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Abstract 
Pummelo (Citrus maxima) is considered as one of the true citrus species. Together with mandarin (C. reticulata), 
it gave rise to the hybrid sweet orange (C. sinensis) and other important citrus crops. Although these species have 
2n = 18, each has a unique heterochromatin distribution. The aims of this study were to identify chromosome 
homoeologies between pummelo and other true citrus species, to investigate the karyotypic changes involved in 
the chromosomal evolution between true citrus and to shed light into the origin of sweet orange hybrid karyotype. 
Mitotic metaphase chromosomes of pummelo and sweet orange were double stained with the fluorochromes 
CMA/DAPI (Chromomycin A3/4’-6-diamidino-2-phenylindole), and identified by FISH (Fluorescence in Situ 
Hybridization) with chromosome-specific BAC (Bacterial Artificial Chromosome) markers. The results were 
compared to previously established cytogenetic maps of mandarin, C. medica and Poncirus trifoliata. Only 
chromosomes 1, 4 and 8 were maintained unaltered among species, with chromosomes 2 and 3 being among the 
least conserved in heterochromatin distribution. BACs were conserved in position among homoeologs and the 
markers mapped to chromosomes 2 and 3 indicated that sweet orange karyotype largely conserved one 
chromosome from pummelo and one from mandarin. Despite conserved synteny, expansion and contraction of 
heterochromatic blocks accounted for the differences between karyotypes, even between the hybrid sweet orange 
and pummelo. 

Keywords: BAC, comparative mapping, FISH, heterochromatin, karyotype evolution, synteny 

1. Introduction 
Citrus maxima (Burm.) Merrill (Aurantioideae, Rutaceae), formerly classified as C. grandis (L.) Osbeck, and 
more commonly known as pummelo, is mostly cultivated in Southeast Asia for consumption as fresh fruit 
(Swingle & Reece, 1967). Morphological, molecular and more recently genomic data confirmed C. maxima, as 
well as C. medica L. and C. reticulata Blanco, as the main ancestral citrus species, also known as true, pure, wild 
or basic species. By crossing between them and other species of this genus, hybrids of economic importance 
were produced, such as C. sinensis (L.) Osbeck (sweet orange), C. aurantium (L.) (sour orange) and C. limon (L.) 
Burm. f. (lemon) (Scora, 1975; Barrett & Rhodes, 1976; Nicolosi et al., 2000; Moore, 2001; Velasco & 
Licciardello, 2014; Wu et al., 2014; Wu et al., 2018). 

Pummelo, similarly to the other Citrus species and related genera, shows a very stable chromosome number (2n 
= 2x = 18), with small chromosomes (2 to 4 µm), meta- to submetacentric. Nevertheless, fluorochrome staining 
using chromomycin A3 (CMA) and 4’-6-diamidino-2-phenylindole (DAPI) revealed different banding patterns in 
Citrus, facilitating the characterization of karyotypes (Guerra, 2009). According to the distribution pattern of the 
CMA+/DAPI- heterochromatic bands, various chromosomal types have been distinguished in the genus: A (two 
terminal and one proximal band), B (one terminal and one proximal band), C (two terminal bands), D (one 
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terminal band), E (one interstitial band), F (no band) and G (two bands localized in the same chromosomal arm, 
one subterminal and another terminal). The FL type is the largest among the F type chromosomes (Guerra, 1993; 
Carvalho et al., 2005). All karyotypes of the Citrus accessions studied revealed the presence of D and F type 
chromosomes, while types A, B, C, E and G are usually rare and are utilized as chromosome markers to 
differentiate among the accessions of this genus (Cornélio et al., 2003; Carvalho et al., 2005; Moraes et al., 
2007a, 2007b; Guerra, 2009), and others related to it (Brasileiro-Vidal et al., 2007). Pure species show 
homomorphic karyotypes (both homoeologs with similar morphology and banding pattern), while hybrid 
accessions show heteromorphic karyotypes (Guerra, 2009). 

