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Abstract 

The present research aims to evaluate the biomass estimates of Araucaria angustifolia (Bertol.) Kuntze trees 
obtained by the direct method, then present results generated from a 2.0 m resolution spectral image 
Worldview-2 satellite. The quantification of the biomass in the field was first carried out of 29 trees of the specie 
of interest with DBH ≥ 40 cm and then with the image aid the crowns were delimited for analysis. From the 
spectral bands (B2-blue, B3-green, B4-yellow, B5-red, B6-near red, B7-near infrared 2 and B8-near infrared 2), 
it was possible to obtain vegetation indexes proposed by the literature (NDVI, NDVI_2, RS and SAVI_0,25) and 
later incorporated with dendrometric data a correlation matrix was formed. Additionally, mathematical equations 
were used to estimate biomass and carbon as a function of dendrometric variables and information obtained from 
the satellite image processing. From these equations, the ones that presented better results were those that 
contained independent dendrometric variables (DBH) and those that contained vegetation indices (NDVI_2 and 
NDVI). For the dendrometers, the relative error found was 14.42% and 14.32% for biomass and carbon 
respectively, while for the digital ones, NDVI_2 found a relative error of 37.82% and an adjusted coefficient of 
determination of 0.88 in the biomass equations. In the carbon equations, the NDVI variable presented the best 
results, being 38.56% the relative error and 0.87 the determination coefficient. 

Keywords: forest Inventory, regression, remote sensing 

1. Introduction 

Over the last few years there has been increasing interest in using remote sensing data to provide efficient 
estimates of aboveground biomass (AGB) and carbon because they are able to collect repetitive and 
comprehensive observations from local to global scales (Avitabile et al., 1998; Batistella, 2005; Lu et al., 2004; 
Sarker & Nichol, 2011; Soenen et al., 2010; Dong et al., 2012). The AGB cannot be measured directly from air 
or space, so the approaches using remote sensors are developed by linking information derived from remote 
sensing data and measured biomass values in the field (Zhu & Liu, 2015). The close association between tree 
height, DBH and wood volume models have a high explanatory power for forest biomass estimates (Koch, 
2010). 

Forest biomass is one of the main resources for an emerging sustainable bioeconomy (Becker et al., 2009). 
Therefore, sustainable management of forest ecosystems as well as climate protection as mechanisms for 
Reducing Emissions from Deforestation and Degradation (REDD+) depend on reliable and concise information 
on the spatial and temporal distribution of forest biomass (Maack et al., 2015). In addition, precise estimates are 
needed to assess the ecosystem services potential (eg erosion control). In the remote sensing area, several sensors 
and approaches were evaluated to model above-ground biomass (Lu, 2006; Anaya et al., 2009; Koch, 2010; 
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Clark et al., 2011; Maack et al., 2015). Most frequent surveys have used remote sensing predictors in 
combination with field measurements to train parametric or non-parametric regression models (Fassnacht et al., 
2014). 

The biomass estimation using high-resolution spatial images, such as the Worldview-2 sensor, has been 
extensively studied with accurate experimental results (Dube et al., 2014; Mutanga et al., 2012; Robinson et al., 
2016; Sibanda et al., 2015). However, the operational use of this data in automated procedures to be applied to 
forest inventories and large-scale forest management is still limited to a small number of cases (Fassnacht et al., 
2017). 

More precisely, the 8-band Worldview-2 multispectral sensor is characterized by a better spatial resolution of 2 
m and two new spectral bands with unique band configurations such as red-edge (705-745 nm) and near infrared 
2 (860-1040 nm) when compared to other multispectral sensors. Due to these unique advances, vegetation 
indexes as the Normalized Difference Vegetation Index (NDVI), Simple Reason (SR), SAVI (Soil Adjusted 
Vegetation Index), EVI (Enhanced Vegetation Index), calculated from the WordView-2 data are more sensitive 
to subtle variations in the biochemical/physical properties of the plant and could, therefore, improve the 
quantification and mapping of BIAS and carbon in densely forested areas such as the Araucaria forests. 

The literature demonstrates that vegetation indexes derived from Worldview-2 are effective in characterizing 
forest biomass and other biophysical characteristics of vegetation and many which are sensitive to reflectance in 
the visible and near-infrared portions of the electromagnetic spectrum (Adam et al., 2014; Dube et al., 2014; 
Mutanga et al., 2012; Robinson et al., 2016). Beyond, sensors with few, but important spectral bands (i.e., the 
red band) are critical to minimize any redundancy and unnecessary noise associated with hyperspectral images. 
Due to these unique sensor characteristics the introduction of new generation multispectral sensors is in this 
study, verifying the usefulness in the carbon standards monitoring stored in terrestrial ecosystems on landscape 
scale with high precision and accuracy. 

