory removal of vegetation 
cover (Sales et al., 2018) and surface burning of residues (Redin et al., 2011). 

The physical degradation of the soil reflects directly on its structural quality, varying through different degrees of 
intensity. When the soil structure changes negatively, there may be a reduction in crop productivity due to 
changes in water retention and availability, oxygen diffusion, soil resistance to root penetration (Guimarães et al., 
2014) and aggregates stability (Bonini & Alves, 2011). 

Different attributes have been used to evaluate soil physical quality, such as: bulk density, macroporosity, 
microporosity, total porosity, aggregates stability, soil penetration resistance (Lima et al., 2014) and saturated 
hydraulic conductivity, for being a parameter of great importance in the water movement through the soil (Soto 
& Kiang, 2018). 
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Generally, in production systems where vegetation cover is suppressed, changes in soil physical attributes occur, 
reducing the sustainability of agricultural production, especially in environments with climatic irregularities. In 
this context, it is noted an urgent need to adopt management systems that maximize food production, without 
compromising the physical properties of the soil. The maintenance of the vegetation cover has been used in a 
quite satisfactory way in conservationist production systems, considering the physical improvements that it 
promotes in the soil, especially in situations of low water availability (Costa et al., 2007; Oliveira et al., 2018). 

The maintenance of permanent vegetation cover with grasses favors numerous improvements to the environment, 
especially the reduction in erosion rate caused by surface runoff (Silva et al., 2018), improvements in water 
productivity and availability indexes (Braga et al., 2017) and formation of aggregates with higher stability index 
(Santos et al., 2012). All of this derives from the action of the root system, which, depending on the species 
cultivated, may show a higher or lower intensity of improvement in the physical attributes of the soil. 

Thus, knowing the importance of the vegetation cover for the improvement of the physical attributes of the soil 
and the lack of information about which species of the Brachiaria genus are more efficient in this improvement, 
this study aimed to evaluate the influence of different cultivars of grasses of such genus on physical attributes of 
anOxisol in the Agreste region of Paraíba. 

2. Method 
2.1 Characterization of the Experimental Area 

The experiment was set up in 2005 in an experimental area belonging to the Center of Agricultural Sciences of 
the Federal University of Paraíba, in Areia-PB. The city is located within the micro-region of Brejo and 
mesoregion of the Agreste of Paraíba (6°58′12″ S; 35°41′15″ W; and altitude of 620 m). In 2017 the 
micro-region of the Brejoparaibano was inserted in the climatic domain of the Brazilian Semiarid region (Dry 
lands), due to the irregularities in the local climate, caused by poor rainfall distribution and the increase in the 
annual average temperature (SUDENE, 2017).  

According to Köppen classification, the predominant climate in the municipality is As’-tropical, hot and humid, 
with rains during autumn and winter and mean annual precipitation of 1400 mm (Almeida et al., 2014), with 
62.0% occuring between April and July. The annual mean temperature is 24.5 ºC (75.2 °F) and the relative 
humidity of the air ranges in average of RH = 80.0% (Carmo et al., 2012). The soil of the experimental area is 
classified as Dystrophic Yellow Oxisol (Santos et al., 2018), with sandy-clay-loam texture. The physical and 
chemical characterization of the soil can be found in Tables 1 and 2, respectively.  

 

Table 1. Physical soil characterization of the experimental area for the layer of (0.0-0.10 m) 

Sand 
Silt Clay Textural classification* S/C PD 

VC C M F VF 

------------------------------- g kg-1 -------------------------------   g cm-3 
43 199 196 112 24 69 357 Sandy clay loam 0.194 2.58 

Note. VC = Very coarse; C = Coarse; M = Medium; F = Fine; VF = Very Fine; SC = Silt/Clay relation; PD = 
Particle Density; * = According soil taxonomy. 