‘Pink’ and ‘Israel’ pummelo cultivars revealed a homomorphic karyotype formula with 4A + 2C + 4D + 6F + 2FL 

(Moraes et al., 2007b; Barros e Silva et al., 2010), supporting pummelo as a pure Citrus species. Previous reports 
had proposed slightly different karyotype formulae for certain C. maxima accessions, with heteromorphism in at 
least one of their chromosome pairs (Guerra, 1993; Befu et al., 2000; Yang et al., 2002; Yamamoto et al., 2007). 
These differences may suggest a hybrid origin for some analysed materials, but they may be, at least in part, due 
to technical limitations, since some A chromosomes have faint terminal bands (therefore not detected in all cells) 
due to the low amount of CsSat, the satellite DNA sequence present in these CMA+ bands (Guerra, 2009; Barros 
e Silva et al., 2010). A combined analysis of the CMA+/DAPI- heterochromatic banding pattern, as well as the 
distribution of rDNA (ribosomal DNA) sites using fluorescence in situ hybridization (FISH), enabled the 
identification of the type A chromosomes and a pair of F chromosomes as carriers of the 35S (also known as 45S) 
and 5S rDNA sites, respectively (A/35S and F/5S) in pummelo (Moraes et al., 2007b). The F/5S subtype 
chromosome is unique to C. maxima and its hybrids and was observed in ‘Orlando’ tangelo (C. paradisi Macfad. 
× C. tangerina hort. ex Tanaka), pummelo and sweet orange (Pedrosa et al., 2000; Moraes et al., 2007a, 2007b). 

Among the species included in this genus, C. sinensis (sweet orange) is the most widely cultivated. Its 
cytogenetic analysis revealed that, although this species has a heteromorphic karyotype (2B + 2C + 7D + 5F + 
2FL) due to its hybrid origin, all analysed cultivars have the same karyotype, probably because of its asexual 
propagation (Matsuyama et al., 1996; Miranda et al., 1997; Befu et al., 2000; Pedrosa et al., 2000). Indeed ten 
cultivars of sweet orange showed they were all derived from the same genome by somatic mutations (Wu et al., 
2018). Due to its heteromorphic karyotype, chromosome pairs could not be recognized and its 18 chromosomes 
were separated in four groups according to their CMA+/DAPI-bands. FISH with rDNA probes revealed two 
B/35S,one D/5S-35S and one F/5S (Pedrosa et al., 2000). Correlation between chromosomes and genome 
scaffolds is still not available (Xu et al., 2013). 

Although different studies confirm C. maxima and C. reticulata as C. sinensis parents (Scora, 1975; Barrett & 
Rhodes, 1976; Green et al., 1986; Yamamoto et al., 1993; Nicolosi et al., 2000; Moore, 2001; Barkley et al., 
2006; Uzun et al., 2009; Li et al., 2010; Froelicher et al., 2011), its exact origin remains controversial (Xu et al., 
2013; Wu et al., 2014), because its karyotype is not as expected from a simple hybridization scheme (Pedrosa et 
al., 2000; Guerra, 2009) and its genome constitution reveals a complex history of admixture (Wu et al., 2018). 
However, as its chromosomes could not be individually distinguished, the degree to which the parental 
chromosome types are present in this hybrid could not be confirmed. Nevertheless, the combination of 
CMA+/DAPI- banding, location of the rDNA sites and BAC-FISH in Poncirus trifoliata (L.) Raf. (4B + 8D + 4F 
+ 2FL), a close relative of Citrus, enabled the identification of the nine chromosome pairs of the species (Moraes 
et al., 2008; Da Costa Silva et al., 2011). Using these markers, comparative cytogenetic maps of C. medica 
‘Etrog’ (Mendes et al., 2011) and C. reticulata ‘Cravo’ (Da Costa Silva et al., 2015) were constructed. 
Considering the available markers, the chromosomes pairs 2 and 3 showed the most polymorphism among the 
species studied. 

The major aim of this study was to build a comparative cytogenetic map of pummelo, finishing the mapping of 
the three main ancestral citrus species: citron (Mendes et al., 2011), mandarin (Da Costa Silva et al., 2015) and 
pummelo (present work). Besides, we analyzed the chromosomes 2 and 3 in sweet orange to examine the 
putative karyotypic changes involved in the origin of this hybrid species. 

