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Abstract

A spatial analysis of the site index used for the classification of Pinus taeda production forests was performed
using dominant height data from 402 continuous inventory plots. The data were examined with simple
descriptive statistics and fit with four semivariogram models by the GS + program. The best model was then
used to predict the site index in unsampled areas by ordinary kriging in ArcView. All models showed that site
index values exhibited spatial dependence, with the degree of spatial dependence ranging from strong to
moderate. The spherical model was used for kriging. In this model, the degree of spatial dependence was 29%
and the range was 5,330 m, with a residual sum of squares (RSS) of 3.00 and coefficient of determination (r?) of
0.776. Measured and predicted values were compared by cross-validation, which produced a linear regression of
observed versus predicted value with a slope coefficient of 1.068, slope standard error of 0.070, and intercept
coefficient of -1.45. The site classification map generated by kriging divided the studied forests into five classes.
Before kriging, all of the forest stands had one global average value for the site index, but after kriging this was
changed to there being two or three values of the site index for many stands. Ordinary kriging proved to be an
optimal method for interpolating the site index of unsampled areas to permit their classification, as is the case for
young plantations for which inventory samples have not yet been taken.
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1. Introduction

The Brazilian production forests, forest-based industry is known worldwide for the high productivity of its
planted areas, according to IBA (2017), have 7.84 million hectares of planted trees, is responsible for 91% of all
wood produced for industrial purposes in the country and 6.2% of the Brazilian GDP; also it is one of the
industries with the greatest potential to help build a green economy. Of the total planted trees, the Pinus
plantations occupy 1.6 million hectares and concentrate mainly in the south of the country, being led by the state
of Parana with 42% of total.

Pinus production forests are usually managed for multiple uses and can achieve mean annual increment (MAI)
higher than 40 m3/ha/year in 18-year-old trees for Pinus taeda. These levels of productivity are among the largest
in the world for the species.

Scolforo and Machado (1988) stated that the classification of forest lands based on their potential for
productivity is important for both the manager and the administrator of a forestry company because the index
that expresses this productivity is a variable required in predictive models of present and future forest growth and
production. This important method of classification is usually based on the stratification of forest settlements for
inventory and cutting exploration, and therefore it must be considered in local and regional short- and long-term
planning.

In many cases, the mean values of the site indices obtained in forest sites with the same class of soil can be
differentiated. When soil properties are spatially dependent, geostatistical methodologies allow a useful spatial
description of site characteristics to be obtained to provide production information (Bognola et al., 2008), which
can consequently lead to better predictions of the consequent productivities of different forest sites.
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According to Scolforo (1997), ‘Multifactorial Site Classification’ is the most efficient procedure for the
classification of forest productivity because it makes it possible to interpret a set of several factors at the same
time. For example, this approach can allow one to identify whether such factors as precipitation, relative
humidity, temperature, soil depth, and/or supplies of macro- and micronutrients, among others, best explain the
quality of the site alone or in combination.

However, obtaining information on all these variables becomes a costly process that is not realistically attainable
for many companies in the forestry sector. There are other methods that allow the productive capacity of
different sites to be assessed, and according to Scolforo and Machado (1988) the most widely used of these is the
determination of site index values based on the average height of the dominant trees at a site. This is because this
is a more practical and efficient methodology to estimate the productivity potential of each site that is not
affected by silvicultural treatments, and which is also based on a measurement that is easily obtained by the
traditional sampling methods used during forest inventory activities.

The current forestry situation has demanded that managers move away from traditional approaches to forest
assessment, and instead adopt the techniques of precision forestry by integrating data within a geographic
information system (GIS). In this context, a simple and easily accessible alternative approach would include the
spatial analysis of the site indices obtained based on assessing the dominant heights of the trees in inventory
plots by traditional sampling methods combined with new approaches using spatial information.

Thus, by performing the geostatistical analysis of site index values, managers could produce maps of the
classification of different sites, and from them redefine their management units.

