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Abstract 
Maize plays an important role in the national and global economy, continuously increasing its total production due 
to advances in technology and access to new land areas. Thus, new sources of germplasm are fundamental to 
generate cultivars more adapted to the diversity of environments and planting times. The objective of this study 
was to evaluate 36 populations of maize in three environments, aiming to identify the existence of 
genotype-by-environment interaction, classify populations based on adaptability and stability using the methods of 
regression and mixed models, indicate the best populations, and compare the two methodologies. The 
environments evaluated were: E1-second crop (safrinha) season of 2016 in an experimental area of latosol, with 
incidence of water stress; E2-crop season 2016/2017 in sandy soil, in family farm area; and E3-crop season 
2016/2017 in an experimental area of latosol, no incidence of water stress. Grain yield was evaluated, adaptability 
and stability analysis was performed. Population 36 achieved high productivity, adaptability and general stability 
in three tested environments. Both methodologies showed similar results regarding adaptability and stability of 
some populations in three environments, but mixed models were more suitable for providing better selective 
accuracy. 
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1. Introduction 
In plant breeding, effects of genotype-by-environment interaction (G×E), adaptability and stability parameters are 
very important because each cultivar has an inherent capacity with response to changes in environments (Scapim 
et al., 2010). Therefore, identification of genotypes with high productive potential and wide adaptability and 
stability is one of the main targets in maize breeding programs (Faria et al., 2017).  

In the maize breeding program, the breeder must plan actions that, in the presence of complex interactions, allow 
the development of specific cultivars for a specific environment. Thus, it is important to know the type of 
interaction and genotypes generated due to changes in the environment. 

However, the existence of G×E interaction is a great disadvantage in the selection of genotypes with high 
production capacity across different environments, since a strong interaction makes selection difficult. This is 
because genotypes that perform well in an environment may not perform so well in other environments or even the 
occurrence of change in the population order due to change in the study environment in the presence of complex 
interaction. Thus, performance of genotypes across breeding stages should be evaluated in different environments 
to reduce the chance of misleading recommendations. Therefore, besides high productivity, the new cultivars 
should have yield stability and adaptability, or suitability for the target regions. Studies of adaptability and stability 
parameters contribute greatly as they provide information on the behavior of each genotype under different 
environmental conditions (Mendes et al., 2012). Different conditions of soil and climate, site of cultivation, crop 
year, technology level (Scapim et al., 2000), and other factors can be considered as distinct environments.  

Several methods have been developed to evaluate adaptability and stability, and it is worth mentioning the 
methodology of mixed models proposed by Resende (2002). The method takes into account errors correlated 
within each environment, provides genetic values already penalized by instability and capitalized by adaptability, 
and allows selection by three attributes at the same time (productivity, stability, and adaptability) (Faria et al., 
2017). Because of the soil variability in the municipality of Jataí, with great predominance of Latosol, Cambisols 
and Argisols, which together exceed 90% of the total area of the municipality (Hermuche, Guimarães, & Castro, 
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3. Results and Discussion 
3.1 Analysis of Variance 

The analysis of variance showed significant effects of the genotype and environment interaction for grain yield 
(Table 2), indicating different responses of the genotypes to the studied environments. Similar results for maize 
grain yield were reported by Cargnelutti Filho, Storck, Riboldi, and Guadagnin, (2009); Faria, Viana, Mundim, 
Silva, and Câmara (2010); Scapim et al. (2010); Mendes et al. (2012); Oliveira, Moreira, and Ferreira, (2013) and 
Faria et al. (2017), confirming the importance of adaptability and stability analysis. The method of Eberhart and 
Russell (1966) classified the environments 1 and 2 as unfavorable (negative environmental index) for grain 
production, the environment 3 as favorable (positive environmental index) (Table 3). 

