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Abstract

Agricultural irrigation is involved in an important chain that involves all sectors of the economy, either directly,
by increasing food production, or indirectly, by withdrawing large amounts of fresh water. The relevance of this
theme forces the search for alternatives to make water use as rational as possible. Evapotranspiration estimation
methods based in remote sensing, such as the SAFER (Simple Algorithm for Evapotranspiration Retrieving)
model, become extremely relevant in these scenarios, since it is possible to estimate this parameter in large
scales. Therefore, the aim of this research was to apply the SAFER model in the estimation of bean crop actual
evapotranspiration using Landsat-8 satellite image data. One of the parameters used as input in the SAFER
model is the NDVI (Normalized Difference Vegetation Index), which presented a coefficient of determination (r?)
equal to 0.80 when compared to the crop coefficient. The actual evapotranspiration (ETa) estimated by the
SAFER model were compared to the FAO 56 model estimates for later correlation between the models. This
information is expected to assist the producer in a better management of water resources used in irrigation. The
correlation between the two models presented a relevant coefficient of determination (r* = 0.73), representing the
potential of the SAFER model in relation to the FAO model 56.
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1. Introduction

Approximately 70% of all freshwater in the world is destinated to agriculture, which makes it relevant to adopt
more efficient and sustainable practices in the monitoring and management of water resources, especially in
irrigated areas. In order to turn the irrigation feasible, we must seek sustainable practices, reducing conflicts
among its users. A rational use will also reduce the electric energy cost to pump water in irrigated fields, which
is the main responsible for food production expenditures (Greenland, Dalrymple, Levin, & O’Mahony, 2018).

The world food production needs to be raised by 85% to feed the estimated 9.6 billion people by 2050 (DeSA,
2013). In this scenario, irrigation is one of the main technologies with the potential to increase food production.
Under Brazilian conditions, irrigated agriculture has an average productivity of at least 2.7 times larger than of
rainfed agriculture (Borghetti, Silva, Nocko, Loyola, & Chianca, 2017). However, it is necessary to practice it
with caution.

The water application criteria for crops is determined by irrigation management, whose parameters are related to
soil, plant and atmosphere. Among the main irrigation management methods, it is worth mentioning the
management via soil, via plant and via climate. The management via soil and via plant are more difficult to apply
and, consequently, more expensive. On the other hand, the irrigation management via climate is highlighted by
its greater economic feasibility and practicality in its execution, being widely applied.

In management via climate, the irrigation depths can be determined from the product between the reference
evapotranspiration (ETo), crop coefficient (Kc) and water stress coefficient (Ks), which combine in the actual

156



jas.ccsenet.org Journal of Agricultural Science Vol. 11, No. 13,2019

crop evapotranspiration (ETa) (Bernardo, Soares, & Mantovani, 2006). However, management via climate has
the disadvantage of considering the climate of the whole agricultural system as homogeneous.

Currently, the development of new technologies makes it possible to spatially detail the estimates of crops water
demands, a fact that makes remote sensing relevant in this matter. Thus, the monitoring of crops, as well as the
management of the water demand through climate with remote sensing subsidy, has become popular, since it
allows estimating the actual evapotranspiration of the crop spatially. For this, data from remote sensors, such as
the ones onboard of satellites and unmanned aerial-vehicles, are used to estimate the ETa, ensuring efficient
decision-making during irrigation management (Herman et al., 2018; Ma et al., 2018).

In order to determine ETa, some algorithms have already been developed and are frequently applied. Among
them, the most common are the SEBAL, elaborated by Bastiaanssen, Menenti, Feddes, and Holtslag (1998), and
METRIC, elaborated by Allen, Tasumi, and Trezza (2007). The SAFER model, which was elaborated by A. H.
de C. Teixeira (2010), has also been applied due to its operability.

SAFER has a simple parameterization, which makes this algorithm to have operational efficiency in the
estimation of ETa in commercial properties. This fact provides the SAFER enormous potential to meet the
recurring demands of large irrigated producers, who are always looking for new technologies and for greater
profitability of their crops.