 

Table 2. Soil chemical characterization of the experimental area for the layer of (0.0-0.10 m) 

pH Ca2+ Mg2+ Al3+ H+Al3+ SB CEC Na+ SOM P K+ 

H2O(1:2.5) ----------------------------------- cmolcdm-3 ------------------------------------ g kg-1 ---- mg dm-3 ---- 

5.3 1.89 1.43 0.30 8.33 3.46 11.79 0.06 49.52 1.82 28.37 

Note. pH = Hydrogen potential; Ca2+ = Calcium; Mg2+ = Magnesium; Al3+ = Exchangeable aluminum; Na+ = 
Sodium; SB = Sum of bases; CEC = Cation exchange capacity; SOM = Soil organic matter; P = Phosphorus; K+ 
= Potassium. 

 

The grasses were implanted in 2005 in experimental plots with dimensions of 10 × 5 m, adding up to 50 m2 of 
useful area (Figure 1). Plotswere 1 meter apart and blocks were 2 meters apart.  
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Where, Mi is the microporosity of the soil; Ms6kPa is the humidity of the soil stabilized in the tension table; 
Mds is the mass of dry soil 105 °C; VT is the total volume of the cylinder; TP is the total porosity and Ma is the 
macroporosity of the soil.  

The Soil Aeration Capacity variable (SAC), was determined as described in Equation 4: 

SAC (m3 m-3) = PT – θFC/TP                               (4) 

Where, TP is the total porosity of the soil (m3 m-3); θFC is the volumetric content of water in the field capacity 
(m3 m-3) determined by the Richards extractor with an applied tension of 10 kPa. 

Bulk density (BD) was determined through the ratio between dry soil mass/volume of soil sample in the cylinder 
Blake and Hartge (1986). To obtain the mass of dry soil the sample was placed in a heating chamber with 
temperature of 105 °C, for a 48 hours period until reaching a stable weight.  

Compaction degree (CD) was determined according to the methodology proposed by Suzuki et al. (2007), in 
order to define the percentage of soil compaction in relation to its maximum (Equation 5). 1.85 g cm-3 was used 
as the maximum restrictive value of bulkdensity for medium texture Oxisol (Beutler et al., 2005). 

CD = BD/1.85 × 100                                 (5) 

Where, CD is the compaction degree (%) and BD is the bulk density of the analyzed layer of the soil (0.0-0.10 
m).  

The matrix potentials: 10 kPa and 1500 kPa were used to determine the moisture in the field capacity (θFC) and 
the permanent wilting point (θPWP), as described in Teixeira (2017). Through the ratio between θFC-θPWP, the 
available water content range was obtained-θAWC (m3 m-3). The saturated hydraulic conductivity (Kθ-cm h-1), 
was determined in undisturbed soil samples, with the aid of the constant charge permeameter and calculated with 
the following Equation 6:  

Kθ = (Q × L)/(A × H × T)                              (6) 

Where, Kθ is the saturated hydraulic conductivity; Q is the water volume percolated and colected in a measuring 
cylinder (mL-1); L is the height of the soil block in (cm); A is the area of the cylinder in (cm2); H is the height of 
the soil block + water sheet (cm) and T is the time in hours of collection of percolated water volume. 

The determination of the weighted meansdiameter of soil wet aggregates (WMDwa) and weighted 
meansdiameter of soil dry aggregates (WMDwa) followed the methodology proposed by Kemper and Chepil 
(1965), with changes proposed by Carpenedo and Mielniczuk (1990) and Silva and Mielniczuk (1997), where 
the principle is to evaluate the resistance that the aggregates offer when submitted to oscillations in sieves in 
water. The aggregate stability index (ASI) was estimated by the ratio between the WMDwa/WMDda. 

The clay dispersed in water was obtained by the means of soil granulometric analysis, according to the method 
of Bouyoucos densimeter method (Teixeira et al., 2017) however, without using chemical dispersant. For the 
total clay the same previous procedure was utilized, but using sodium hydroxide (NaOH—1N) as dispersant 
agent. The flocculation degree was obtained as described in Equation 7: 

DFLO = (Clay – ClayH20)/Clay × 1000                          (7) 

Where, DFLO is the flocculation degree (g kg-1), Clay is the clay content dispersed in sodium hydroxide—NaOH 
(g kg-1), and ClayH2O is the clay content dispersed in water (g kg-1). The silt clay relation (S/C), was determined 
by the ratio of silt content (g kg-1) and the total clay (g kg-1) in the soil sample.  