The traditional statistical methods used to take forest inventories use a central measure (mean) and a dispersion
(variance) to describe the site index, without considering the possible correlations among neighboring
observations. Therefore, they do not sufficiently exploit the spatial relationships that may exist among sampling
units. Conversely, geostatistical methods can better evaluate the spatial dependence of the structure of the
dendrometric characteristics of the species in a study area with physical environmental variables, which can
allow results to be obtained that can adequately exploit the spatial relationships existing within the data; in other
words, geostatistics is a statistical methodology that explores the existing relationships among sampling units.

The spatial modeling of site index would allow a quantitative description of the variability among sites to be
obtained, in addition to making non-biased estimates of the minimum variance in site index values in unsampled
locations possible. This means that, in addition to the identification of site classes by generating maps, we could
also use this approach to subdivide plots that previously had a general average site index value applied to them,
as well as determine the site index values of young plantations in which plots have not yet been sampled by
traditional inventory approaches.

The use of the site index obtained based on dominant height in the forest environment is strengthened by the
high representativeness of the site environment it provides and the ease of obtaining the data needed to calculate
it. It remains unknown whether this variable has spatial dependence, and its spatial relations with the
environment have also not yet been assessed.

Therefore, the objective of this study was to assess the variability in this site index through spatial analysis to
classify the productivity of the production of Pinus taeda forest, in the southern central region of the state of
Parana, Brazil, while considering the existing spatial relationships among forest sites.

2. Materials and Methods

This study was carried out in production forests of Pinus faeda L. with a total area of 2,111 hectares, located in
the municipalities of Bituruna and General Carneiro, in the southern central region of the state of Parana, Brazil.
These forests’ central coordinates were located at a latitude of 26.1834° S, a longitude of 51.3303° W, and an
average altitude of 985 m above sea level.

The dominant climate is subtropical humid mesothermic, or Cfb according to the Kdppen classification system,
and is characterized by cool summers and harsh winters with severe and frequent frosts concentrated in the
months of March to September. It does not present a characteristic dry season and has average temperatures in
the warmer months below 22 °C and in the colder months below 18 °C. The rainfall regime is irregular, with a
decrease in the winter period and higher rainfall intensity in the summer. The average annual rainfall is 1,600 to
1,770 mm. Regarding relative humidity, mean indices between 80 and 85% predominate in this region.

The study area was located on the third highest plateau in Parana, which is one of the most extensive relief units
in the state, and contains representatives of the rock formations of the Parana Basin. The predominant relief in
this region is wavy, and the predominant soils there are cambissols and acrisols.
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The data from sample plots continuously used for forest inventory sampling for 5 to 10 years or from 13 to 15
years, depending to the quality of the site, were used. A total of 402 sample plots was used.

The variable used to characterize the quality of each site was the site index (SI). The determination of the
dominant height (DOMH) of the trees in each site, which is related to each site’s productive capacity, was
obtained by the method of Assmann (1961, p. 435), which considers the dominant height as the average height of
the one hundred trees with the largest diameter-at-breast-height (DBH) values in an area of one hectare.

As the ages of the measured trees varied among stands, all of the dominant heights measured were projected to
those of trees 15 years of age.

Initially, the data were used to calculate simple descriptive statistics, including indices of central tendency (mean
and median), dispersion (variance, standard deviation, maximum, and minimum values) and form (kurtosis,
symmetry coefficients, and graphs of normality). These were calculated in the statistical program GS + 10.0 and
subjected to several tests of normality, at the significance level of 5%.

To describe and model the spatial patterns in the variable of interest (Pinus taeda site index), geostatistics were
used to produce and adjust semivariograms in the GS + 10.0 program. Four semivariogram models were tested
(Table 1). The best model among these semivariograms was chosen as the one with the smallest residual sum of
squares (RSS), highest coefficient of determination (r?), and with a greater relative simplicity compared to those
of the other models.

Table 1. Semivariogram models fit to Pinus taeda site index values

Model Equation

-6 - OO
Exponential y(h) = Cy+ C(1 — e/

Gaussian y(h) =Cy +C (1 _ e-hz/Az)

Linear y(h) =Cy +p()A

Note. y(h) = semivariogram; Cy = nugget and C =sill.

The anisotropy of each of the semivariograms was verified and corrected in directions of 0, 45, 90, and 135
degrees to obtain isotropic semivariograms.

