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Abstract 
A spatial analysis of the site index used for the classification of Pinus taeda production forests was performed 
using dominant height data from 402 continuous inventory plots. The data were examined with simple 
descriptive statistics and fit with four semivariogram models by the GS + program. The best model was then 
used to predict the site index in unsampled areas by ordinary kriging in ArcView. All models showed that site 
index values exhibited spatial dependence, with the degree of spatial dependence ranging from strong to 
moderate. The spherical model was used for kriging. In this model, the degree of spatial dependence was 29% 
and the range was 5,330 m, with a residual sum of squares (RSS) of 3.00 and coefficient of determination (r²) of 
0.776. Measured and predicted values were compared by cross-validation, which produced a linear regression of 
observed versus predicted value with a slope coefficient of 1.068, slope standard error of 0.070, and intercept 
coefficient of -1.45. The site classification map generated by kriging divided the studied forests into five classes. 
Before kriging, all of the forest stands had one global average value for the site index, but after kriging this was 
changed to there being two or three values of the site index for many stands. Ordinary kriging proved to be an 
optimal method for interpolating the site index of unsampled areas to permit their classification, as is the case for 
young plantations for which inventory samples have not yet been taken. 

Keywords: site classification, geostatistics, kriging 

1. Introduction 
The Brazilian production forests, forest-based industry is known worldwide for the high productivity of its 
planted areas, according to IBÁ (2017), have 7.84 million hectares of planted trees, is responsible for 91% of all 
wood produced for industrial purposes in the country and 6.2% of the Brazilian GDP; also it is one of the 
industries with the greatest potential to help build a green economy. Of the total planted trees, the Pinus 
plantations occupy 1.6 million hectares and concentrate mainly in the south of the country, being led by the state 
of Paraná with 42% of total. 

Pinus production forests are usually managed for multiple uses and can achieve mean annual increment (MAI) 
higher than 40 m³/ha/year in 18-year-old trees for Pinus taeda. These levels of productivity are among the largest 
in the world for the species. 

Scolforo and Machado (1988) stated that the classification of forest lands based on their potential for 
productivity is important for both the manager and the administrator of a forestry company because the index 
that expresses this productivity is a variable required in predictive models of present and future forest growth and 
production. This important method of classification is usually based on the stratification of forest settlements for 
inventory and cutting exploration, and therefore it must be considered in local and regional short- and long-term 
planning. 

In many cases, the mean values of the site indices obtained in forest sites with the same class of soil can be 
differentiated. When soil properties are spatially dependent, geostatistical methodologies allow a useful spatial 
description of site characteristics to be obtained to provide production information (Bognola et al., 2008), which 
can consequently lead to better predictions of the consequent productivities of different forest sites.  
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According to Scolforo (1997), ‘Multifactorial Site Classification’ is the most efficient procedure for the 
classification of forest productivity because it makes it possible to interpret a set of several factors at the same 
time. For example, this approach can allow one to identify whether such factors as precipitation, relative 
humidity, temperature, soil depth, and/or supplies of macro- and micronutrients, among others, best explain the 
quality of the site alone or in combination.  

However, obtaining information on all these variables becomes a costly process that is not realistically attainable 
for many companies in the forestry sector. There are other methods that allow the productive capacity of 
different sites to be assessed, and according to Scolforo and Machado (1988) the most widely used of these is the 
determination of site index values based on the average height of the dominant trees at a site. This is because this 
is a more practical and efficient methodology to estimate the productivity potential of each site that is not 
affected by silvicultural treatments, and which is also based on a measurement that is easily obtained by the 
traditional sampling methods used during forest inventory activities. 

The current forestry situation has demanded that managers move away from traditional approaches to forest 
assessment, and instead adopt the techniques of precision forestry by integrating data within a geographic 
information system (GIS). In this context, a simple and easily accessible alternative approach would include the 
spatial analysis of the site indices obtained based on assessing the dominant heights of the trees in inventory 
plots by traditional sampling methods combined with new approaches using spatial information. 

Thus, by performing the geostatistical analysis of site index values, managers could produce maps of the 
classification of different sites, and from them redefine their management units. 

The traditional statistical methods used to take forest inventories use a central measure (mean) and a dispersion 
(variance) to describe the site index, without considering the possible correlations among neighboring 
observations. Therefore, they do not sufficiently exploit the spatial relationships that may exist among sampling 
units. Conversely, geostatistical methods can better evaluate the spatial dependence of the structure of the 
dendrometric characteristics of the species in a study area with physical environmental variables, which can 
allow results to be obtained that can adequately exploit the spatial relationships existing within the data; in other 
words, geostatistics is a statistical methodology that explores the existing relationships among sampling units.  

The spatial modeling of site index would allow a quantitative description of the variability among sites to be 
obtained, in addition to making non-biased estimates of the minimum variance in site index values in unsampled 
locations possible. This means that, in addition to the identification of site classes by generating maps, we could 
also use this approach to subdivide plots that previously had a general average site index value applied to them, 
as well as determine the site index values of young plantations in which plots have not yet been sampled by 
traditional inventory approaches. 