Based on the need to monitor irrigated crops more accurately and on the high parsimony found in the SAFER
algorithm, the objective of this work was to estimate the ETa and the bean crop coefficient throughout the crop
season.

2. Material and Methods
2.1 Study Area

The study area is located in the western of the state of Bahia, more precisely in the municipality of Sdo Desidério
(Figure 1). The region has tropical climate with dry season, Aw, according to the Koppen classification (Alvares
et al.,, 2013). The study area comprises seven central pivots inscribed in a surrounding rectangle with the
following pairs of plane coordinates: 8.583.625 S; 465.165 W and 8.592.325 S; 481.575 W (coordinate reference
system: SIRGAS 2000 Projection UTM 23S). The total area of the seven central pivots is approximately 900 ha.
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Figure 1. Location of the study area in relation to the municipality of Sdo Desidério, Bahia state and Brazil

2.2 Field Data

The daily air humidity (%), maximum (°C) and minimum (°C) air temperature, wind speed (m s) and incident
solar radiation (MJ m™ d') were collected by a meteorological station installed in the study area. These
parameters allowed the calculation of reference evapotranspiration (ETo) from the Penman Monteith equation
(PM), which is considered as standard by FAO-56 (Allen, Pereira, Raes, & Smith, 1998).
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In the field, data were collected regarding: number of active central pivots in the crop season, area of each pivot,
bean cultivars, sowing date and irrigation cut-off date (when irrigation management was suspended).

2.3 Orbital Data

In order to calculate evapotranspiration using the SAFER model, we selected the images available for the crop
season. The satellite used was the Landsat-8, which have the Operational Land Imager (OLI) sensor and Thermal
Infrared Sensor (TIR). The Landsat-8 with these two sensors have the following spatial resolution: panchromatic
with 15.0 m (band 8); multispectral with 30.0 m (bands 1-7 and 9); and thermal with 100.0 m (bands 10-11), all
with a temporal resolution of 16 days. It is noteworthy that the thermal images were already re-scaled for 30
meters due to the level of processing of the product used. These images were acquired through the online
platform Earth Explorer, which is maintained by the USGS (United States Geological Survey) and NASA
(National Aeronautics and Space Administration).

2.4 Orbital Data Selection

Each of the satellite images obtained during the crop cycle had their cloudiness verified for the study area. All
the images that presented clouds in the area of study were eliminated, because the clouds could compromise the
image data analysis and consequently the ETa modeling by the algorithm. A total of five cloud-free images were
obtained among the dates related to the interval of sowing until the irrigation suspension, for the year 2015,
according to Table 1.

Table 1. Central pivots area and respective dates of sowing and irrigation suspension

Pivot Area (ha) Sowing Date Irrigation Suspension
4 140 05/06/2015 22/08/2015
5 130 18/06/2015 05/09/2015
6 120 26/06/2015 07/09/2015
7 130 11/06/2015 29/08/2015
8 130 28/05/2015 16/08/2015
10 120 20/05/2015 12/08/2015
22 130 22/05/2015 10/08/2015

2.5 Pre-processing of Orbital Data

The images were initially pre-processed to radiometric conversion, which transforms the digital numbers of
radiance to apparent reflectance. Afterwards, the images were submitted to an atmospheric correction with the
application of the DOS methodology (Dark Object Subtraction), which was developed by Chavez Jr (1988).
These steps were done in the QGIS software (2.14.19-ESSEN) and for these we used the Semi-Automatic
Classification Plugin developed by Congedo (2016).

2.6 SAFER Algorithm

The images for the subsequent estimation of the evapotranspirative ratio (R), algebraic operations were
performed with the required bands to obtain the Normalized Difference Vegetation Index (NDVI), surface
albedo (00) and surface temperature (Ts). All the steps are shown in the flow chart (Figure 2).
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Figure 2. Procedure performed during the execution of the work

To calculate the NDVI, the bands 4 and 5 were processed according to Equation 1, developed by Rouse Jr, Haas,
Schell, and Deering (1974).
NDVI = 24 (1)
Ps Py
where, p4: surface reflectance for band 4, red part of spectrum electromagnetic (640-690 nm); p5: surface
reflectance related to band 5, near infrared part of spectrum electromagnetic (850-880 nm).