2. Materials and Methods 
2.1 Plant Material and Chromosome Preparations 

Citrus maxima ‘Siamese Pink’ (further referred to as ‘Pink’) and C. sinensis ‘Valencia’ seeds were obtained from 
the Citrus Active Germplasm Bank of Embrapa Cassava & Fruits, Cruz das Almas, Bahia, Brazil. ‘Pink’ is the 
male parent of ‘Chandler’, which has low-acid pummelo, ‘Siamese sweet’, as female parent (both recently 
sequenced, Wu et al., 2014). ‘Pink’ was selected because it is the male parent of ‘Chandler’, already sequenced, 
and it has a well-characterized, homomorphic karyotype, excluding it as a possible hybrid (Moraes et al., 2007b). 
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Its seeds were introduced in Brazil from the UCR Citrus Variety Collection- University of California, Riverside. 
Three grafted individuals are being maintained near to ‘Israel’ and ‘Chandler’ pummelos. Because pummelo is 
self-incompatible and its seeds are monoembryonic, it is expected that seedlings are derived from crosses 
between different individuals. Therefore, we selected for further analysis only seedlings that showed after 
CMA/DAPI staining (see below) the same homomorphic karyotype already described for the mother plant by 
Moraes et al. (2007b). ‘Valencia’ is one of the sweet orange leading varieties worldwide and it has recently been 
sequenced as a dihaploid line (Xu et al., 2013). Although previous studies suggested it has a reciprocal 
translocation (Lan et al., 2016), no evidence for such translocation was obtained from cytogenetic (Pedrosa et al., 
2000) or genomic analyses (Wu et al., 2014, 2018). 

For cytogenetic analyses, root tips from the germinated seeds were pre-treated with 8-hydroxyquinoline (0.002 
M) for 5 h at 18 °C. They were fixed in a ratio of 3:1 (v/v) ethanol/acetic acid for 18-24 h at room temperature 
and stored at −20 °C. The cytological preparations were performed according to Da Costa Silva et al. (2011). 

2.2 CMA/DAPI Staining 

After aging for three days, the slides were stained with CMA and DAPI according to Moraes et al. (2007a), with 
0.1 mg/ml CMA. The slides were mounted in McIlvaine’s buffer (pH 7.0) and glycerol (1:1, v/v) and the best 
metaphases were photographed after three days, using an epifluorescence Leica DMLB microscope, equipped 
with a Cohu CCD video camera, employing the QFISH Leica software. Slides from seedlings showing the 
maternal karyotype formula were destained before storing at −20 °C for later use for in situ hybridization. 

2.3 Probes 

Nine BACs (01B09, 02C12, 20C13, 14A12, 21L13, 24C13, 28A05, 28A07 and 59C23), previously established 
as chromosomal markers (Moraes et al., 2008; Da Costa Silva et al., 2011) were chosen from the P. trifoliata 
‘Pomeroy’ genomic library (Yang et al., 2001) and used for BAC-FISH in C. maxima. The 5S rDNA sites were 
located using the D2 plasmid clone from Lotus japonicus (Pedrosa et al., 2002). Markers of chromosomes 2 
(BAC 21L13) and 3 (28A07) were used to identify these chromosomes in C. sinensis. Isolation of the DNA of 
BACs and plasmid was done employing the Plasmid Mini Kit (Qiagen) according to the manufacturer’s protocol. 
Labelling of all the probes was accomplished using the Nick Translation Mix (Roche Diagnostics) with 
Cy3-dUTP (GE). 

2.4 Fluorescence in Situ Hybridization (FISH) 

The FISH procedure was performed based on the protocol of Da Costa Silva et al. (2011), with 72% final 
stringency. Chromosomes were counterstaining with 2 µg/ml DAPI in Vectashield medium (Vector). 
Rehybridization was performed to detect different DNA sequences in the same cell, according to 
Heslop-Harrison et al. (1992). The images were superimposed and adjusted for brightness and contrast using 
Adobe Photoshop CS3 version 10.0. 

2.5 Measurements of Chromosomes 

The mean relative chromosome size, the size of the CMA+ band and arm ratios were calculated for each 
chromosome pair of C. maxima based on measuring five mitotic metaphases, according to Da Costa Silva et al. 
(2011). The absolute chromosome sizes were estimated in megabase pairs (Mbp) based on the genome size 
(0.779 pg/2C) estimated for ‘Pink’ by Ollitrault et al. (1994). Chromosome morphology classification followed 
Guerra (1986) and chromosome types, Carvalho et al. (2005). 