Therefore, the objective of this work was to estimate the aerial biomass and organic carbon of native trees of 
Araucaria angustifolia (Bertol.) Kuntze in an Araucaria Forest fragment using vegetation indexes in 
Wolrdview-2 image. 

2. Method 

2.1 Characterization of the Study Area 

This research was developed in a fragment of Araucaria forest (IBGE, 1992) located in the subbasin of the 
Imbituvão river, Assungui community, municipality of Fernandes Pinheiro, State of Parana. The municipality is 
located in the Center-South region of Parana (25º27′ S and 50º35′ W), at an altitude of 893 meters (Wrege et al., 
2012). The rural property where the fragment is inserted has a total area of 47.9 hectares, of which 24.5 hectares 
are forest remnants (Figure 1), that comprise part of the studies of the Imbituvão Project developed by the 
Forestry Engineering Department of Central Western Parana State University (UNICENTRO).  

According to Koppen classification, the climate region is characterized as Subtropical Moist Mesothermal (Cfb), 
that means, it has fresh summers and winters with the occurrence of severe frost and that hardly has dry seasons. 
The average annual temperature is 18 °C, with a minimum temperature of -2 °C and maximum of 32 °C 
(Simepar, 2012). 
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(count); Δλ Band = Effective bandwidth (μm) of a band. The calibration factor and the effective bandwidth are 
available in the image file metadata.  

For the apparent bidirectional radiance values conversion to apparent bidirectional reflectance, Equation 2 was 
used. 

ρλ Pixel,	Band	=	 Lλ Pixel, Band × d TS²·π

Esun λBand × cos ϴs
                              (2) 

Where, ρλ Pixel, Band = Apparent bidirectional reflectance; Lλ Pixel, Band = Apparent two-way radiance; d TS 
= Earth-Sun Distance; π = 3.141592; Esun λBand = Sun average irradiance at the top of the atmosphere for each 
band; cos(Θs) = zenith solar angle.  

The image atmospheric correction was performed in the FLAASH module, which uses MODTRAN4 (Moderate 
Resolution Atmospheric and Transmittance Model) radiative transfer code. This code processes data from 
hyperspectral and multispectral sensors in the short-wave infrared (SWIR), visible and ultraviolet (UV) bands, 
thus minimizing the effects of scattering and atmospheric absorption. In addition to performing the correction for 
the pixel mix due to surface scattering, the code also calculates the average scene visibility (aerosol/mist). The 
FLAASH method can also be used to correct images collected in vertical or inclined geometries (Silva et al., 
2017). 

2.5 Generation of Vegetation Indices 

The vegetation indexes analyzed were: 

a) Simple Reason (SR): where (Cohen et al., 1992) suggests being the first true index among all others. It’s 
expressed by the ratio between the near infrared band 1 and the red band, whose relevant characteristic is to 
provide information on vegetation biomass (Schlerf et al., 2005). Its expression (3) is defined as: 

R	=	  B7nir1 

B5red
                                      (3) 

Where, B7 is the Near Infrared 1 band and B5 is the red band. 

b) NDVI (Normalized Difference Vegetation Index): proposed by Gurgel (2003), the index starts from the 
principle of the difference between the measurement of the reflectance in the near infrared channels and the red 
one by the sum of the same channels, that is, using the SR bands (4): 

NDVI	= 
 B7nir1 – B5red

 B7nir1	+	B5red
                                  (4) 

From the NDVI (5, 6, 7), some tests were performed in this work, altering some bands, and thus three new 
indices were tested: 

NDVI	 1 	=	  B8nir2 –	B5red

 B8nir2	+	B5red
                                 (5) 

NDVI 2 	=	  B7nir1 –	B6red-edge

 B7nir1	+	B6red-edge
                               (6) 

NDVI 3 	=	  B8nir2 –	B6rededge

 B8nir2	+	B6rededge
                                (7) 

Where, B8 is the band of Near Infrared 2and B6 is the band of the Near Red. 

c) SAVI (Soil Adjusted Vegetation Index): one of the most recurrent problems in the estimation of vegetation 
indexes in satellite images is the influence that the soil exerts on the characterization of the plants canopy and 
Huete (1988) thinking about that formulated the SAVI, which tries to minimize the influence exerted from a 
factor (L), aggregated in the expression, which can be: 1.0, when it is a very low coverage, 0.5 for covers 
considered intermediate and 0.25 for those of high density. In this research two factors (0.25 and 0.5) were tested, 
whose expression was described as (8): 

