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Abstract 
Agricultural irrigation is involved in an important chain that involves all sectors of the economy, either directly, 
by increasing food production, or indirectly, by withdrawing large amounts of fresh water. The relevance of this 
theme forces the search for alternatives to make water use as rational as possible. Evapotranspiration estimation 
methods based in remote sensing, such as the SAFER (Simple Algorithm for Evapotranspiration Retrieving) 
model, become extremely relevant in these scenarios, since it is possible to estimate this parameter in large 
scales. Therefore, the aim of this research was to apply the SAFER model in the estimation of bean crop actual 
evapotranspiration using Landsat-8 satellite image data. One of the parameters used as input in the SAFER 
model is the NDVI (Normalized Difference Vegetation Index), which presented a coefficient of determination (r²) 
equal to 0.80 when compared to the crop coefficient. The actual evapotranspiration (ETa) estimated by the 
SAFER model were compared to the FAO 56 model estimates for later correlation between the models. This 
information is expected to assist the producer in a better management of water resources used in irrigation. The 
correlation between the two models presented a relevant coefficient of determination (r2 = 0.73), representing the 
potential of the SAFER model in relation to the FAO model 56. 
Keywords: evapotranspiration, SAFER, FAO 56, crop coefficient, Landsat-8 

1. Introduction 
Approximately 70% of all freshwater in the world is destinated to agriculture, which makes it relevant to adopt 
more efficient and sustainable practices in the monitoring and management of water resources, especially in 
irrigated areas. In order to turn the irrigation feasible, we must seek sustainable practices, reducing conflicts 
among its users. A rational use will also reduce the electric energy cost to pump water in irrigated fields, which 
is the main responsible for food production expenditures (Greenland, Dalrymple, Levin, & O’Mahony, 2018).  

The world food production needs to be raised by 85% to feed the estimated 9.6 billion people by 2050 (DeSA, 
2013). In this scenario, irrigation is one of the main technologies with the potential to increase food production. 
Under Brazilian conditions, irrigated agriculture has an average productivity of at least 2.7 times larger than of 
rainfed agriculture (Borghetti, Silva, Nocko, Loyola, & Chianca, 2017). However, it is necessary to practice it 
with caution. 

The water application criteria for crops is determined by irrigation management, whose parameters are related to 
soil, plant and atmosphere. Among the main irrigation management methods, it is worth mentioning the 
management via soil, via plant and via climate. The management via soil and via plant are more difficult to apply 
and, consequently, more expensive. On the other hand, the irrigation management via climate is highlighted by 
its greater economic feasibility and practicality in its execution, being widely applied. 

In management via climate, the irrigation depths can be determined from the product between the reference 
evapotranspiration (ETo), crop coefficient (Kc) and water stress coefficient (Ks), which combine in the actual 
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In the field, data were collected regarding: number of active central pivots in the crop season, area of each pivot, 
bean cultivars, sowing date and irrigation cut-off date (when irrigation management was suspended). 

2.3 Orbital Data 

In order to calculate evapotranspiration using the SAFER model, we selected the images available for the crop 
season. The satellite used was the Landsat-8, which have the Operational Land Imager (OLI) sensor and Thermal 
Infrared Sensor (TIR). The Landsat-8 with these two sensors have the following spatial resolution: panchromatic 
with 15.0 m (band 8); multispectral with 30.0 m (bands 1-7 and 9); and thermal with 100.0 m (bands 10-11), all 
with a temporal resolution of 16 days. It is noteworthy that the thermal images were already re-scaled for 30 
meters due to the level of processing of the product used. These images were acquired through the online 
platform Earth Explorer, which is maintained by the USGS (United States Geological Survey) and NASA 
(National Aeronautics and Space Administration). 

2.4 Orbital Data Selection 

Each of the satellite images obtained during the crop cycle had their cloudiness verified for the study area. All 
the images that presented clouds in the area of study were eliminated, because the clouds could compromise the 
image data analysis and consequently the ETa modeling by the algorithm. A total of five cloud-free images were 
obtained among the dates related to the interval of sowing until the irrigation suspension, for the year 2015, 
according to Table 1.  

