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Abstract 
Cagaita (Eugenia dysenterica DC.) seedling production is currently important for the restoration of degraded 
areas of the Cerrado biome and to supply the demand for its fruits for regional food production. The plants of 
Cagaita have been described in the literature as resistant to nutrient-poor soils, but the studies remain 
inconclusive. Therefore, we tested the hypothesis that initial E. dysenterica seedling development could be 
affected by the lack of specific nutrients. We planted seedlings of this species in complete hydroponic solution 
and under individual macronutrient omission of N, P, K, Ca, Mg and S. The development of macronutrient 
deficiency symptoms was visually monitored for 120 days after transplantation in response to the treatment 
solution, and growth characteristics and tissue contents of different macronutrients were determined. The 
omissions of Mg and P were the treatments with the strongest effects on seedling growth. The most commonly 
observed deficiency symptoms were chlorosis and necrosis, in addition to leaf purpling (P deprivation), impaired 
root hair development (Ca and S deprivation) and a reduced number of leaves (Mg and P deprivation). The 
macronutrients Ca and N were most accumulated in the shoots and roots of plants subjected to complete nutrient 
solution, showing the importance of the availability of these nutrients in the initial stages of seedling 
development for the production of healthy Cagaita plants, with greater viability in the field. 
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1. Introduction 
Eugenia dysenterica DC., commonly known as Cagaiteira, is a fruiting species that is native to the Cerrado and 
has potential for cultivation in traditional farming systems (e.g., Camilo et al., 2013). Interest in this species has 
been increasing due to its ornamental and economic value (Almeida, 1998). The latter is related to the direct use 
of its fruits as raw materials in the food industry (e.g., Santos et al., 2012) or of its wood to supply fence posts or 
cork. The chemical composition and nutritional value of the fruits, due to the levels of vitamins, minerals and 
phenolic and antioxidant compounds, have attracted the attention of researchers in the area (Sousa et al., 2018). 
Recently, polyphenols extracted from plants of the Myrtaceae family and specifically E. dysenterica were found 
to be effective in attenuating dyslipidaemia and inflammation (Donado-Pestana et al., 2018a; Donado-Pestana et 
al., 2018b). Because this plant is virtually widespread throughout the Cerrado, particularly in the central Cerrado 
region, its seedlings have been used in forest restoration programmes in this biome. Some studies have also 
demonstrated the medicinal potential of fruits (e.g., Moraes et al., 2008), latex (e.g., Marinho et al., 2011), leaf 
extracts (e.g., Silva et al., 2011) and juice essential oils of species of the Eugenia genus (e.g., Ogunwande et al., 
2005; Santos et al., 2004).  

Although there is a potential and growing market for fruits of regional interest, E. dysenterica remains 
underexploited, and its fruits are used only for extractive and predatory functions (Ribeiro et al., 2008). The 
impact on the population structure of this species throughout the Cerrado has been confirmed by genetic studies, 
which have indicated a reduced and geographic distribution-dependent gene flow (Telles et al., 2001; Zucchi et 
al., 2005). Therefore, the large-scale production and distribution of healthy E. dysenterica seedlings for the 
establishment of commercial farming areas play an important role not only in the generation of income but also 
in the implementation of conservation strategies, decreasing pressure on areas of natural occurrence of this 
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species. Currently, however, limited knowledge on the nutrient requirements of E. dysenterica plants in the 
initial stages of their growth has hindered the production of seedlings of this species and, thus, their 
establishment in the field. Deficiency or excess problems are frequent due to nutrient application without 
scientific criteria (Resende et al., 2010).  

Although Naves et al. (2002) have suggested that E. dysenterica plants show high adaptation to nutrient-poor 
soils, with high acidity, the presence of toxic aluminium and a large water deficit in some months, studies have 
shown that the type of soil on which the population grows may affect the tree phenotype (Telles et al., 2001) and 
that the occurrence of E. dysenterica in Cerrado areas may be strongly affected by the soil patterns (mineral 
occurrence) (Coelho et al., 2016). These studies indicate, therefore, that some nutrient limitations or even 
excesses may not be tolerated by E. dysenterica seedlings. 