After the adjustment of each of the models, the degree of the spatial dependence (SDD%) in the model was
obtained, which represented the percentage of the sill (C' = C + Cg) occupied by the nugget effect (Cy).
According to Cambardella et al. (1994), the closer this value is to one, the weaker the spatial dependence of the
dependent variable in the model is, and thus models could be classified as follows:

a)  Strong spatial dependence: the nugget effect is less than or equal to 25% of the sill;
b) Moderate spatial dependence: the nugget effect is between 25 and 75% of the sill;
c) Weak spatial dependence: the nugget effect is between 75 and 100% of the sill;

d) Spatially independent variable: the nugget effect is equal to 100% of the sill, in which case the
semivariogram has a purely nugget effect.

The best semivariogram model was then used to predict the site index values of unsampled locations by
performing interpolation by ordinary kriging with the GIS software ArcView 9.1, with the Geostatistical and
Spatial Analyst extensions.

The estimated site index values calculated by kriging were evaluated by determining the errors committed in the
process of estimation by cross-validation. A site classification map was then constructed from the kriging results
by assigning each plot a site index value.

3. Results and Discussion

When we calculated descriptive statistics for our data, we obtained a mean site index value of 21.26, median of
21.34, standard deviation of 1.62, kurtosis of 2.23, asymmetry of -0.36, and coefficient of variation of 7.6%. The
normality tests verified that the site index data had a normal distribution.
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Further evidence of the symmetry of the distribution of these data was also provided by the similarity of the
mean and median values obtained. According to Cressie (1993), all methods of linear geostatistical inference that
have been developed based on stochastic modeling depend on the assumption that the data have a normal
distribution. However, according to Mello et al. (2005), the data do not need to be normally distributed for
geostatistics to be applied to them. Normality only improves some of the statistical properties within
geostatistical analyses, such as maximum likelihood, and guarantees spatial continuity, which is strongly
affected by the absence of normality (Cressie, 1993).

Data analysis by histogram generation is important for the observation of outliers. These values may cause the
conclusion of false spatial correlation because they can distort the variance in the nugget effect. No candidate
outlier values representing such potential causes of discrepancies were observed herein.

The semivariogram analysis showed that the site index variable presented spatial dependence, and could thus be
adjusted by geostatistical modeling. Table 2 shows the adjustment of the semivariograms obtained.

Table 2. Parameters and statistics for the semivariograms fit to data for Pinus taeda site index values

Model Co Cy+C R(m) SDD% r RSS
Linear 14616 4.1381 5,791 35% 0.7030 3.98
Spherical 1.0680 3.7360 5,330 29% 0.7760 3.00
Exponential 1.1000 4.8530 12,690 23% 0.7330 3.57
Gaussian 1.4630 3.8950 5,075 38% 0.7950 2.74

Note. Cy = nugget effect; Cy + C = sill; R = range; SDD% = degree of spatial dependence (%); 1> = coefficient of
determination; RSS = residual sum of squares.

The site index variable presented spatial dependence in all of the tested models, with the degree there of varying
from strong to moderate. This demonstrates that kriging can be used in the classification of forest sites, agreeing
with the results found by Hock et al. (1993), Gunarsson et al. (1998), Ortiz et al. (2006), Mello et al. (2005),
Montes et al. (2006), Bognola et al. (2008), and Palmer et al. (2010).

Focusing on the spherical model, which was concluded to be the best model herein (see below, and Table 2), the
nugget effect on the site index corresponded to 29% of the sill, meaning that 71% of the variability in the site
index was explained by the spatial correlation of this variable. According to Vieira (1998) and Isaaks and
Srivastava (1989), the lower the percentage of the sill that is due to the nugget effect (SDD%) is, the greater the
similarity will be between neighboring values and the spatial continuity of the phenomenon under investigation,
and the lower the variance in the estimates will be; therefore, this means that there can be greater confidence in
the estimates made using the model.