 

Table 1. Central pivots area and respective dates of sowing and irrigation suspension 

Pivot Area (ha) Sowing Date Irrigation Suspension 

4 140 05/06/2015 22/08/2015 

5 130 18/06/2015 05/09/2015 

6 120 26/06/2015 07/09/2015 

7 130 11/06/2015 29/08/2015 

8 130 28/05/2015 16/08/2015 

10 120 20/05/2015 12/08/2015 

22 130 22/05/2015 10/08/2015 

 

2.5 Pre-processing of Orbital Data 

The images were initially pre-processed to radiometric conversion, which transforms the digital numbers of 
radiance to apparent reflectance. Afterwards, the images were submitted to an atmospheric correction with the 
application of the DOS methodology (Dark Object Subtraction), which was developed by Chavez Jr (1988). 
These steps were done in the QGIS software (2.14.19-ESSEN) and for these we used the Semi-Automatic 
Classification Plugin developed by Congedo (2016).  

2.6 SAFER Algorithm 

The images for the subsequent estimation of the evapotranspirative ratio (R), algebraic operations were 
performed with the required bands to obtain the Normalized Difference Vegetation Index (NDVI), surface 
albedo (o) and surface temperature (Ts). All the steps are shown in the flow chart (Figure 2). 
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ETa = ETo R                                     (6) 

where, ETo: Reference evapotranspiration, estimated according to the Penman-Monteith-FAO 56 (Allen et al., 
1998), according to the Equation 7. 

ETo = 
0.408Δ Rn – G  + 

γ  900 U2 (es – ea)
T	+	273

Δ + γ (1 + 0.34u2)
                             (7) 

Where,  is the slope of the vapor pressure curve; Rn: daily net radiation; G: daily total soil heat flux; : 
psychrometric constant; u2: wind speed at 2 meters high; es: saturation vapor pressure; ea: actual vapor pressure; 
T: average air temperature at 2 meters high.  

2.7 Model Validation 

The model SAFER was validated with the estimates of ETc according to FAO 56 (Equation 8), since no directed 
measures of real evapotranspiration were available. The calculated ETo was multiplied by the crop coefficient 
that best represented the crop in the field (time of the passage of the image), according to the assumptions 
established in Allen et al. (1998). 

ETc	=	Kc·ETo                                    (8) 

Where, ETc: crop evapotranspiration; Kc: crop coefficient.  

The bean crop coefficient corresponding to the days of the images was estimated using the methodology 
described by FAO 56. 

2.8 Linear Regression With NDVI Data to Estimate Kc 

The Kc was estimated according to the methodology presented in Allen et al. (1998). A linear regression was 
performed with the Kc value as the dependent variable and the NDVI as the independent variable. This 
regression was performed to fit a practical model to estimate Kc of bean crop from satellite images. 

2.9 Statistical Analysis 

The data of FAO ETc were considered as observed values and the data obtained by the SAFER algorithm as 
predicted values. Thus, the predicted values were compared to those observed using the statistical metrics: 
coefficient of determination (r²) (Richter, Hank, Atzberger, & Mauser, 2011), Root Mean Square Error (RMSE) 
(Neville & Kennedy, 1964), Nash-Sutcliffe Efficiency (NSE) (Nash & Sutcliffe, 1970), Mean bias error (MBE) 
(Richter, Hank, Atzberger, & Mauser, 2011) and absolute mean error (MAE) (Willmott & Matsuura, 2005) 
according to Equations 9, 10, 11, 12 and 13, respectively. 

r2 =  
∑ (Pi	– P)(Oi	– O)n

i=1
2∑ (Pi	– P)n

i=1
2 ∑ (Oi	– O)n

i=1
2                                (9) 

RMSE = 
∑ (Oi	– Pi)

2
  n

i=1

n
                                (10) 

RMSE = 
∑ (Oi	– Pi)

2
  n

i=1

n
                                (11) 

MBE	= 
1

n
∑ Pi	– Oi   n

i=1                                (12) 

MAE	= 
1

n
∑ Pi	– Oi   n

i=1                                (13) 

where, Pi is the value predicted by the model; Oi: observed value; O: mean values observed and n: numbers of 
data pairs.  