An understanding of the adequate macronutrient demand, especially during the critical seedling production phase, 
which is the initial development stage, is a fundamental step in this process (Munson, 2018) because it may 
guarantee the large-scale production of healthy seedlings with the potential to withstand adverse field conditions 
(Bessa et al., 2016). Nutrients affect plant growth because they work as the building blocks of organic matter, 
cofactors or signalling molecules (Coruzzi & Bush, 2001). Thus, macronutrient deficiency or even toxicity 
promote metabolic disorders. A shortage of K, for example, drastically reduces plant growth and productivity 
(Hafsi et al., 2014), whereas a lack of Mg affects the activity of several enzymes and the structural stabilisation 
of tissues (Guo et al., 2016). Conversely, a shortage of Mn directly affects the integrity of photosystem II 
(Schmidt et al., 2016). The metabolic problems generated by nutrient limitations, or even toxicity, manifest as 
symptoms, especially if the nutritional disorder is severe. These symptoms include reduced growth, leaf 
yellowing and/or purpling, necrosis or distorted growth of plant parts (Fernández-Escobar et al., 2016). Each 
mineral nutrient induces specific symptoms. Thus, visual symptoms help to identify nutritional disorders in 
plants. Visual diagnosis, however, may become rather complicated when more than one nutrient is deficient or 
when the deficiency of one nutrient is induced by the excess of another (Marschner, 2012). Therefore, a 
successful diagnosis also requires the analysis of plant anatomical and physiological traits and of data on 
growing and climatic conditions (Shear & Faust, 1980). Thus, knowledge of symptoms, as a complementary tool 
in the diagnosis of deficiencies or toxicity, has great practical importance for the identification and rapid 
resolution of nutritional problems.  

To test the hypothesis that the initial growth of E. dysenterica seedlings may be affected by the absence of 
specific macronutrients, we used the hydroponic method, which makes it possible to control the nutrients in 
nutrient solution, to test the effect of macronutrient omission of the growth and nutrient balance of these 
seedlings and to observe the visual symptoms triggered by these omission conditions. 

2. Materials and Methods 
2.1 Seedling Production and Growth 

E. dysenterica fruits were collected from a natural population of this species located in a stretch of Cerrado sensu 
stricto at Gameleira Farm, municipality of Montes Claros, Goiás (16°06′20″ S and 51°17′11″ W at 592 m above 
sea level). Because the seeds of this species are typically recalcitrant (e.g., Silva et al., 2017b), they were 
removed from the fruits by manual pulping and immediately placed in plastic trays with autoclaved sand. At 30 
days after sowing, the seedlings were transferred to the hydroponic cultivation system, planted in aerated plastic 
pots (8-L capacity) and kept in a greenhouse. 

During the first 30 days in hydroponic solution, the seedlings were grown in Hoagland and Arnon (1950) 
nutrient solution at ½ ionic strength of the treatment solutions. After this adaptation period, these solutions were 
replaced with the treatment solutions consisting of complete nutrient solution or nutrient solution with individual 
nutrient omission (N, P, K, Ca, Mg and S).  

The solutions were prepared with deionised water, adjusting the pH to 5.5±0.5, which was corrected daily with 
HCl and NaOH solutions. The solutions were always replaced when they reached 30% initial electrical 
conductivity. 

The experimental design was completely randomised, and 06 macronutrient omission treatments and a control 
treatment, consisting of complete nutrient solution, were tested. Each treatment was assessed in four replicates, 
each represented by a pot with two seedlings, totalling 56 experimental units. 

2.2 Nutrient Deficiency Symptoms 

The plants were observed daily to detect visual symptoms of physiological disorders. The seedlings were 
periodically photographed to describe the appearance of macronutrient deficiency using a qualitative method. 
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secondary metabolism pathways related to the synthesis of bioactive compounds, such as essential oils and 
flavonoids (e.g., Jia et al., 2015; Valentinuzzi et al., 2015). Our data indicate that E. dysenterica plants also react 
to P omission by accumulating anthocyanins in their leaves. According to Pourcel et al. (2013), anthocyanins are 
key regulators of stress responses and plant development.  

The presence of chlorosis or necrosis, which generally manifested as leaf spots or points, was the most common 
nutrient deficiency symptom in E. dysenterica seedlings. Chlorosis may be explained by two causal factors. First, 
under deficiency, nutrients that are already allocated to leaves are transported to other plant parts, and these 
nutrients are described as phloem-mobile. In such cases, chlorosis usually starts in younger leaves (Uchida, 
2000). A second reason for chlorosis may be the low nutrient concentrations, which are unable to meet the leaf 
nutrient demands for growth because the quantity already allocated to leaves is insufficient. In such cases, 
chlorosis is particularly detected in younger leaves, which are deficient in phloem-immobile or poorly mobile 
nutrients. The development of necrosis may have merely represented a worsening of the chlorosis symptom, as 
occurs under N deficiency, although necrosis may be caused by the accumulation of basic amino acids (ornithine, 
citrulline and arginine) in other cases. These amino acids are decarboxylated, thereby increasing the 
concentration of putrescine (Ruiz & Moyano, 2017; Epstein & Bloom, 2006), a nitrogenous compound that is 
toxic to plants and responsible, for example, for the necrotic spots that appear on K-deficient leaves (e.g., Costa 
et al., 2017; Silva et al., 2017a). 