 

Table 2. Joint analyses of variance of 36 populations of maize (Zea mays) evaluated for grain yield in three 
environments (E1, E2 and E3), Jataí, Goiás, BR 

SV 
Grain yield 

Df SM 

Block/Environment 9 2.03 

Population (G) 35 1.576** 

Environment (E) 2 401.302** 

G×E 70 2.718** 

Error 315 0.265 

Mean 3.706  

CV% 13.898  

Note. ** Significant at 1% probability by the F test. Df: Degrees of freedom; SM: Square Middle;, SV: Source of 
Variation.  

 

Table 3. Environment classification, using the environmental index method of Eberhart and Russell (1966), of the 
36 populations of maize (Zea mays) evaluated for grain yield (kg ha-1) in three environments, in Jataí-GO, in the 
second crop 2015/2016 and in the crop year 2016/2017 

Environment * Mean Index (Ij) Maximum Minimum 

Environment 1 2.714 -0.993 3.083 2.218 

Environment 2 2.771 -0.935 3.860 1.753 

Environment 3 5.633 1.927 7.730 3.970 

Note. * Environment 1: second crop 2015/2016-occurrence of water stress; Environment 2: crop year 
2016/2017-soil with 86.82% sand; Environment 3: crop year 2016/2017-soil of medium texture.  

 

3.2 Method of Eberhart and Russell (Adaptability and Stability) 

The method of Eberhart and Russell (1966) uses the parameters “regression coefficient” (β1i) to evaluate genotype 
adaptability and “regression deviation” (σdi

2 ) to evaluate the stability, which indicates the predictability of the 
genotypes to changes in the environment (Rios et al., 2009). 

The genotypes 16, 24 (Table 4) had regression coefficient greater than unity (β1i) and non-significant regression 
deviation, showing adaptation to favorable environments and predictability of behavior (Scapim et al., 2010). The 
control genotypes 33 and 34 had the same classification, however, the genotype 34 (a commercial variety) showed 
significant regression deviation, indicating low predictability. These genotypes are among the best behavior per se 
for productivity. Genotypes 6, 9, 10, 11 and 31 had regression coefficient lesser than unity (β1i) and non-significant 
regression deviation, demonstrating their adaptation to unfavorable environments and predictability of behavior, 
however, as shown by the productivity mean (Table 4), they are genotypes of inferior behavior per se. The other 
genotypes showed regression coefficient equal to unity (non-significant (β1i)), which characterizes adaptability to 
all environments (Scapim et al., 2010) and non-significant regression deviation, indicating predictability of 
behavior in the environments, except for the commercial hybrid (genotype 31), with low predictability. According 
to Cardoso et al. (2012), these analyses aim to identify genotypes that are adapted, stable, and productive, allowing 
recommendation according to the environment of interest. 
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Table 4. Estimates of adaptability and stability parameters according to the method of Eberhart and Russell (1966) 
and stability and adaptability of genotypic values (MHPRVG) for grain yield in 36 populations of maize (Zea mays 
L.) evaluated in three environments, in Jataí-GO, second crop season 2015/2016 and crop season 2016/2017 