Subsequently, to estimate the planetary albedo, the bands 2 to 7 and corresponding band weights were used
(Equation 2). Band weights have already been calculated, calibrated and made available by Silva et al. (2016).
The albedo was then corrected for surface albedo, according to Equation 3. This variable has great importance in
global and regional climate monitoring, since it permits to study the dynamics of bodies in the heat exchange,
having as general definition the energy portion reflected and/or emitted by a body, varying from 0 to 1, where 1
represents the total energy reflection (Zhang, Liu, He, Lian, & Cui, 2017).

Oltop = 217:2 wp 2
where, oy planetary albedo; p: reflectance of the bands (1-7); weight for each band.
Olp = Olop 0.61 +0.08 (3)

where, ay: surface albedo
Then, the surface temperature was calculated according to Equation 4.

To=1.11T,-31.89 4
where, Ty: surface temperature; Ty: Brightness Temperature.

With the parameters estimated, it is possible to perform correlations with the vegetal cover of the surface. The
NDVI, surface albedo and surface temperature combined were applied to obtain the evapotranspirative ratio (R),
according to Equation 5. This algorithm used the Penman-Monteith equation to estimate the ETa, and was
developed by A. H. de C. Teixeira (2010) for large-scale application.

To

R=expla+b(——)] (5)

where, a and b are empirical coefficients and correspond to 1.8 and -0.008, respectively.

The coefficients were empirically calibrated to the Brazilian semiarid region (A. de C. Teixeira, Hernandez,
Lopes, Scherer-Warren, & Bassoi, 2014).

Finally, for the estimation of the actual evapotranspiration of the crop (Equation 6), the Penman-Monteith
reference evapotranspiration was used.
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ETa=EToR (6)

where, ETo: Reference evapotranspiration, estimated according to the Penman-Monteith-FAO 56 (Allen et al.,
1998), according to the Equation 7.

0.408A(Rn — G) + 120 U2 (s —ca)
— ( ) T+273 (7)

ETo
A+y (1 +0.34u,)

Where, 4 is the slope of the vapor pressure curve; Rn: daily net radiation; G: daily total soil heat flux; y:
psychrometric constant; u,: wind speed at 2 meters high; e;. saturation vapor pressure; e,: actual vapor pressure;
T: average air temperature at 2 meters high.

2.7 Model Validation

The model SAFER was validated with the estimates of ETc according to FAO 56 (Equation 8), since no directed
measures of real evapotranspiration were available. The calculated ETo was multiplied by the crop coefficient
that best represented the crop in the field (time of the passage of the image), according to the assumptions
established in Allen et al. (1998).

ETc=Kc-ETo )
Where, ETc: crop evapotranspiration; Kc: crop coefficient.

The bean crop coefficient corresponding to the days of the images was estimated using the methodology
described by FAO 56.

2.8 Linear Regression With NDVI Data to Estimate Kc

The Kc was estimated according to the methodology presented in Allen et al. (1998). A linear regression was
performed with the Kc value as the dependent variable and the NDVI as the independent variable. This
regression was performed to fit a practical model to estimate K¢ of bean crop from satellite images.

2.9 Statistical Analysis

The data of FAO ETc were considered as observed values and the data obtained by the SAFER algorithm as
predicted values. Thus, the predicted values were compared to those observed using the statistical metrics:
coefficient of determination (r?) (Richter, Hank, Atzberger, & Mauser, 2011), Root Mean Square Error (RMSE)
(Neville & Kennedy, 1964), Nash-Sutcliffe Efficiency (NSE) (Nash & Sutcliffe, 1970), Mean bias error (MBE)
(Richter, Hank, Atzberger, & Mauser, 2011) and absolute mean error (MAE) (Willmott & Matsuura, 2005)
according to Equations 9, 10, 11, 12 and 13, respectively.

o _[mepo-of
[z -2y [52 0~ 0]

n o _2

RMSE = Fl:l(olfpl) (10)
/2" ©-P)

RMSE = [=-——— (11)

MBE = %Z?:I(Pi -0) (12)

®

MAE = -2 [P, - Oj| (13)

where, P; is the value predicted by the model; O;: observed value; O: mean values observed and n: numbers of
data pairs.

