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Abstract 
Soybean looper (Chrysodeixis includens) is an important defoliating pest, which has caused significant losses in 
Brazilian soybean crops. The present study evaluated the foliar consumption, feeding period and mortality of 
small (< 1.0 cm), medium (1.0 to 2.0 cm) and large (> 2.0 cm) C. includens larvae after infection by the virus 
Chrysodeixis includens nucleopolyhedrovirus (ChinNPV), isolate Chin-IA (I-A). The bioassay was performed in 
a completely randomized design organized in a 3 × 2 factorial combination (three size of larvae fed on soybean 
leaf discs, either treated or not with 4.0 × 1011 PIB ha-1 suspension of virus) with ten replicates per treatment. The 
average consumption of all three sizes C. includens larvae were significantly reduced after ingestion of soybean 
discs treated with virus, compared to the larvae from control treatment. The total consumption reduction was 
95.6%, 69.4% and 45.9% for the small, medium and large larvae, respectively. Feeding period was 
significatively reduced for small and medium larvae infected by the virus, but not for large larvae. The corrected 
mortality level of soybean loopers ranged from 70 to 90% and was not significant different between the three 
larval sizes. The behavior and physiological alterations of larvae started on the third day, and the mortality 
occurred between fifth and sixth day after ingestion of infective particles of virus, therefore reducing their 
damage abilities. Based on the results obtained, ChinNPV can be considered as an important tool within 
integrate management to control C. includens, mainly when small larvae were predominant in soybean crops. 
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1. Introduction 
Brazil is the largest soybean exporter in the world [Glycine max (L). Merr.], and the second largest grain 
producer with an estimated production of 115 million ton within an area of 35 million ha in 2018/2019 season 
(Conab, 2019; Lima et al., 2019). The presence of arthropod pests attacking soybean plants during its 
phenological phases have been a constant concern to the farmers. Chrysodeixis includens (Walker, 1858) 
(Lepidoptera: Noctuidae: Plusiinae) is a polyphagous insect, which is found from Northern USA to Southern 
South America (Wagner et al., 2011). It is an economically important pest, which causes damage in soybean 
crops by feeding on its leaves, especially between the veins, displaying a lacy appearance, which is also the 
pest’s fingerprint (Bueno et al., 2011; Ávila & Grigolli, 2014). In the last years, the soybean looper has become a 
serious problem in Brazil, especially in Cerrado’s region, where population outbreaks were reported causing 
significant losses in the productivity of soybean (Baldin et al., 2014; Bortolotto et al., 2015; Specht et al., 2015). 
This might be associated with incorrect and indiscriminate use of chemical products that decreased the incidence 
of natural enemies (pathogens, predators and parasitoids), causing a biological imbalance in soybean 
agro-ecosystems. Additionally, control of this species has been difficult because of its resistance to some 
synthetic insecticides and less exposure of larvae to the insecticides sprays due to their location on the low and 
middle part of the plants canopy (Oliveira et al., 2010). 



jas.ccsenet.org Journal of Agricultural Science Vol. 11, No. 14; 2019 

48 

The development of control methods alternative to chemical insecticides are extremely important for a 
sustainable production (Togni et al., 2019). Two genera of entomopathogenic virus, Nucleopolyhedrovirus 
(NPVs) and Granulovirus (GVs) belonging to the Baculoviridae family, represent an alternative and promising 
method within integrate management programs (IPM). These virus groups have been widely studied and 
investigated as biological products in Brazil and worldwide, due to safety for human and non-target organisms, 
specificity and high virulence provided to the several pest species, including noctuids (Moscardi et al., 2011; 
Haase, Sciocco-Cap, & Romanowski, 2015). NPVs acts through ingestion, causing infection in the larval stage 
and several behavioral and morphological changes, such as reduction of feeding time, developmental retardation, 
integument discoloration and migration towards the top of plants (negative geotropism) (Eberle et al., 2012). 
Chrysodeixis includens nucleopolyhedrovirus (ChinNPV: Baculoviridae: Alphabaculovirus) was initially 
isolated in the 70’s and recently characterized morphologically and genetically by Brazilian groups of scientists 
(Alexandre et al., 2010; Craveiro et al., 2013, 2015). 