Although studies suggest that E. dysenterica plants are highly adapted to soils with medium or low (Naves et al., 
2002) fertility, our results confirmed the hypothesis that seedling growth of this species may be affected by the 
unavailability of specific nutrients. This effect is unsurprising because the lack of nutrients, either macronutrients, 
significantly alters nutrient uptake and transport in plant cells, primarily affecting proteins, which play a key role 
in deficiency-compensation responses (Nouri et al., 2016). However, our results showed that growth 
characteristics in E. dysenterica plants are primarily affected by limitations in the macronutrients Mg and P. 
After K, Mg is the second most abundant cation in plant cells. Many physiological processes, such as enzymatic 
activities and ribosomal subunit aggregation, depend on Mg (Gerendás & Führs, 2013). In plants, Mg is the 
central atom of chlorophyll molecules. More than 300 enzymes are Mg-dependent, and changes in the 
concentration of Mg significantly affect the membrane potential. Kobayashi and Tanoi (2015) reported that 
starch accumulation and the development of chlorosis associated with reactive oxygen species generation occur 
in young and mature leaves under Mg deficiency. These problems may further affect photosynthesis and lead to a 
decrease in biomass. Sugar often accumulates in leaves under Mg deficiency because this nutrient is involved in 
carbohydrate transport from source to sink organs (Farhat et al., 2016). In turn, Peng et al. (2015) demonstrated 
that the levels of the photosynthesis-related enzymes ribulose-1,5-bisphosphate carboxylase/oxygenase 
(RuBisCO), RuBisCO activase and ferredoxin-NADP(+) reductase significantly decline under Mg deficiency. 

E. dysenterica seedling growth was affected by the lack of P, most likely because, under this condition, plants 
experience drastic cellular changes in metabolism, physiology, hormonal balance and gene expression (Ha & 
Tran, 2014) because this is an essential nutrient involved in several fundamental biochemical processes, such as 
lipid metabolism and nucleic acid and cell membrane biosynthesis. 

N, P, K, Ca, Mg, S, B, Cu, Zn and Mo differentially accumulated in E. dysenterica plant shoots, most likely due 
to competition or inhibition effects between nutrients because the presence of one element may affect plant 
uptake of another due to competition for the same absorption site (Epstein & Bloom, 2006). Several shoot and 
root nutrient concentrations were higher in plants subjected to omission treatments than in plants grown in 
complete nutrient solutions, indicating an actual metabolic adjustment of E. dysenterica plants to adapt to and 
survive the stress caused by nutrient deficiency. According to Kulcheski et al. (2015), plants develop 
physiological and even molecular adaptive responses to cope with the lack of a nutrient, increasing the uptake of 
a specific ion in the absence of another. Knowledge concerning these adaptation mechanisms may lead to the 
development of important tools for plant improvement. Recent studies have shown, for example, the 
involvement of noncoding microRNAs in stress responses, including nutritional stress (Kulcheski et al., 2015; 
Jeong & Green et al., 2013).  

Plants that were grown in complete nutrient solution accumulated higher concentrations of Ca and N in shoots 
and roots. These nutrients are highly demanded by perennial and deciduous tree species, such as E. dysenterica. 
Aerts and Chapin (2000) showed that deciduous perennial species store more N in leaves than perennial 
evergreen, herbaceous or grass species, whereas Martre et al. (2003) modelled N accumulation and protein 
composition in wheat plants and generated key indicators showing that plant N accumulation is primarily 
regulated by the source. Our data corroborate these findings because plants grown in complete nutrient solution 
had higher values of the variables mean number of leaves and root length. Because leaf carbon accumulation is 
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linearly related to leaf N content (Evans, 1989), plants in the initial growth stage, such as those evaluated in this 
study, must demand high N amounts to regulate carbon metabolism and amino acid and protein synthesis 
(Kulcheski et al., 2015). In a previous study, Bessa et al. (2016) found, at 180 DAT, that E. dysenterica seedlings 
demanded a high N and Ca supply. Anacardium othonianum Rizz., another fruit tree species native to the 
Cerrado, also showed an increase in N and Ca accumulation relative to other nutrients at 180 DAT (Bessa et al., 
2013). In this study, Ca was essential for seedling growth. According to Tang et al. (2017), this element usually 
accounts for 0.1 to 5% of plant shoot dry matter. Although this element is abundant in nature, its deficiency 
occurs in rapidly growing tissues because it is an essential component of cell walls and of other cellular 
structures (Yamamoto et al., 2011).  

5. Conclusion 
Limitations of the macronutrients Mg and P are weakly tolerated by E. dysenterica seedlings. Therefore, farmers 
growing seedlings of this fruit tree should supply these nutrients. Chlorosis and necrosis symptoms are 
commonly observed in plants of this species under macronutrient deficiency and therefore can be used by 
seedling growers as signs of inaccessibility to nutrients. Plants grown in complete nutrient solution accumulated 
the highest shoot and root contents of the macronutrients Ca and N, thus demonstrating the importance of the 
availability of these nutrients in the initial stages of seedling development in this species for the production of 
healthy plants, representing a strategy to maintain higher numbers of this fruit tree in the Cerrado biome. 
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