The software Image Tool 3.0 was used to locate the relative position of single copy BACs in C. maxima 
according to Fonsêca et al. (2010) and Da Costa Silva et al. (2011). Measurements were performed in 15 
chromatids per BAC clone. Chromosomes were numbered according to the nomenclature proposed by Da Costa 
Silva et al. (2011). Relative position of BACs in relation to chromosome types in C. sinensis was confirmed in at 
least five metaphases. 

3. Results 
3.1 Citrus maxima ‘Pink’ 

The genome size of C. maxima ‘Pink’ is approximately 380.9 Mbp (1C = 0.39 pg, as established by Ollitrault et 
al., 1994). It is distributed on nine chromosomes (2n = 18), which are either meta- or submetacentric, with sizes 
ranging from 1.69 to 2.52 micrometers (Figure 1 and Figure A1). According to the number and distribution of 
CMA+/DAPI- heterochromatic bands, the karyotype formula was 4A + 2C + 4D + 6F + 2FL. As previously 
shown (Guerra, 2009), even in individuals showing this karyotype formula in most cells, in some metaphases the 
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Pummelo also has a chromosome pair of the F/5S subtype. This subtype was detected in the chromosomal 
accessions derived from C. maxima, like the hybrids ‘Orlando’ tangelo, ‘Murcott’ tangor, grapefruit (C. paradisi) 
and sweet orange. These accessions are all derived from C. maxima crosses and have a single F/5S chromosome 
(Pedrosa et al., 2000; Moraes et al., 2007a, 2007b). One pummelo seedling analysed in the present study showed 
a 5S rDNA site in one type D chromosome, what was unexpected. This could suggest a hybrid origin for this 
individual seedling (Moore, 2001); however, no known accession would provide two type A and one D/5S 
chromosome in its gamete (Guerra, 2009). Therefore, it is more likely that a rearrangement between one of its F 
and a chromosome D took place in this individual, changing the heterochromatin content of two chromosomes 
without changing its karyotype formula. A translocation event involving a 35S rDNA site has been reported in 
the cultivars ‘USDA’ and ‘Pomeroy’ of trifoliate orange (Barros e Silva et al., 2010).  