During the entomopathogenic virus’ infection, the susceptibility, consumption and mortality of insect hosts may 
change accordingly to their larval stages (Harrison & Hoover, 2012). These parameters are important during the 
monitoring and to establish the control level for the pest’s population as well. Studies with Anticarsia 
gemmatalis (Hübner, 1818) (Lepidoptera: Eribidae) and the virus Anticarsia gemmatalis multiple 
nucleopolyhedrovirus (AgMNPV: Baculoviridae: Alphabaculovirus), have demonstrated that larval susceptibility 
of this insect decreased after AgMNPV infection (Moscardi & Zonta-de-Carvalho, 1993). For this reason, they 
recommend applying the virus until 20 velvetbean caterpillars with less than 1.5 cm exists per linear meter in the 
soybean crops, and other parameters such as the stage of crop development and climatic conditions were also 
considered. Early larval instars of Trichoplusia ni (Hübner, 1802) (Lepidoptera: Noctuidae) and Spodoptera 
frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) were also more susceptible to their respectives NPVs 
(Harper, 1973; Valicente & Tuelher, 2009). However, there are limited studies in Brazil, which uses this 
approach against C. includens. 

We hypothesize that the virus Chrysodeixis includens nucleopolyhedrovirus (ChinNPV) affects foliar 
consumption, feeding period and mortality rate of immature stages of C. includens. We performed this study 
with an aim to evaluate these parameters in three C. includens larval sizes, after ingestion of soybean leaf discs 
containing polyhedral bodies of one isolate of ChinNPV, named Chin-IA (I-A). This information will improve 
the knowledge about the virus infection in different immature stages of soybean looper, which will help us to 
employ this method properly and efficiently in field conditions, in future. 

2. Material and Methods 
The bioassays were performed at Embrapa Western Agriculture in the Entomology’s Laboratory located in 
Dourados city, Mato Grosso do Sul State, Brazil (22º16′30″ S, 54º49′00″ W, 408 m). 

2.1 Chrysodeixis includens Colony 

C. includens larvae were collected in soybean fields near to Dourados. Larvae were taken to the laboratory where 
they were reared at 25±2 ºC, 70±10% relative humidity, and photoperiod 14:10 (light:dark) using artificial diet 
(adapted from Greene et al., 1976) until pupation. These pupae were used to start the colony. Adults were kept in 
wooden cages (70 × 60 × 60 cm) with newsprint paper sheets used as substrate for oviposition. 10% honey 
solution (Hoffmann-Campo et al., 1985) was provided in hydrophilic cotton pad inside of glass containers (5 mL) 
for adult feeding. The moths were allowed to oviposit for 2-3 days, and after this period, the paper sheets 
containing the eggs were placed in plastic containers (capacity of 4.5 liters) with the bottom containing pieces of 
artificial diet for freshly hatched larvae (about 3 days). Then, 1st instar larvae were transferred to transparent and 
sterile plastic cups (100 mL) for 5 to 7 days. After this period, larvae were individualized in sterile and 
transparent plastic cups (50 mL) with 5g of artificial diet where they remained until the pupation and emergence 
of adults. Adults were transferred to wooden cages and the C. includens larvae obtained were used in the 
experiments. 

2.2 Bioassay 

The isolate Chin-IA (I-A) from virus Chrysodeixis includens nucleopolyhedrovirus (ChinNPV), provided by 
Embrapa Soybean (Londrina/PR, Brazil), was considered one of the most pathogenic to C. includens according 
to Alexandre et al. (2010) and for this reason, it was used in the present study. A suspension containing 4.0 × 1011 
PIB ha-1 of this virus was prepared considering a spray volume of 150 L ha-1 similar to that is commonly used in 
field conditions.  
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Soybean plants from BRS 255 RR cultivar, adapted to edaphoclimatic conditions of region, were maintained in 
plastic vases (8 L) containing a mixture of land, sand and cattle manure (1:1:1) under greenhouse conditions 
until the flowering stage (R2). In the laboratory, fresh leaves from the middle third of the plants, portion where 
soybean loopers usually remains in field conditions (Czepak & Albernaz, 2014), were surface sterilized in 0.1% 
sodium hypochlorite solution for two minutes and washed three times in sterile distilled water. Soybean leaf 
discs with an area of 12.56 cm² were prepared using a metal hole-puncher (approximately 4 cm of diameter) and 
treated with the virus suspension. C. includes larvae with small (< 1.0 cm), medium (1.0 to 2.0 cm) and large (> 
2.0 cm) sizes were allowed to feed on two ChinNPV treated leaf discs for 48 hours. Larvae fed on leaf discs 
treated with only sterile distilled water served as control. Fresh untreated leaves (surface sterilized in 0.1% 
sodium hypochlorite for 2 min and washed three times in sterile distilled water) were fed to all the larvae from 
day 3 of the experiment. Larvae were individualized in Petri dishes (6.0 cm diameter × 1.3 cm height) containing 
filter paper moistened with distilled water. 