The nugget effect (Cy), also called random variance, reflects the uncertainty in the variance in the dependent
variable over small distances, which is mainly due to the lack of knowledge of the spatial distribution of the
variable under study (Yamamoto & Landim, 2013). Hock et al. (1993), using geostatistics to estimate site index
values in Pinus radiata, and Montes et al. (2006), studying the use of kriging to predict the site indices and ages
of Pinus pinea forests, both found higher nugget effect values than that observed in this study. However, Mello
(2004), when studying the spatial dependence of the dendrometric characteristics of Eucalyptus grandis, found
lower nugget effect values than ours, but considered these to be high values due to them corresponding to what
Aubry and Debouzie (2001) had concluded nugget effect values are higher in studies involving ecological
variables.

The average spatial range in the adjusted models with a high degree of spatial dependence for the definition of
site index classes was 5,399 m. This reveals that for distances exceeding this range value, the data should be
treated as spatially independent, suggesting that the site index plots used in forest inventory efforts can be
separated from each other at this distance. According to Landim (2006), a large range value allows for the use of
a more widely spaced sampling program, and offers higher-quality interpolated data estimates for map
production. Bognola et al. (2008), studying the variability in Pinus taeda productivity as a function of soil clay
content, found spatial dependence in their data up to a range of 6,021 m.

According to Yamamoto and Landim (2013), the spherical, exponential, and Gaussian models explain most
spatial phenomena, and the optimal modeling of a semivariogram is a process that involves several attempts, in
which experience weighs heavily in selecting the best modeling approach. Landim (2006) also noted that the
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spherical model is equivalent to the normal distribution of classical statistics. Several studies have found that the
best adjustments for their semivariograms were obtained using the Gaussian and spherical models; for example,
this was the case for Ortiz et al. (2006), Biondi et al. (1994) and Gunnarsson et al. (1998) when studying several
variables for the genus Pinus, and for Pelissari et al. (2014) and Mello et al. (2005) when studying production
forests of other species.

The Gaussian and spherical models achieved the best fit in this study in terms of their 1> and RSS values.
Yamamoto and Landim (2013) noted that in many cases the sensitivity of a particular data set and the knowledge
of those working with it about the variable in question is a fundamental importance in the selection of the best
semivariogram model. Sometimes, it is preferable to select a model with a slightly smaller 1> or higher RSS than
the one suggested by the statistical program as the best, but which better represents the data. In general, the
simpler the adjusted model is, the better, and no excessive importance should be given to a model that fits small
fluctuations possibly representing noise in the data.

The Gaussian model is a transitive model, which is often used to model extremely continuous phenomena
(Isaaks & Srivastava, 1989). The theoretical Gaussian model does not reach 100% of the sill, but rather reaches
the same percentage thereof as the exponential model, which is approximately 95%. This model is characterized
by presenting parabolic behavior near the origin (Andriotti, 2003, p. 165). The spherical model is the only one of
the models tested herein that truly reaches the sill, and which also has a small nugget effect compared to the
value of the sill (Andriotti, 2003, p. 165). Therefore, some authors, such as Trangmar et al. (1987), have argued
that the spherical model is the most appropriate to use to describe the behaviors of plant and soil attributes.

Because the spherical model is a simpler model that truly reaches the level of the sill, and also because the 1> and
RSS values were very close between the Gaussian and spherical models herein, the spherical model (Figure 1)
was chosen for use in kriging in the present study. Moreover, it is known that the site index variable does not
have parabolic behavior near the origin, and thus is not well represented by the Gaussian model.

Isotropic Variogram
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5987,00
Figure 1. Spherical semivariogram model fit to Pinus taeda site index data

Anisotropy in the semivariogram was similar in all directions, and therefore was not corrected, so interpolation
was performed using the isotropic semivariogram.

The comparison between the real and estimated values in the cross-validation of site index values (Figure 2)
produced a regression with a slope coefficient of 1.068 with a standard error of 0.070, indicating that this slope
was statistically indistinguishable from 1. The intercept coefficient of this regression was -1.45, which can be
considered to be statistically close to zero. These were optimal conditions for these estimates, indicating good
agreement between observed and predicted values. However, the coefficient of determination (r?) was equal to
0.373, which is considerably low, but due to the large number of observations and knowing that this coefficient
is strongly influenced by the number of pairs, we can consider it as satisfactory, and still conclude good
agreement.
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Figure 2. Graphical representation of the cross-validation of measured (actual) and predicted (estimated) Pinus
taeda site index values produced by kriging

According to Hock et al. (1993), due to the smoothing technique applied to kriging surfaces, it is expected that
lower site index values will be overestimated, and higher site index values will be underestimated. However,
since the estimation procedure is global, the expected mean difference should be very close to zero (Table 3).
According to Andriotti (2003, p. 165), the closer the mean value of the differences obtained by cross-validation
is to zero, the better the estimates made by kriging are.