Phylogenetic studies including true and hybrid species and using different molecular markers indicated a greater 
proximity between C. maxima and C. reticulata than C. medica, and P. trifoliata as the most distant species 
(Nicolosi et al., 2000; Barkley et al., 2006; Pang et al., 2007; Uzun et al., 2009). However, the phylogenetic 
analysis of 27 nuclear genes, including the possible true species but excluding the hybrids, showed that C. 
maxima is more closely related to C. medica, while C. reticulata is closer to P. trifoliata (Garcia-Lor et al., 2013). 
The close proximity between Poncirus and Citrus was also evidenced in phylogenetic studies using chloroplast 
DNA sequences (Bayer et al., 2009; Penjor et al., 2010, 2013; Carbonell-Caballero et al., 2015). Recent 
whole-genome phylogenetic reconstructions confirmed the partial incongruence between nuclear versus plastid 
genome-derived phylogenies, but also confirmed the closer proximity of C. maxima and C. medica, as well as P. 
trifoliata as a distinct, early divergent clade (Wang et al., 2017; Wu et al., 2018). On comparing the cytogenetic 
maps of C. reticulata, C. medica and P. trifoliata, several changes in the C. medica lineage were suggested, with 
a relative conservation of the C. reticulata and P. trifoliata karyotypes (Mendes et al., 2011; Da Costa Silva et al., 
2011; Da Costa Silva et al., 2015). The C. maxima map in fact highlights karyotype similarities with C. medica, 
especially on chromosome 2, 3 and 5, and confirms the greatest karyotype similarity reported between C. 
reticulata and P. trifoliata, representing ancestral karyotype features (Figure 4). Therefore, the chromosome data 
presented here support the phylogenetic relationships proposed by Wu et al. (2018). 
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complex origin, because two pummelo and two mandarin alleles were observed in different chromosome 
segments, ruling it out as a F1 or BC1 hybrid (Garcia-Lor et al., 2013; Wu et al., 2014). After multiple 
introgressions, a single hybrid was probably propagated asexually and experienced genetic mutations, giving rise 
to the various sweet orange cultivars (Barrett & Rhodes, 1976; Guerra, 2009; Wu et al., 2018). Based on the 
identification of homoeologous chromosome pairs from C. reticulata and C. maxima (Da Costa Silva et al., 2015; 
and present paper), it is possible to predict the parental contributions to the sweet orange karyotype as follows: (i) 
C. reticulata—1C [Chromosome 3] + 5D [2, 4, 5, 6 and 7] + 2F [8 and 9] + 1FL [1]; and (ii) C. maxima—2A [3 
and 7] + 1C [6] + 2D [2 and 4] + 3F [5, 8 and 9] + 1FL [1] (Figure 3). But because it has a complex admixture 
history, sweet orange could have, for each chromosome pair, a mandarin/mandarin, mandarin/pummelo or 
pummelo/pummelo combination, as well as recombinant types. Our chromosomal data is, however, compatible 
with a sweet orange karyotype formed by one chromosome set from pummelo and one from mandarin, which 
have experienced previous segmental introgressions. C. reticulata ‘Cravo’ karyotype formula is compatible with 
the putative ancestral mandarin karyotype that gave rise to sweet orange (Da Costa Silva et al., 2015; present 
data). Sweet orange chromosome pair 2 (both D type) is formed by a C. reticulata chromosome, whose BAC 
was mapped terminally in the short arm, and the C. maxima homoeolog, whose BAC was mapped in the terminal 
region of the long arm. The difference between both homeologs is the presence of a heterochromatic block 
opposite or adjacent, respectively, to the BAC clone, changing chromosome morphology. Chromosome pair 3 
was formed by one of the C chromosomes (originating from C. reticulata) and one of the Bs (probably derived 
from the A type C. maxima chromosome 3). Although scattered discrepancies between the two genome 
assemblies (‘Valencia’ and ‘Clementina’) has been observed, no large scale chromosomal reciprocal 
translocation was detected (Wu et al., 2014). Indeed, the karyotype of the sequenced ‘Valencia’ dihaploid (Xu et 
al., 2013; Lan et al., 2016) can be inferred as: chr. 1-type F, chr. 2-D, chr. 3-B, chr. 4-D, chr. 5-D, chr. 6-C, chr. 
7-B, chr. 8-F and chr. 9-F. 

As a pummelo hybrid, it was expected that two type A chromosomes (one copy of chromosome 3 and one copy 
of 7) had been passed down to sweet orange (Guerra, 2009). However, the presence of two type B chromosomes, 
not present in either parent, is observed in all sweet orange accessions (Matsuyama et al., 1996; Miranda et al., 
1997; Befu et al., 2000; Pedrosa et al., 2000; Barros e Silva et al., 2010; and in this study). Some C. maxima A 
chromosomes (chromosome 7) are observed as Bs in different cells because of the small size of the CMA+ 

terminal band in the short arm (e.g., Figures 1a or 1e). In light of the high variability in the CMA+ bands in 
Citrus, it seems possible that A chromosomes have experienced loss or gain of repetitive DNA sequences that 
compose these terminal bands in the ancestral or present-day pummelo accessions, respectively, or loss during 
sweet orange hybrid formation. Comparison of the cytogenetic maps of C. maxima, C. reticulata, C. medica and 
P. trifoliata showed that chromosomes 3 and 7 are the most variable among species in terms of heterochromatin 
distribution (Mendes et al., 2011; Da Costa Silva et al., 2011; Da Costa Silva et al., 2015; present work). The 
other possibility, that the B chromosomes may have been inherited from another species, not C. maxima, 
involved in this cross, is, however, very unlikely (Guerra, 2009; Wu et al., 2014, 2018). 

5. Conclusions 
With the constructed cytogenetic map of pummelo, the maps of the three main pure citrus species are now 
available. The established chromosome homeologies confirmed that the differences among pure species are 
related to variation in heterochromatin distribution in some chromosome pairs, mainly in chromosomes 2 and 3. 
These marker chromosomes can be used to investigate chromosome composition and evolution of citrus hybrids, 
such as demonstrated for the main hybrid sweet orange, providing important information for the taxonomy, 
evolution and genetic improvement of this group. 
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