Size instead of instar was considered in this study because are terms commonly used during evaluations of 
population survey in the soybean fields.  

Bioassay was conducted at 25±2 ºC, 70±10% relative humidity, and photoperiod 14:10 (light:dark) and larval 
mortality was recorded every 24 hours until the larvae either died or pupated. 

A completely randomized design was considered in a factorial scheme 3 × 2 (three larval sizes fed on soybean 
leaf discs either treated or not in the virus suspension) and ten replicates (one larvae/plate) per treatment. Foliar 
area consumed, feeding period, and mortality (larvae that were unable to move and feed were proclaimed dead) 
for the three C. includens larvae sizes studied. Dead larvae were stored in eppendorf vials at -20 ºC to confirm 
the presence of polyhedral bodies. The soybean foliage area consumed (cm2) was determined in a leaf area meter 
(Model LI-3100; Li-Cor, Lincoln, NE) after larval feeding (Bueno et al., 2011). 

2.3 Data Analysis 

The mortality data were corrected according to Schneider-Orelli’s formula (Püntener, 1981), and normalized 
with the control treatment. Foliar area consumption, feeding period, and mortality data were tested for analysis 
of variance and the means within each factor were compared by the Tukey’s test at 5% of probability. Tests were 
conducted using ASSISTAT software (Silva & Azevedo, 2002). 

3. Results and Discussion 
A significant interaction for the average foliar consumption, between the factors size of C. includens larvae and 
treatments (larvae either infected or not by the virus ChinNPV) were found, F (3, 2) = 7.75, p < 0.01 (Table 1). 
Furthermore, there was also significative effect of each factor analysed individually (p < 0.01). In this way, the 
average foliar consumption of all three C. includens larvae sizes were significative reduced after ingestion of 
soybean leaf discs containing polyhedral bodies of Chin-IA (I-A), when compared with the consumption of 
larvae in the control treatments (Table 2).  

 

Table 1. Summary for analysis of variance for average foliar consumption of small, medium and large 
Chrysodeixis includens larvae, after ingestion of soybean leaf discs treated with sterilized distilled water (control) 
and with suspension of 4.0 × 1011 PIB ha-1 of virus isolate Chin-IA (I-A) 

Source DF Mean square F-value 
Size of C. includens larvae 2 147.15130 92.2394** 

Treatments (larvae either infected or not by the virus) 1 426.45443 267.3160** 

Interaction Larval size × Treatments 2 12.36584 7.7513** 

Treatments 5 149.09774 93.4595** 

Experimental error 54 1.59532  

Total 59   

Note. **Significant F-value at the 0.01 level. Coefficient of variation = 17.6%.  
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109 PIB per insect, respectively, after infection by the Spodoptera frugiperda multiple nucleopolyhedrovirus 
(Cruz, 2000). These results indicate the potential increment of the virus in field.  

In addition, when selective control tactic, such as the virus ChinNPV is used, the action of other biological 
control agents (natural enemies) like parasitoids also become possible. As an example, parasitoids Copidosoma 
floridanum (Hymenoptera: Encyrtidae), Microcharops anticarsiae (Hymenoptera: Ichneumonidae), 
Hypomicrogaster sp. (Hymenoptera: Braconidae) and Lixophaga sp. (Diptera: Tachinidae) in larval stages, and 
Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) in the eggs of soybean looper, were found 
providing natural control of soybean looper population during the previous experiments evaluating parasitism on 
this pest (personal observation). Pereira et al. (2018) also reported the occurrence of other factors as rainfall and 
predators such as spiders, ants (Hymenoptera: Formicidae), Orius sp. (Hemiptera: Anthocoridae), Geocoris sp. 
(Hemiptera: Lygaeidae), Franklinothrips sp. (Thysanoptera: Aeolothripidae), and Vespidae (Hymenoptera) 
causing mortality in soybean loopers in the field. 

4. Conclusions 
All three larval sizes of C. includens had significantly reduced foliar consumption after 3rd day of ingestion of 
soybean leaf discs, which were treated with 4.0 × 1011 PIB ha-1 suspension of virus isolate Chin-IA (I-A), and 
this reduction was more expressive in the small larvae; 

The Chin-IA (I-A) reduced the feeding period of small and medium infected larvae of C. includens only, while 
large larvae’s feeding period was not affected by the virus. 

Corrected mortality of C. includens ranged from 70 to 90% without a significant difference between the three 
larval sizes. 
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