3. Results and Discussion

The NDVI values of the analyzed central pivots are show in Figure 3. NDVI has been used in several studies in
the analysis of the condition of natural or agricultural vegetation. The main factor for its adoption is the portion
of energy reflected by the leaf in the region of red and the near infrared. The quantifications of these reflected
energies will generate the NDVI, ranging from -1.0 (e.g., water clean) to + 1.0 (e.g., green vegetation and dense
cover). Analyzing Figure 3, it is possible to verify the development of the bean crop as well as the condition of
the vegetation throughout the crop cycle. In practical terms, it’s possible to affirm that the NDVI has the ability
to indirectly demonstrate the photosynthetic efficiency of a plant and its progress, since it has a strong
correlation with its physiological development (Bellon, Bégué, Lo Seen, de Almeida, & Simdes, 2017; Robinson
etal., 2017).
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Figure 3. NDVI of the bean culture in different physiological stages

For the image of 10/06/2015, the average values of NDVI were 0.23; 0.30; 0.43 and 0.38 for the central pivots
04, 08, 10, 22, respectively. For the image of 28/07/2015 the average values of this index were 0.89; 0.80; 0.53;
0.91; 0.78; 0.83 and 0.62 for the pivots 4, 5, 6, 7, 8, 10, 22 respectively. These values well-represent the initial
and reproductive phase of the bean for each of the analyzed central pivots.

The image of the day 29/08/2015 presented clouds above central pivots number 02 and 10. Thus, the analysis
was not performed for these central pivots in this day. Clouds are a big problem when working with orbital
images, making it important combine two or more compatible sensors (e.g., Landsat 7 and 8) or also utilize
unmanned aerial vehicle (UAV) to get around this problem.

Cloudiness is a major obstacle to the agricultural monitoring by means of satellites that capture electromagnetic
radiation at the optical range, since they are subject to cloud interference. This fact has motivated several
researchers to commit themselves to the development of methodologies to overcome this issue (Abascal Zorrilla,
Vantrepotte, Gensac, Huybrechts, & Gardel, 2018; Dusseux, Corpetti, Hubert-Moy, & Corgne, 2014). Another
alternative is the use of unmanned aerial vehicles (UAV), since it flies and capture images of surface at altitudes
below the clouds. This complementary measure is important, because it has low cost and images availability are
independent to clouds presence (Wahab, Hall, & Jirstrom, 2018).
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Another option would be to complement the Landsat 8 images with Sentinel 2A and 2B satellite images,
providing more coherent and reliable results for possible decision-making in irrigation management. The
Sentinel 2 constellation has onboard the Multispectral Instrument (MSI) sensor that presents temporal resolution
of 10 days and spatial resolution of 10, 20 and 60 meters, depending on the band (Drusch et al., 2012). However,
it does not have a specific sensor to capture the radiation in the thermal region, necessary for the estimation of
the evapotranspiration using SAFER. In a recent study, Filgueiras et al. (2019) developed a methodology to
overcome this problem. These authors estimated the surface temperature (Ts) for Sentinel 2A and 2B, which
allows the estimation of actual evapotranspiration with these satellites. After analyzing the NDVI images (Figure
3) it was possible to establish, by means of a simple linear regression (Figure 4), a relationship between the
Kc-FAO of the bean and the mean NDVI of the pivots. This relationship between the variables showed to be
close (r> = 0.8014), which explains the growth and phenological progress of the culture. Similar results were
found by Toureiro, Serralheiro, Shahidian and Sousa (2017) for the corn crop. These authors found a coefficient
of determination equal to 0.82 between the two variables. Alface, Pereira, Filgueiras, and Cunha, (2019)
obtained a coefficient of determination equal to 0.71 for sugarcane cultivation in the Republic of Mozambique, a
country located in southeastern Africa.