Population order1/ Mean β1  σdi
2   R² (%) Population order2/ MHPRVG MHPRVG·MG 

34 4.703 1.578** 0.719 ** 94.642 34 1.191 4.414 
36 4.270 1.112 -0.042ns 99.649 36 1.132 4.195 
16 4.260 1.244* 0.099ns 98.119 16 1.118 4.144 
33 4.220 1.330** -0.066ns 99.996 33 1.103 4.088 
24 4.127 1.230* -0.005ns 99.273 24 1.088 4.032 
18 4.027 1.033 0.088ns 97.475 18 1.074 3.983 
30 3.997 1.204 0.021ns 98.932 25 1.060 3.931 
25 3.953 1.025 -0.064ns 99.958 30 1.055 3.912 
22 3.927 1.045 -0.009ns 99.063 22 1.051 3.895 
4 3.897 1.035 -0.077ns 99.028 4 1.043 3.867 
26 3.880 1.048 -0.066ns 99.999 26 1.038 3.849 
17 3.840 1.132 -0.055ns 99.835 7 1.030 3.819 
7 3.833 1.025 -0.065ns 99.978 1 1.023 3.791 
1 3.817 1.047 -0.038ns 99.544 17 1.021 3.786 
35 3.797 1.154 -0.063ns 99.958 35 1.010 3.444 
27 3.757 1.043 -0.055ns 99.808 27 1.008 3.738 
15 3.753 1.180 -0.053ns 99.827 2 1.006 3.730 
2 3.733 0.975 -0.006ns 98.868 28 1.004 3.722 
28 3.703 0.902 -0.017ns 98.918 15 0.997 3.694 
8 3.697 1.069 -0.036ns 99.532 8 0.991 3.673 
32 3.613 1.073 0.316 * 94.373 3 0.978 3.624 
3 3.610 0.961 -0.022ns 99.145 13 0.972 3.605 
20 3.553 1.156 -0.061ns 99.924 32 0.964 3.573 
13 3.550 0.821 -0.062ns 99.878 11 0.960 3.558 
12 3.547 1.041 -0.050ns 99.713 14 0.958 3.552 
21 3.540 1.022 -0.051ns 99.736 12 0.956 3.543 
14 3.507 0.852 -0.009ns 98.594 21 0.955 3.539 
11 3.457 0.677** -0.036ns 98.832 20 0.946 3.508 
19 3.370 1.095 -0.066ns 99.992 31 0.943 3.494 
31 3.370 0.567* -0.050ns 99.080 10 0.910 3.373 
23 3.303 0.879 -0.017ns 98.871 19 0.906 3.361 
5 3.270 0.798 -0.053ns 99.635 23 0.906 3.360 
10 3.207 0.395* -0.025ns 95.462 5 0.905 3.355 
6 3.187 0.614** -0.052ns 99.326 9 0.896 3.323 
9 3.183 0.603** -0.065ns 99.921 6 0.896 3.322 
29 2.983 1.034 0.072ns 97.739 29 0.808 2.997 

Note. β0 = regression constant, β1 = regression coefficient, σdi
2  = regression deviation, R2 = coefficient of 

determination. **, *: significantly different from 1, by t test, at 1% and 5% probability, respectively. **, *: 
significantly different from 0, by F test, at 1% and 5% probability, respectively. ns: non significant. 
1/: Order based on the average of the three environments. 
2/: Order based on the method of mixed models. 

 

3.3 Mixed Model Methodology to Test Genotype’s Adaptability and Stability 

The mixed model methodology (Resende, 2016) was used for the simultaneous selection of genotypes based on 
productivity, adaptability, and stability. The harmonic mean of the relative performance of the genotypic value 
(MHPRVG) (Table 4), which infers about the expected productivity, adaptability, and stability of genotypes, was 
estimated (Silva, Carvalho, Vieira, & Benin, 2011; Rosado, Rosado, Alves, Laviola, & Bhering, 2012). This 
estimate (MHPRVG) can be used when considering planting in several locations with different G×E interactions. 
Therefore, we should seek genotypes with the MHPRVG greater than or equal to 1 (Torres, Teodoro, Sagrilo, 
Ceccon, & Correa, 2015; Carvalho, Farias, Moewllo, & Teodoro, 2016). We found that among the five genotypes 
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These correlations result in the presence of the complex part of the G×E interaction and complicate the selection of 
genotypes with larger adaptation, as it is observed by Mendes et al. (2012), Faria et al. (2017), and Oliveira, Atroch, 
Dias, L. J. Guimarães, and P. E. O. Guimarães (2017).  