2.4 Statistical Analysis of Data 

The analysis of variance (ANAVA) was performed and the means were compared by Tukey’s test (p < 0.05), 
using statistical software R (R Devedolpemt, 2013). The Pearson correlation analysis (r) and the principal 
components analysis (PCA) were performed in order to evaluate the spatial dependence between the analyzed 
variables (p < 0.05).  

3. Results 
There was no significant statistical variation for total porosity (TP) (p < 0.05) level between the assessed 
treatments (Table 3), however the values varied from 0.44 m3 m-3 in the Brachiaria ruziziensis treatment to 0.49 
m3 m-3 in the Brachiaria decumbens Stapf. treatment. Other variables such as macroporosity, microporosity, soil 
aeration capacity, bulk density and degree of compaction were not modified throughout different Brachiaria 
cultivars.  
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Table 3. Mean values of soil porosities, soil aeration capacity, bulk density and compaction degree (CD) of an 
Oxisol under grasses in the Agreste region of Paraíba (0.0-0.10 m) 

Treatments TP Ma Mi SAC BD CD 

 ------------------------- m3 m-3 ------------------------ g cm-3 % 
Brachiaria decumbens 0.49 a 0.16 a 0.33 a 0.29 a 1.18 a 63.8a 
Brachiaria brizantha 0.46 a 0.13 a 0.33 a 0.21 a 1.20 a 65.0 a 
Brachiaria humidicola 0.46 a 0.14 a 0.32 a 0.25 a 1.19 a 64.2 a 
B. brizantha cv. MG5 0.48 a 0.16 a 0.32 a 0.27 a 1.18 a 64.0 a 
Brachiaria ruziziensis 0.44 a 0.13 a 0.31 a 0.23 a 1.20 a 64.6 a 

CV (%) 5.0 11.9 4.0 11.5 4.4 4.4 

Note. TP = Total porosity; Ma = Macroporosity; Mi = Microporosity; SAC = Soil aeration capacity; BD = Bulk 
density; CD = Compaction degree; CV = Coefficient of variation. Mean values followed by the same letter in the 
column do not differ by Tukey test (p < 0.05).  

 

As for macroporosity (Ma), the values varied between 0.13 and 0.16 m3 m-3, with a higher average value in 
Brachiaria decumbens Stapf. and B. brizantha cv. MG5 treatments. Microporosity (Mi) varied from 0.31 to 0.33 
m3 m-3, with a lower value in the Brachiaria ruziziensis treatment (Table 3). 

It can be seen in Table 3 that the highest soil aeration capacity (SAC) value was found in the Brachiaria 
decumbens Stapf., treatment, but the SAC was not influenced by the different cultivars of Brachiaria. The bulk 
density (BD) ranged from 1.18 to 1.20 g cm-3, however with no significant statistical variation between the 
assessed treatments (Table 3). The compaction degree of the soil (CD) did not vary among the evaluated 
treatments (p < 0.05), as verified in Table 3.  

Table 4 shows the mean values of field capacity (θFC), permanent wilting point (θPWP), available water content 
(θAWC) and saturated hydraulic conductivity (Kθ). It was verified that a significant statistical variation for the 
θFC (p < 0.05). The values ranged from 0.205 to 0.243 m3 m-3, with a better result for the Brachiaria brizantha 
treatment (0.243 m3 m-3). 

 

Table 4. Field capacity, permanent wilting point, available water content and saturated hydraulic conductivity of 
an Oxisol under grasses in the Agreste region of Paraíba (0.0-0.10 m) 

Treatments θFC θPWP θAWC Kθ 

 ----------------------------- m3 m-3 ----------------------------- cm h-1 

Brachiaria decumbens 0.205 b 0.144 a 0.060 a 38.3 a 

Brachiaria brizantha 0.243 a 0.162 a 0.081 a 29.4 a 

Brachiaria humidicola 0.211 ab 0.144 a 0.067 a 40.7 a 

B. brizantha cv. MG5 0.206 ab 0.142 a 0.064 a 34.2 a 

Brachiaria ruziziensis 0.207 ab 0.149 a 0.058 a 37.1 a 

CV (%) 5.5 7.7 12.4 43.6 

Note. θFC = Field capacity; θPWP = Permanent wilting point; θAWC = Available water content; Kθ = Saturated 
hydraulic conductivity; CV = Coefficient of variation. Mean values followed by the same letter in the column do 
not differ by Tukey test (p < 0.05).  