It is possible to see that some NDVI values are not consistent with the crop coefficient (Figure 4). Unlike NDVI,
the standard Kc modeling does not consider field factors that affect the crop temporally and spatially, such as the
phytosanitary issues of crops and soil moisture, represented by the water stress coefficient (KSW).
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Figure 4. Performance of the NDVI in relation to the Kc of the bean culture according to the sequence of the
images obtained and the variation of Kc as a function of the cycle
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Figure 5 shows the ETa data for five different dates over season. The maximum value between the pivots was
7.82 mm day™, referring to the apex of evapotranspiration of the crop in the cycle, which can be seen for the
central pivots 5 and 7 in the image of 13/08/2015.
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Figure 5. ETa values for five different dates over season estimated according to the SAFER algorithm

Similar to the NDVI, the ETa (FAO and SAFER) gradually increases according to the development of the
culture (Figure 5). Thus, the models were compared using a simple linear regression equation shown in Figure 6.
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Figure 6. Linear regression between ETa SAFER medium and ETc FAO

The dependence between the two models of evapotranspiration estimation proved more satisfactory in the
mid-season because, as described, there is an underestimation of the actual evapotranspiration in the initial phase
of the growth cycle. This fact occurs due to the low number of images obtained without the presence of clouds,
besides the errors related to the calculation of the ETa SAFER during in the initial phase development, since the
algorithm ponders the NDVI in parameterization. This fact is related to the area with absence or scarce
vegetation, presenting greater exposed soil area.

Table 2 shows the values of the metrics used to compare ETc estimated by SAFER with the ETc FAO
(considered as standard). MBE presented a value very close to zero (-0.01 mm day™), indicating that, overall, no
under or overestimation occurs in the data. However, if analyzed the Figure 6, it’s possible to clearly see that,
when ETc FAO is greater than 5 mm day™', the SAFER model overestimates and, and when FAO is close to 2
mm day”, it underestimates. Because this, MBE should be interpreted cautiously because positive and negative
errors will cancel out. According to Sales et al. (2018), the problem of SAFER underestimates is due to presence
of soils with little vegetation, resulting in low values of NDVI and high values of temperature, leading to low
values of R (Equation 5) and, consequently, low ETa values.

Table 2. Table with comparison of the metrics values between SAFER and FAO models

Statistical Metrics Values
MAE (mm day™) 1.22
MBE (mm day™") -0.01
RMSE (mm day™") 1.45
NSE 0.65

In the work of Moriasi et al. (2007), the NSE was classified as good between 0.65 and 0.75, a fact that makes the
SAFER algorithm satisfactory when compared to the standard method, despite all the field obstacles to estimate
ETa. The RMSE with a value of 1.45 mm day™ and the MAE with a value of 1.22 mm day™ demonstrate the
existence of considerable dispersion from observed values. This fact indicates the need for caution when
assessing values estimated by SAFER, since the RMSE and MAE values do not effectively represent the
behavior during part of the cycle. Only a few images were obtained and, as previously mentioned, the initial
phase presented a high estimation error. The statistical metrics highlights the importance of the SAFER
algorithm calibration for agricultural areas and crops. Despite the model being empirically calibrated to the
semiarid and presenting good predictive power, it is not accurate, as showed by the RMSE and MAE values.

4. Conclusion

1) The SAFER methodology along with the NDVI images allowed the extraction of important information
about the crop. This information helps in the verification of problems occurring in the fields, as well as in the
control of irrigation through the bean actual evapotranspiration.

2) NDVI presented a very close relationship with bean growth cycle, which allows the monitoring of current
crop information. Besides that, it resembles satisfactorily the Kc of the bean crop in the study area.
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3) In general terms, SAFER model suffers a lot of soil influence in the initial phase, impairing the analysis and
results in this period, but presenting good predictive capacity of ETa for bean crop.
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