The use of the site index obtained based on dominant height in the forest environment is strengthened by the 
high representativeness of the site environment it provides and the ease of obtaining the data needed to calculate 
it. It remains unknown whether this variable has spatial dependence, and its spatial relations with the 
environment have also not yet been assessed. 

Therefore, the objective of this study was to assess the variability in this site index through spatial analysis to 
classify the productivity of the production of Pinus taeda forest, in the southern central region of the state of 
Paraná, Brazil, while considering the existing spatial relationships among forest sites. 

2. Materials and Methods 
This study was carried out in production forests of Pinus taeda L. with a total area of 2,111 hectares, located in 
the municipalities of Bituruna and General Carneiro, in the southern central region of the state of Paraná, Brazil. 
These forests’ central coordinates were located at a latitude of 26.1834° S, a longitude of 51.3303° W, and an 
average altitude of 985 m above sea level. 

The dominant climate is subtropical humid mesothermic, or Cfb according to the Köppen classification system, 
and is characterized by cool summers and harsh winters with severe and frequent frosts concentrated in the 
months of March to September. It does not present a characteristic dry season and has average temperatures in 
the warmer months below 22 °C and in the colder months below 18 °C. The rainfall regime is irregular, with a 
decrease in the winter period and higher rainfall intensity in the summer. The average annual rainfall is 1,600 to 
1,770 mm. Regarding relative humidity, mean indices between 80 and 85% predominate in this region. 

The study area was located on the third highest plateau in Paraná, which is one of the most extensive relief units 
in the state, and contains representatives of the rock formations of the Paraná Basin. The predominant relief in 
this region is wavy, and the predominant soils there are cambissols and acrisols. 
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The data from sample plots continuously used for forest inventory sampling for 5 to 10 years or from 13 to 15 
years, depending to the quality of the site, were used. A total of 402 sample plots was used. 

The variable used to characterize the quality of each site was the site index (SI). The determination of the 
dominant height (DOMH) of the trees in each site, which is related to each site’s productive capacity, was 
obtained by the method of Assmann (1961, p. 435), which considers the dominant height as the average height of 
the one hundred trees with the largest diameter-at-breast-height (DBH) values in an area of one hectare. 

As the ages of the measured trees varied among stands, all of the dominant heights measured were projected to 
those of trees 15 years of age. 

Initially, the data were used to calculate simple descriptive statistics, including indices of central tendency (mean 
and median), dispersion (variance, standard deviation, maximum, and minimum values) and form (kurtosis, 
symmetry coefficients, and graphs of normality). These were calculated in the statistical program GS + 10.0 and 
subjected to several tests of normality, at the significance level of 5%. 

To describe and model the spatial patterns in the variable of interest (Pinus taeda site index), geostatistics were 
used to produce and adjust semivariograms in the GS + 10.0 program. Four semivariogram models were tested 
(Table 1). The best model among these semivariograms was chosen as the one with the smallest residual sum of 
squares (RSS), highest coefficient of determination (r²), and with a greater relative simplicity compared to those 
of the other models. 

 

Table 1. Semivariogram models fit to Pinus taeda site index values 

Model Equation 

Spherical γሺhሻ = C0 + C ൤ቀ3

2
ቁ ቀh

A
ቁ – ቀ1

2
ቁ ቀh

A
ቁ3൨  

Exponential γሺhሻ = C0 + C(1 – e-h A⁄ )  

Gaussian γሺhሻ = C0 + C ቀ1 – e-h
2

A2ൗ ቁ  

Linear γሺhሻ = C0 + pሺhሻA  

Note. γ(h) = semivariogram; C0 = nugget and C = sill.  

 

The anisotropy of each of the semivariograms was verified and corrected in directions of 0, 45, 90, and 135 
degrees to obtain isotropic semivariograms. 

After the adjustment of each of the models, the degree of the spatial dependence (SDD%) in the model was 
obtained, which represented the percentage of the sill (C′ = C + C0) occupied by the nugget effect (C0). 
According to Cambardella et al. (1994), the closer this value is to one, the weaker the spatial dependence of the 
dependent variable in the model is, and thus models could be classified as follows: 

a) Strong spatial dependence: the nugget effect is less than or equal to 25% of the sill; 

b) Moderate spatial dependence: the nugget effect is between 25 and 75% of the sill; 

c) Weak spatial dependence: the nugget effect is between 75 and 100% of the sill;  

d) Spatially independent variable: the nugget effect is equal to 100% of the sill, in which case the 
semivariogram has a purely nugget effect. 

The best semivariogram model was then used to predict the site index values of unsampled locations by 
performing interpolation by ordinary kriging with the GIS software ArcView 9.1, with the Geostatistical and 
Spatial Analyst extensions. 