SAVI	= 
1	+	L  × ( B7nir1	–	B5red)

(L	+ B7nir1	+	B5red)
	× (1	+	L                            (8) 

2.6 Sampling of Spectral Variables and Adjustment of the Mathematical Model 

For obtaining the digital variables, initially a buffer was generated, considering the crown diameters of the 
sampled trees, through their (x, y) coordinates. Subsequently, the image clipping was performed and thus the 
mean values of the pixels of each tree sampled were extracted. This step was performed for all indexes under 
analysis as well as for each spectral band separately. Figure 3 illustrates how were arranged the delimitations 
made in the image for the calculations of each tree. 
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Table 3. Correlation matrix between obtained data in the field and digital values of the indexes and spectral 
bands 

DBH  DW  Carb  NDVI NDVI_1 NDVI_2 NDVI_3 SR SAVI B1 B7 

DBH  1.00 0.93 0.93 -0.06 -0.12 0.13 -0.03 -0.06 -0.06 -0.10 -0.20

DW  0.93 1.00 1.00 0.02 -0.06 0.22 0.03 -0.01 0.01 -0.10 -0.11

Carb  0.93 1.00 1.00 0.01 -0.06 0.22 0.03 -0.01 0.01 -0.10 -0.10

NDVI -0.06 0.02 0.01 1.00 0.96 0.58 0.52 0.98 1.00 0.11 0.14 

NDVI_1 -0.12 -0.06 -0.06 0.96 1.00 0.49 0.63 0.97 0.96 0.07 0.03 

NDVI_2 0.13 0.22 0.22 0.58 0.49 1.00 0.75 0.53 0.58 -0.13 0.04 

NDVI_3 -0.03 0.03 0.03 0.52 0.63 0.75 1.00 0.54 0.51 -0.17 -0.19

SR -0.06 -0.01 -0.01 0.98 0.97 0.53 0.54 1.00 0.98 0.09 0.05 

B1 -0.10 -0.10 -0.10 0.11 0.07 -0.13 -0.17 0.09 0.11 1.00 0.79 

B7 -0.20 -0.11 -0.10 0.14 0.03 0.04 -0.19 0.05 0.15 0.79 1.00 

Note. DBH = diameter at breast height (cm); DW = Dry weight (kg); Carb = Carbon (kg); NDVI = Normalized 
Difference Vegetation Index; NDVI (2 and 3) = Vegetation Index using the red-edge band; SR = Simple Reason; 
SAVI = Soil Adjusted Vegetation Index; B1 = Spectral Band Costal Blue and B7 = Near Infrared Spectral Band. 

 

The biomass and carbon correlations, presented statistical significance (p value = 0.000) in relation to DBH. This 
result can also be seen in the research of Watzlawick et al. (2009) who also worked with the same variables. 

When the data (biomass and carbon) are compared with the image data, which correspond to vegetation indexes 
and spectral bands, they are not statistically significant (p value > 0.05). However, index NDVI_2 has the largest 
positive correlation in relation to biomass and carbon, 0.223 and 0.222, respectively. These values can be 
explained by the fact that the bands that integrate the index are the near infrared 1 and the red-edge band, which 
in turn have a very strong relation with spectral behavior of the plant. 

Therefore, the presence of single and strategically positioned bands, such as red-edge and near-infrared bands, 
has the potential to improve the accuracy of biomass and carbon estimates of vegetation when compared to other 
sensors, strengthening vegetation mapping performance (Dube et al., 2014; Mutanga et al., 2012; Ozdemir e 
Karnieli, 2011; Robinson et al., 2016; Sibanda et al., 2015a; Tan et al., 2003). For example, Robinson et al. 
(2016), found with red-edge and near infrared double bands (NIR1 and NIR2) the best combination for species 
discrimination. Table 4 shows equations adjusted from the regression using the Stepwise method. 

In the study of biomass (Table 4) there was a minimum difference in relation to the adjusted determination 
coefficient (R² adj) of each equation. Equation (2) stands out showing the highest value of R² adj (0.87), but with 
the standard error (Syx%), there is a notable disparity between the four proposed models, especially those 
involving only the vegetation indexes. Equation 1 presents the lowest standard error (14.42%), because considers 
only the variable DBH (cm), which is directly related to biomass and carbon. However, Equation 2, which uses 
the red-edge and near infrared band 1, obtained a standard error of 37.82%, and R²adj of 0.87. 