Table 3. Cross-validation of measured (actual) and predicted (estimated) of Pinus taeda site index values
produced by kriging

Actual SI (m) Estimated SI (m) Difference |m|
Average 21.254 21.244 0.01
Standard deviation 1.61 0.88 0.72
Minimum 14.26 17.14 2.88
Maximum 26.49 23.11 3.38

When analyzing the frequency distributions of the real and estimated SI values on the same scale (Figure 3), it
was observed that after kriging the values were concentrated close to the average, overestimating the SI of
low-SI sites and underestimating that of high-SI sites. It was noteworthy that the amplitude of the distribution
was also reduced because the Kriging method softens the overall distribution.
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Site Index (m) Site Index (m)

Figure 3. Frequency distributions of measured (actual) and predicted (estimated) Pinus taeda site index values
produced by kriging

From the semivariogram, the degree of spatial dependence among site index values could be obtained, which is
essentially a measure of the variability in site indices that occurs due to the distances among sites. The kriging
procedure uses this information to find the optimum weights to associate with the samples to estimate the value
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of the dependent variable at a particular point in space, and the variance of the kriging estimates is independent
of the values of the points used to obtain the estimators and measures only the spatial configuration of the data.
In other words, kriging does not guarantee that the map obtained has the same distribution (histogram), the same
variance, or the same semivariogram as the original data because, by the very nature of this method, it merely
produces a map with smoothed values that must be inversely proportional to the density of the sampled points.

With the smoothed map generated by the kriging can use the classification of sites to express the stands
productivity, including the unsampled plots and reclassify or divide large stands that previously had a general
average. Usually, all future forest production used in strategic planning are obtained from the sites that were
sampled. Sites without an inventory sample plots receive an average of the previous rotations or an average
based on the empirical knowledge of the area. As the adjusted variable had spatial dependence on the spherical
model, kriging can be used as a way of classifying places in locations without an inventory sample, until the
distance known as “range”.

Using the adjusted spherical semivariogram, it was possible to obtain a mesh of interpolated values to visualize
the behavior of the site index in the classification map of Pinus taeda sites, which were then divided into five
classes based on the values obtained (Figure 4).

Site Index (m) Ordinary Kriging for Site Index of Pinus taeda
<17m Municipality: Bituruna - PR - Brazil
General Carneiro - PR - Brazil
17-19m
19-21m Scale: 1:100.000 Cartographic Projection System-UTM
wm— Datum SAD-69 Fuso 22-S
Bl2-23m

Bl -23m 0 1250 2500 5.000 7.500 10.000
——

Figure 4. Spatial distribution map of Pinus taeda site index values generated by kriging

The site classification map generated by kriging (Figure 4) provided a new format by which the division of sites
could be done, in which the stands that had one global average value for their site index were divided into those
with two or three site index values after kriging. Ordinary kriging thus proved to be an optimal method of
interpolating the site index values of unsampled areas based on which they could then be classified, as is often
the case for young plantations in which inventory sampling has not yet been performed.

4. Conclusion
For the studied area, it was concluded that:

>  The site index variable has spatial dependence and can use be used with kriging as a tool for classifying
sites.

>  The spatial dependence structure is similar in all directions, therefore presupposing the spatial continuity of
this phenomenon.

»  The range found was 5,330 m, showing that inventory plots separated by distances lower than this should
not be treated as independent in the determination of the site index variable.
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>  Kriging was shown to be an optimal method for the proper classification of sites in unsampled locations by
interpolating their site index values, as is the case for young plantations for which there are not yet inventory
samples.

>  The mapping of site classes by ordinary kriging proved to be a simple, practical, and low-cost technique.
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