3. Results and Discussion 
The NDVI values of the analyzed central pivots are show in Figure 3. NDVI has been used in several studies in 
the analysis of the condition of natural or agricultural vegetation. The main factor for its adoption is the portion 
of energy reflected by the leaf in the region of red and the near infrared. The quantifications of these reflected 
energies will generate the NDVI, ranging from -1.0 (e.g., water clean) to + 1.0 (e.g., green vegetation and dense 
cover). Analyzing Figure 3, it is possible to verify the development of the bean crop as well as the condition of 
the vegetation throughout the crop cycle. In practical terms, it’s possible to affirm that the NDVI has the ability 
to indirectly demonstrate the photosynthetic efficiency of a plant and its progress, since it has a strong 
correlation with its physiological development (Bellón, Bégué, Lo Seen, de Almeida, & Simões, 2017; Robinson 
et al., 2017).  
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Figure 6. Linear regression between ETa SAFER medium and ETc FAO 

 

The dependence between the two models of evapotranspiration estimation proved more satisfactory in the 
mid-season because, as described, there is an underestimation of the actual evapotranspiration in the initial phase 
of the growth cycle. This fact occurs due to the low number of images obtained without the presence of clouds, 
besides the errors related to the calculation of the ETa SAFER during in the initial phase development, since the 
algorithm ponders the NDVI in parameterization. This fact is related to the area with absence or scarce 
vegetation, presenting greater exposed soil area. 

Table 2 shows the values of the metrics used to compare ETc estimated by SAFER with the ETc FAO 
(considered as standard). MBE presented a value very close to zero (-0.01 mm day-1), indicating that, overall, no 
under or overestimation occurs in the data. However, if analyzed the Figure 6, it’s possible to clearly see that, 
when ETc FAO is greater than 5 mm day-1, the SAFER model overestimates and, and when FAO is close to 2 
mm day-1, it underestimates. Because this, MBE should be interpreted cautiously because positive and negative 
errors will cancel out. According to Sales et al. (2018), the problem of SAFER underestimates is due to presence 
of soils with little vegetation, resulting in low values of NDVI and high values of temperature, leading to low 
values of R (Equation 5) and, consequently, low ETa values.  

 

Table 2. Table with comparison of the metrics values between SAFER and FAO models 

Statistical Metrics Values 

MAE (mm day-1) 1.22 

MBE (mm day-1) -0.01 

RMSE (mm day-1) 1.45 

NSE 0.65 

 

In the work of Moriasi et al. (2007), the NSE was classified as good between 0.65 and 0.75, a fact that makes the 
SAFER algorithm satisfactory when compared to the standard method, despite all the field obstacles to estimate 
ETa. The RMSE with a value of 1.45 mm day-1 and the MAE with a value of 1.22 mm day-1 demonstrate the 
existence of considerable dispersion from observed values. This fact indicates the need for caution when 
assessing values estimated by SAFER, since the RMSE and MAE values do not effectively represent the 
behavior during part of the cycle. Only a few images were obtained and, as previously mentioned, the initial 
phase presented a high estimation error. The statistical metrics highlights the importance of the SAFER 
algorithm calibration for agricultural areas and crops. Despite the model being empirically calibrated to the 
semiarid and presenting good predictive power, it is not accurate, as showed by the RMSE and MAE values. 

4. Conclusion 
1) The SAFER methodology along with the NDVI images allowed the extraction of important information 
about the crop. This information helps in the verification of problems occurring in the fields, as well as in the 
control of irrigation through the bean actual evapotranspiration. 

2) NDVI presented a very close relationship with bean growth cycle, which allows the monitoring of current 
crop information. Besides that, it resembles satisfactorily the Kc of the bean crop in the study area. 
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3) In general terms, SAFER model suffers a lot of soil influence in the initial phase, impairing the analysis and 
results in this period, but presenting good predictive capacity of ETa for bean crop. 
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