 

Table 4. Equations to estimate the aerial biomass and organic carbon of Araucaria angustifolia obtained by the 
Stepwise procedure 

R.M. Model Syx% R²adj β0 β1 β2 β3 β4 

1 Bio = β0 + β1·DBH 14.4 0.86 -2901.85 96.3 - - - 

2 Bio = β1·NDVI_2 37.8 0.87 - 23168.7 - - - 

3 Bio = β1·B1 38.8 0.87 - 51.8 - - - 

4 Bio = β1·(NDVI) + β2·(SR) + β3·(SAVI) 39.6 0.86 - 549026 75.765 -36715 - 

1 Cb = β0 + β1·CA + β2·DBH + β3·h 14.4 0.85 -1428.88 0.9038 41.249 6.161 - 

2 Cb = β1·NDVI + β2·NDVI_1 + β3·NDVI_2 + β4·NDVI_3 38.5 0.87 - -27115.7 29405 33738.8 -25671.2

3 Cb = β0 + β1·DBH 14.3 0.86 -1260.91 42.0935 - - - 

4 Cb = β1·NDVI 38.5 0.87 - 1508.6 - - - 

5 Cb = β1·NDVI_2 37.5 0.88 - 10194.4 - - - 

Note. Bio = Biomass (kg); Cb = Carbon (kg); R. M. = Regression Model; Syx% = standard error of estimative; 
R²adj = coefficient of determination adjusted; βi = parameters of the equation; h = total height (m); CA = Crown 
area.  
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For the models considering as dependent variable the carbon content (kg), the equations obtained some values 
close to those found with the biomass variable (kg). Equations 1 and 3 can be highlighted, being those that 
presented a smaller relative error in relation to the others. In Equation 3, a greater prominence is given by 
presenting values of 0.86 for the R² adj and 14.32% for the relative error. By the fact of they are independent 
variables directly related to individuals, that is, variables extracted from each tree in the field, such as the DBH 
and the crown area, it can be a point to be observed to justify the values presented in the equations Table 4. 

For the equations with the vegetation indexes as independent variables, the values increased considerably, 
however, it is emphasized the Equation 2, which presents the three NDVIs modified in the research as 
independent variables, and that their values of R²adj (0.87) and relative error (38.56%), did not show a 
significant difference with model 4, which uses the standard NDVI in the equation. 

Ramirez et al. (2010) obtained a R²adj of 0.85 and standard error of 5.1% for biomass, in which the independent 
variable was the green band of the satellite image Quickibird-2 for the coffee crop, contradicting this research in 
which the green band did not present satisfactory results to compare with the dependent variables, biomass and 
carbon. 

The results are in accordance with the study by Watzlawick et al. (2009) to estimate biomass in an Araucaria 
Forest using the IKONOS-2 platform, using the NDVI, obtaining R²adj of 0.53 and a standard error of 42.69%. 
Bendig et al. (2015), estimating the biomass of the summer barley crop in the Cologne municipality in Germany, 
where also using vegetation indexes for estimation, obtained R²adj of 0.65 and a standard error of 56.45%. Both 
of the aforementioned studies obtained lower estimation results related to the present study. 

The results of this study demonstrate the precision degree and importance of the Worldview-2 integration in the 
estimation of biomass and carbon. Dube and Mutanga (2015) obtained correlation coefficients from 0.86 to 0.92 
for the estimation of biomass and carbon using vegetation indexes combined with spectral variables. These same 
authors commented that the humidity, slope, temperature, aspect, total moisture content, elevation and sunshine 
along with image spectral information significantly improved biomass and carbon estimates, because these 
factors influence vegetation growth and spectral response. 

According to Watzlawick et al. (2009) the explanation about the near infrared presenting good results regarding 
biomass estimates it is closely associated with the vegetation, in the interaction of the incident energy with the 
cellular structure and the amount of water in the leaf. Dube and Mutanga (2015) commented that the use of 
vegetation indexes can be attributed to the saturation challenges associated with most multispectral sensors. The 
literature shows that NDVI calculated from traditional near-infrared and red bands produce poor biomass 
estimates (Hansen & Schjoerring, 2003; Lee et al., 2004; Mutanga & Skidmore, 2004). However, when 
compared with this study, NDVI-2 (near infrared and red-edge), obtained an acceptable result for biomass, 
mainly due to the Worldview-2 sensor characteristic. 

For the graphical analysis of the residuals the best equations were chosen as a function of the R²adj and the 
standard error, that can be visualized in Figure 5. 
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