 

Regarding saturated hydraulic conductivity (Kθ), it can be observed in Table 4, that there was no significant 
statistical variation between the treatments (p < 0.05), however the Kθ in the Brachiaria humidicola treatment 
was 40.7 cm h-1, higher than the others evaluated treatments, due to two main factors, the low degree of soil 
compaction and an increase in the total pore volume. 

Table 5 shows the average values of mean weighted diameter of wet and dry aggregates (WMDwa and WMDda), 
aggregate stability index (ASI), clay dispersed in water (CDW) and flocculation degree (FD). It was verified that 
there was no significant statistical variation among the treatments evaluated (p < 0.05). 
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Table 5. Mean weighted diameter, aggregates stability index, clay dispersed in water and flocculation degree of 
an Oxisol under grasses in the Agreste region of Paraíba (0.0-0.10 m) 

Treatments WMDwa WMDda ASI CDW FD 

 ---------------- mm ----------------  -------------- g kg-1 --------------
Brachiaria decumbens 2.44 a 3.12 a 0.782 a 19.25 a 942 a 
Brachiaria brizantha 3.13 a 3.52 a 0.889 a 3.25 a 992 a 
Brachiaria humidicola 2.75 a 3.21 a 0.856 a 22.75 a 934 a 
B. brizantha cv. MG5 2.60 a 3.70 a 0.702 a 19.00 a 944 a 
Brachiaria ruziziensis 2.74 a 3.36 a 0.815 a 6.50 a 982 a 

CV (%) 13.3 13.9 9.6 65.3 2.8 

Note. WMDwa = Weighted meansdiameter of wet aggregates; WMDda = Weighted meansdiameter of dry 
aggregates; ASI = Aggregates stability index; CDW = Clay dispersed in water; FD = Flocculation degree; CV = 
Coefficient of variation. Mean values followed by the same letter in the column do not differ by Tukey test (p < 
0.05).  

 

For the clay dispersed in water (CDW), it was verified that there was a reduction after nine years from the start 
of the experiment (Table 5), reflecting in high values for the flocculation degree of the soil, as for example 992 g 
kg-1 in the Brachiaria brizantha treatment. This action shows that the use of permanent grasses as soil cover, 
favors the formation of more stable aggregates in the soil, verified through the mean values of FD and CDW 
(Table 5). 

Table 6 reveals the correlation values of the principal components for physical attributes of the Oxisol evaluated 
in the experiment. 
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Table 6. Correlation values of the principal componentsanalysis (PCA) for physical attributes of an Oxisol under 
grasses in the Agreste region of Paraíba (0.0-0.10 m) 

Components of Variance 
Principal Components 

1 2 3 4 

Autovalues (%) 13.740 4.012 3.237 2.011 
Proportions (%) 50.738 17.444 14.073 8.745 
Accumulated (%) 59.73 77.18 91.25 100.00 

Variables ----------------------- Correlation with principal components ----------------------- 

TP -0.180 -0.108 0.367 0.182 
Ma -0.144 -0.260 0.354 0.131 
Mi -0.012 0.065 0.518 0.232 
BD 0.264 0.027 -0.059 -0.102 
Kθ -0.191 -0.010 -0.357 0.204 
CD 0.264 0.027 -0.059 -0.102 
WMDda 0.081 0.277 0.275 -0.419 
WMDwa 0.262 0.100 0.011 0.085 
ASI 0.219 -0.061 -0.221 0.285 
θFC 0.243 0.005 0.149 0.175 
θPWP 0.257 -0.111 0.108 0.047 
θAWC 0.208 0.114 0.246 0.277 
SAC -0.257 -0.065 0.146 0.025 
Sand -0.259 0.125 -0.033 -0.045 
Silt 0.204 0.196 -0.135 0.325 
Clay 0.235 -0.219 0.101 -0.066 
VCS -0.180 0.346 -0.121 0.104 
CS -0.236 0.129 0.096 -0.260 
MS -0.193 -0.321 0.130 0.090 
FS 0.036 -0.469 -0.076 0.200 
VFS 0.100 0.427 0.000 0.253 
CDW -0.231 0.159 0.004 0.282 
FD 0.235 -0.149 -0.018 -0.270 