 

Table 5. Estimates of variance components (individual REML) for comparison of unfavorable environments (E1 
and E2) with favorable environment (E3) 

Variance components (individual REML) 

Unfavorable environment Favorable environment 

Vg 0.022 Vg 0.237 

Vint 0.019 Vint 0.237 

Ve 0.211 Ve 0.373 

Vf 0.252 Vf 0.848 

hg
2 0.087; 0.049 hg

2 0.279; 0.125 

hmg
2  0.379 hmg

2  0.418 

Acgen 0.616 Acgen 0.646 

cint
2  0.074 cint

2  0.280 

rgloc 0.539 rgloc 0.500 

CVgi% 5.386 CVgi% 8.648 

CVe% 16.761 CVe% 10.846 

Overall mean 2,740 Overall mean 5,630 

Note. (Vg): genotypic variance; (Vint): variance of genotype × environment interaction; (Ve): residual variance; 
(Vf): individual phenotypic variance; (hg

2 = h2): broad sense heritability of individual plots, i.e., total genotypic 
effects; (cint

2  = c2): coefficient of determination of the effects of genotype × environment interaction; (hmg
2 ): 

heritability of the genotype mean, assuming complete survival; (Acgen): accuracy of genotype selection, assuming 
complete survival; (rgloc): genotypic correlation between performance in the environments; (CVgi%): genotypic 
coefficient of variation.; (CVe%): coefficient of residual variation.  

 

3.5 Favorable and Unfavorable Environments 

The overall mean grain yield of the 36 populations in the favorable and unfavorable environments were 5,630 and 
2,740 kg ha-1, respectively, showing a 100% increase in the yield of the favorable environment in relation to the 
unfavorable environment. The lower yield in the unfavorable environments can be explained by the long-term 
water deficit during the experiment in environment 1, in the second crop 2016, and the sandy soil in environment 2, 
which is a limiting factor of productivity. Thus, the average yield of unfavorable environments is approximately 
50% lower than the national average yield of maize in the crop season 2015/16, which was 4,928 kg ha-1 (IBGE, 
2016). The yield of environment 3 was approximately 14% higher than the national average yield. These results 
demonstrate the importance of performing experiments in specific environments for selection of superior 
populations for specific environment conditions.  

3.6 Comparison of the Two Methodologies of Adaptability and Stability 

The MHPRVG method was suitable for the identification of maize genotypes with high productivity and wide 
adaptability and yield stability. There was similarity in the selection of some populations by the methodologies 
used in the three environments evaluated. The most productive, stable, and widely adaptable populations 
recommended by the method of Eberhart and Russell for environment 1 are 24, 36, 30, 25, and 7. These 
populations were also indicated as superior by the method of mixed models for the same environment. However, 
these methods disagree as to the selection of two populations: the method of Eberhart and Russell also selected 
populations 10 and 31, and the method of mixed models selected populations 16 and 26.  

For environment 2, the most productive, stable, and widely adaptable populations selected by the method of 
Eberhart and Russell are 16, 36, 18, 22, 4, and 28. These populations were also indicated as superior by the method 
of mixed models for this environment. Again, these methods disagree regarding the selection of one population: 
the method of Eberhart and Russell also selected population 2, and the method of mixed models selected the 
population 25. 

The method of Eberhart and Russell recommended for the environment 3 the populations 16, 24, 36, 30, 35, and 17, 
as the most productive, stable and widely adaptable. The method of mixed models also indicated them as superior 
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for this environment. The methods disagree on the selection of one population: the method of Eberhart and Russell 
selected the population 15, and the method of mixed models selected the population 18. 

Vasconcelos et al. (2015) points out that the use of more than one method to estimate the genetic parameters is a 
strategy that allows greater reliability in the interpretation of the data for later recommendation of cultivars. 

4. Conclusions 
The methods of Eberhart and Russell and Mixed Models showed similar classification of some populations 
regarding adaptability and stability in the three environments, but the method of mixed models is recommended for 
the indication of the best populations for providing better selective accuracy.  

G×E interaction exists for the populations evaluated, with predominance of the complex type. 

Population 36 is promising for breeding programs aimed at cultivars with greater adaptability and stability, since it 
was selected as superior in all environments. 

The populations selected by the method of mixed models to form a composite to obtain new populations for future 
breeding actions for each environment are: environment E1: 36, 24, 30, 25, 16, 7, and 26; environment E2: 16, 36, 
18, 22, 4, 25, and 28; and environment E3: 16, 24, 36, 30, 18, 17, and 35. 
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