The estimated site index values calculated by kriging were evaluated by determining the errors committed in the 
process of estimation by cross-validation. A site classification map was then constructed from the kriging results 
by assigning each plot a site index value. 

3. Results and Discussion 
When we calculated descriptive statistics for our data, we obtained a mean site index value of 21.26, median of 
21.34, standard deviation of 1.62, kurtosis of 2.23, asymmetry of -0.36, and coefficient of variation of 7.6%. The 
normality tests verified that the site index data had a normal distribution. 
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Further evidence of the symmetry of the distribution of these data was also provided by the similarity of the 
mean and median values obtained. According to Cressie (1993), all methods of linear geostatistical inference that 
have been developed based on stochastic modeling depend on the assumption that the data have a normal 
distribution. However, according to Mello et al. (2005), the data do not need to be normally distributed for 
geostatistics to be applied to them. Normality only improves some of the statistical properties within 
geostatistical analyses, such as maximum likelihood, and guarantees spatial continuity, which is strongly 
affected by the absence of normality (Cressie, 1993). 

Data analysis by histogram generation is important for the observation of outliers. These values may cause the 
conclusion of false spatial correlation because they can distort the variance in the nugget effect. No candidate 
outlier values representing such potential causes of discrepancies were observed herein. 

The semivariogram analysis showed that the site index variable presented spatial dependence, and could thus be 
adjusted by geostatistical modeling. Table 2 shows the adjustment of the semivariograms obtained. 

 

Table 2. Parameters and statistics for the semivariograms fit to data for Pinus taeda site index values  

Model C0 C0 + C R(m) SDD% r² RSS  
Linear 1.4616 4.1381 5,791 35% 0.7030 3.98 

Spherical 1.0680 3.7360 5,330 29% 0.7760 3.00 

Exponential 1.1000 4.8530 12,690 23% 0.7330 3.57 

Gaussian 1.4630 3.8950 5,075 38% 0.7950 2.74 

Note. C0 = nugget effect; C0 + C = sill; R = range; SDD% = degree of spatial dependence (%); r² = coefficient of 
determination; RSS = residual sum of squares.  

 

The site index variable presented spatial dependence in all of the tested models, with the degree there of varying 
from strong to moderate. This demonstrates that kriging can be used in the classification of forest sites, agreeing 
with the results found by Hock et al. (1993), Gunarsson et al. (1998), Ortiz et al. (2006), Mello et al. (2005), 
Montes et al. (2006), Bognola et al. (2008), and Palmer et al. (2010). 

Focusing on the spherical model, which was concluded to be the best model herein (see below, and Table 2), the 
nugget effect on the site index corresponded to 29% of the sill, meaning that 71% of the variability in the site 
index was explained by the spatial correlation of this variable. According to Vieira (1998) and Isaaks and 
Srivastava (1989), the lower the percentage of the sill that is due to the nugget effect (SDD%) is, the greater the 
similarity will be between neighboring values and the spatial continuity of the phenomenon under investigation, 
and the lower the variance in the estimates will be; therefore, this means that there can be greater confidence in 
the estimates made using the model. 

The nugget effect (C0), also called random variance, reflects the uncertainty in the variance in the dependent 
variable over small distances, which is mainly due to the lack of knowledge of the spatial distribution of the 
variable under study (Yamamoto & Landim, 2013). Hock et al. (1993), using geostatistics to estimate site index 
values in Pinus radiata, and Montes et al. (2006), studying the use of kriging to predict the site indices and ages 
of Pinus pinea forests, both found higher nugget effect values than that observed in this study. However, Mello 
(2004), when studying the spatial dependence of the dendrometric characteristics of Eucalyptus grandis, found 
lower nugget effect values than ours, but considered these to be high values due to them corresponding to what 
Aubry and Debouzie (2001) had concluded nugget effect values are higher in studies involving ecological 
variables. 

The average spatial range in the adjusted models with a high degree of spatial dependence for the definition of 
site index classes was 5,399 m. This reveals that for distances exceeding this range value, the data should be 
treated as spatially independent, suggesting that the site index plots used in forest inventory efforts can be 
separated from each other at this distance. According to Landim (2006), a large range value allows for the use of 
a more widely spaced sampling program, and offers higher-quality interpolated data estimates for map 
production. Bognola et al. (2008), studying the variability in Pinus taeda productivity as a function of soil clay 
content, found spatial dependence in their data up to a range of 6,021 m. 

According to Yamamoto and Landim (2013), the spherical, exponential, and Gaussian models explain most 
spatial phenomena, and the optimal modeling of a semivariogram is a process that involves several attempts, in 
which experience weighs heavily in selecting the best modeling approach. Landim (2006) also noted that the 
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 Kriging was shown to be an optimal method for the proper classification of sites in unsampled locations by 
interpolating their site index values, as is the case for young plantations for which there are not yet inventory 
samples. 

 The mapping of site classes by ordinary kriging proved to be a simple, practical, and low-cost technique. 
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