Note. TP = Total porosity, Ma = Macroporosity, Mi = Microporosity, BD = Bulk density, Kθ = Saturated 
hydraulic conductivity, CD = Compaction degree, WMDwa = Weighted meansdiameter of wet aggregates; 
WMDda = Weighted meansdiameter of dry aggregates, ASI = Aggregates stability index, θFC= Field capacity, 
θPWP = Permanent wilting point, θAWC = Available water content, SAC = Soil aeration capacity, VCS = Very 
coarse sand, CS = Coarse sand, MS = Medium sand, FS = Fine sand, VFS = Very fine sand, CDW = Clay 
dispersed in water and FD = Flocculation degree.  

 

It can be observed that 77.1% of the coefficient of variation was explained by quadrants 1 and 2 for most 
assessed attributes. The Brachiaria brizantha and Brachiaria ruziziensis components were the most influential 
on the correlation values of the analyzed variables (Figure 2). 
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Table 7. Pearson correlation (r) for physical attributes of an Oxisol under grasses in the Agreste region of Paraíba 
(0.0-0.10 m) 

 TP MA MI BD CD Kθ WMDda WMDwa ASI θFC θPWP θAWC SAC CDW FD

TP 1 0.66** 0.65** - - - - - - - - - 0.85*** - - 

MA  1 - -0.55* -0.55* - - - - - - - 0.65** - - 

MI   1 - - - - - - - - - - - - 

BD    1 1*** - - - - 0.45* 0.55* - -0.52* - - 

CD     1 - - - - 0.45* 0.55* - -0.52* - - 

Kθ      1 - - 0.48* - - - - - - 

WMDda       1 0.70*** - - - - - - - 

WMDwa        1 0.48* 0.49* - 0.59** - - - 

ASI         1 - - - 0.47* 0.46* - 

θFC          1 0.83*** 0.72*** -0.71*** - - 

θPWP           1 - -0.57* - - 

θAWC            1 -0.57** - - 

SAC             1 - - 

CDW              1 1***

FD               1 

Note. * = Meaningful at (p < 0.05); ** = Meaningful at (p < 0.01); *** = Meaningful at (p < 0.001); (-) = Not 
meaningful; WMDwa = Weighted meansdiameter of wet aggregates; WMDda = Weighted meansdiameter of dry 
aggregates; ASI = Aggregates stability index; CDW = Clay dispersed in water; FD = Flocculation degree; θFC = 
Field capacity; θPWP = Permanent wilting point; θAWC = Available water content; KSAT = Saturated hydraulic 
conductivity; PT = Total porosity; Ma = Macroporosity; Mi = Microporosity; SAC = Soil aeration capacity; BD 
= Bulk density; CD = Compaction degree.  

 
The most significant values of positive correlation were verified between CDW and FD (r = 1.0), being 
considered strong, since they are inherently linked attributes. The most significant negative correlation was 
found between SAC and θFC (r = -0.71). Another strong correlation was found between θFCand θPWP (r = 
0.83). The θAWC attribute presented r = 0.72 with θFC. However, it can be observed that θAWC did not present 
a significant correlation value with θPWP, showing that it is an attribute which is not dependent on high matrix 
potentials. The correlation between PT and SAC was r = 0.85, which is considered strong. The SAC showed 
moderate correlation with Ma (r = 0.85). 

One last strong correlation was verified between WMDwa and WMDda with r = 0.70, this means that the 
increase in the mean weighted diameter of dry aggregates leads to increase in the mean weighted diameter of wet 
aggregates and the aggregates stability index. It is also important to highlight the moderate correlation values 
found between θPWP, CD and BD with r = 0.55.SAC showed strong negative correlation with θFC r = -0.71. 

There was a moderate negative correlation between the physical attributes of Ma, BD and CD r = -0.55. Other 
values of moderate negative correlation were verified between BD, CD and SAC (r = -0.52). There was a strong 
and perfectly positive correlation (r = 1.0) between CD and BD.  
4. Discussion 
The permanence of total porosity (TP) values above 0.44 m3 m-3 in all assessed treatments is related to the 
keeping of vegetation cover and to the development of the grass root system, which grows favoring the 
formation of porous spaces in the soil. Other factors such as reduction of soil mobilization and constant 
deposition of organic matter on the surface favor the increase in the pore volume of the soil (Melo et al., 2016; 
Sales et al., 2018), due to the action of microorganisms, which bind the particles together and contribute to the 
formation of pores between the aggregates of the soil.  

Another perceived factor concerns the critical macroporosity values of the soil, as it was observed that all values 
were above the critical limit, which according to Reichert et al. (2007) is 0.10 m3 m-3. Unlike macroporosity that 
fits into the structural porosity category, the microporosity is classified as a component of soil textural porosity 
and is therefore little influenced by soil management practices (Ramos et al., 2014). 

The soil aeration capacity (SAC) was not influenced by the different cultivars of Brachiaria. However, the 
values ranged from 0.21 to 0.29 m3 m-3, being above the critical limit used as standard for most soils and crops, 
which according to Tormena et al. (2002) is 0.10 m3 m-3 (10%). When SAC is greater than 0.34 m3 m-3, some 
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factors start to affect the development of crops, mainly due to problems related to water retention in the soil 
(Silva et al., 2018). 

The lowest bulk density (BD) value was verified in the Brachiaria decumbens Stapf. and B. brizantha cv. MG5 
treatments = 1.18 g cm-3, well below the critical range, which is 1.30 to 1.40 g cm-3 for soils of clayey texture 
(Reinert et al. 2008). When BD values are above the critical limit, some abnormalities will affect the 
development of the plants, due to the reduction in aeration capacity and the low power of roots penetration in 
compacted layers of the soil (Reinert et al., 2008). The BD values found in this study were much lower than 
those verified by Tormena et al. (2002), while evaluating the influence of BD and TP on the development of 
Brachiaria brizantha on Yellow Oxisol, with values between 1.43 and 1.57 g cm-3. 

The compaction degree of the soil (CD) did not vary among the evaluated treatments (p < 0.05). However, the 
values obtained remained between 63.8 and 65.0%, a trend verified as a function of the BD increase, since the 
CD is closely related to BD. While working with CD evaluation in Oxisol and Argisol, Suzuki et al. (2007) 
found that the restrictive CD for most crops is 75.0%, well above the maximum value verified in this study, 
which was 65.0% in the Brachiaria brizantha treatment. 

It is observed that there is a direct relationship between the volume of water in the field capacity and the degree 
of soil compaction in the Brachiaria brizantha treatment. The 65.0% elevation in the CD favored not only the 
water volume in the θFC, but also the water volumes in the θPWP and the θAWC. Several factors are involved in 
the increase of θFC in the Brachiaria brizantha treatment when compared to the other treatments, among them 
are the greater presence of vegetal cover in surface, greater volume of micropores and reduction in SAC. 

However, the accumulation of organic matter on the surface by the input of dry biomass from the grass 
Brachiaria decumbens Stapf. may have favored the increase in the water volume stored under θFC (Silva et al., 
2019). Therefore, the maintenance of vegetal residues on the surface reduces the loss of organic carbon through 
the formation of aggregates and, among other benefits it leads to the preservation of soil water content (Carmo et 
al., 2012). 

Aggregate stability index (ASI) values shown in table 5 were higher than those verified by Almeida et al. (2014), 
in a work done on the same experimental area, where it was evaluated the effect of fertilization on caespitosa 
and decumbens Poaceae over soil aggregation. They found ASI values of 0.790 in 2010 for the Brachiaria 
brizantha treatment. Nine years later the ASI found for the same treatment was 0.889, an increase of 11.0%. 
Brandão and Silva (2012) working with formation and stabilization of aggregates by the Brachiaria root system, 
observed that the use of grasses increased the WMDwa and the ASI of the soil. They concluded that this process 
ocurred due to the release of exudates and the greater density of grasses’ roots. 

The continuous supply of organic matter by grasses or root excretions, whose products are composed of organic 
molecules in several stages of decomposition, act as agents for formation and stabilization of aggregates, 
providing improvements in soil structure (Bonini & Alves, 2011). 

The aggregation arising from the union of particles (clay-ion-organic matter, sand and silt) in environments 
under conservationist management reduces the impact of rain drops on the clay dispersion (Sales et al., 2010). It 
is then verified the great importance in managing the soil, permanently keeping the vegetation cover on the 
surface. 

On the coefficient of variation (CV) of the statistical analysis, it is noted that the majority of the treatments 
presented low CV values, which should be equal to or less than 10.0%. Taking into account the classification 
proposed by Oliveira et al. (2018), the attributes that presented the lowest CV were PT, Mi, BD and CD (Table 3), 
θFCe θPWP (Table 4), ASI and FD (Table 5), all with values ranging from 4 to 9.6%, with the lowest CV being 
2.2% for the FD attribute. These values indicate that they are attributes that can be used as indicators of soil 
quality, due to the high reliability presented (Cavallini et al., 2010). 

In relation to Pearson’s correlation, the higher the content of clay dispersed in water, the lower the flocculation 
degree of the soil. As the CDW values were low for the conditions to which the soil was evaluated, it favored an 
increase in the FD of the soil. 

The strong positive correlation found between θFC and θPWP it indicates that both attributes have a close 
relationship with the soil matrix, directly influencing the water available to the plants. The SAC showed 
moderate correlation with Macroporosity, therefore, the increase of macroporosity contributes with the increase 
of the aeration capacity of the soil. As the pore classes of the soil are interconnected, the modification of one can 
positively or negatively affect the variation of the other. Specially the structural pores, because they are more 
sensitive to soil management practices (Klein et al., 2008). 
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The correlation verified between θPWP, CD and BD, means that the higher the compaction degree of the soil, the 
greater the water potential in the θPWP, due to the reduction of larger pore spaces such as Ma. Rodrigues et al. 
(2015) verified a negative correlation between θPWP and BD, with an average value of r = -1.0 for a medium 
texture Red Oxisol. SAC showed strong negative correlation with θFC, this shows that the larger the volume of 
water retained as θFC, the smaller are the spaces occupied by air. 

There was a moderate negative correlation between the physical attributes of Ma, BD and CD, therefore, these 
attributes are very sensitive to changes in soil management. Because, the larger the BD, the smaller the volume 
of Ma in the soil. Sampietro et al. (2015) verified the reduction of Ma of the soil with the increase of BD. This 
increase in BD can lead to changes in the physical and hydraulic attributes of the soil, especially the retention 
and availability of water to the plants. Montanari et al. (2013) verified that the increase in BD promoted a 
decrease in the production of bean pods cultivated on Oxisol in the state of Mato Grosso do Sul. In their 
interpretation this fact is due to the increase in the compaction degree and reduction of soil porosity. Because 
unlike grasses, legumes have a less aggressive root system, reducing to a certain extent the volume of soil 
explored and performing lower absorption of water and nutrients (Melo et al., 2016). 

The correlation verified between BD, CD and SAC, show it SAC is an attribute directly related to the increase of 
density and, that it can be used as an indicator of soil quality, for indirectly predicting the compaction degree of 
the evaluated soil layer. 

5. Conclusion 
After the 13 years period, it was concluded that Brachiaria brizantha, promoted improvements to the field 
capacity in the Oxisol. The other attributes were not significantly modified after the same time lapse. Principal 
component analysis showed that the correlation values were more significant for the Brachiaria brizantha 
component. Pearson’s correlation was more significant between field capacity and soil aeration capacity.  
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