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Abstract 
Agave sisalana, known as sisal, yields the world’s main natural stiff fiber used to produce various industrial 
products. The Brazilian semiarid is the largest sisal producing region in the world; however, production is under 
threat by sisal bole rot disease, caused by Aspergillus welwitschiae. Since chemical control of this disease is 
questionable in drought-ridden areas with little investment in crop management and due to environmental and 
public health concerns, the search for a biocontrol agent against A. welwitschiae is warranted. In this work, we 
isolated and identificated Penicillium citrinum as an endophyte from sisal plants collected from the Brazilian 
semi-arid and investigated whether it could be a biocontrol agent against sisal bole rot. P. citrinum inhibited the 
mycelium growth of A. welwitschiae by 65.8% when inoculated 72 hours before the pathogen, in dual culture 
medium assays. We found that P. citrinum can reduce sisal bole rot disease up to 90% when inoculated in sisal 
plants 48 hours before pathogen inoculation. Altogether, our data suggest a potential role for P. citrinum in the 
control of sisal bole rot disease. 

Keywords: biological control, Aspergillus welwitschiae, antagonism, sisal disease 

1. Introduction 
The global production of sisal fiber accounted for 247,000 tons with Brazil as the largest sisal producer (FAO, 
2017). More than 95% of the Brazilian sisal is produced in the semi-arid region of the Bahia state, in the 
northeast of Brazil, being one of the main sources of employment and income (IBGE, 2016). The economic 
future of sisal is promising since it produces a natural fiber with several industrial and farm uses, some of them 
with an ecological appeal (Müssig, 2010). Sisal residues have been used in the production of organic fertilizers 
(Terrapon-Pfaff, Fischedick, & Monheim, 2012), insecticides (Pizarro et al., 1999), nematicides (Damasceno, 
Soares, Jesus, & Sant’Ana, 2015; Jesus et al., 2014), animal feed (Faria et al., 2008) and alcoholic beverages 
(Cantalino, Torres, & Silva, 2015). The fiber can also be used in the bioenergy sector (soluble carbohydrates and 
lignocellulose) and substances extracted from the plant have antimicrobial, anti-inflammatory, antiseptic, and 
anti-parasitic functions (Davis, Kuzmick, Niechayev, & Hunsaker, 2017; Sidana, Singh, & Sharma, 2016; Yang 
et al., 2015).  

Despite the economic relevance of sisal farming for the Brazilian semi-arid, the crop has been burdened by sisal 
bole rot disease (Suinaga, Silva, & Coutinho, 2006), with 100% prevalence and an average incidence of 35% in 
sisal producing areas (Abreu, 2010). The disease symptoms are yellowish leaves are reddish discoloration of the 
stem tissue, with stem rotting that causes plant collapse and death (Coutinho, Suassuna, Luz, Suinaga, & Silva, 
2006). Recently, Aspergillus welwitschiae was reported as the causal agent of the sisal bole rot disease (Duarte et 
al., 2018). Black aspergilli (Aspergillus section Nigri) can cause diseases in several economically important 
crops such as tomatoes (Oladiran & Iwu, 1993), onions (Gherbawy et al., 2015), garlic (Dugan, Hellier, & 
Lupien, 2007), and peanuts (Palencia, Hinton, & Bacon, 2010), among others. Considering the social and 
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economic importance of the sisal fiber, it is essential to develop strategies to control bole rot disease in the 
Brazilian semi-arid region.  

Interestingly, during the isolation of A. welwitschiae from sisal stem tissues with symptoms of brown rot, we 
frequently observed the emergence of fungal colonies characteristic of Penicillium sp. As some Penicillium 
species are reported to have antagonistic activity against phytopathogens (Ethur et al., 2005; Ma, Chang, Zhao, 
& Zhou, 2008; Sempere & Santamarina, 2010; Stefano, Nicoletti, Milone, & Zambardino, 1999), we conjecture 
whether Penicillium sp. could be exploited as a biocontrol agent against A. welwitschiae. Since sisal is cultivated 
without agricultural management practices and based on small family farming systems, biological control may 
be promising in this pathosystem. Above all, biological control with antagonistic microorganisms has been 
studied and applied in population reduction and pathogen activity (Cook & Baker, 1983; Heydari & Pessarakli, 
2010). 

Therefore, the aims of this work were: i) to isolate the species of the Penicillium present in the diseased sisal 
stem tissues; ii) to identify the Penicillium sp. through molecular characterization; and iii) to evaluate the 
potential of the identified Penicillium sp. as a biocontrol agent against A. welwitschiae using assays performed in 
vitro and in vivo. 

2. Material and Methods 
2.1 Fungal Cultures 

Penicillium sp. was isolated from the stem tissue of sisal plants with bole rot disease. Stem tissue fragments of 
approximately 1 cm of length and 0.5 cm of width were surface-sterilized through successive dipping in 70% 
ethanol (1 min), 1% sodium hypochlorite (1 min), followed by washing with sterile distilled water (1 min) for 
three times in a laminar flow-hood, and were inoculated onto potato dextrose agar (PDA) medium (Pereira, 
Azevedo, & Petrini, 1993; Petrini, 1986). These stems fragments were then incubated in a BOD type incubator at 
25 °C for seven days, under dark conditions. After fungal growth took place, we recorded the colony 
morphology and transferred 0.5 cm diameter medium plugs containing the sporulated colonies to glass vials with 
sterile water for fungal preservation.  

The pathogenic strain used in this study, the A. welwitschiae (CCMB 679), was isolated previously from sisal 
stem tissues with bole rot disease and deposited in the Coleção de Culturas de Microrganismos da Bahia 
(CCMB), of the State University of Feira de Santana (UEFS), Bahia, Brazil. This isolate was preserved in our 
laboratory at -70 °C in cryogenic vials with glycerol 20% and as medium plugs with sporulated colonies in glass 
vials with sterile distilled water.  

For the assays, the fungi were reactivated by transferring the agar plugs with the colonies to PDA medium to 
grow at 28 °C for seven days.  

2.2 Molecular Identification 

Total DNA extraction of the Penicillium sp. isolate was performed using the UltraClean® Microbial DNA 
Isolation kit (MoBio, USA), following the manufacturer’s recommendations. 

We analyzed two regions of the Internal Transcribed Spacer (ITS) with the pairs of primers ITS1 and ITS4 
(White, 1990) and V9G and LS266 (Hoog & Ende, 1998; Masclaux, Guého, De Hoog & Christen, 1995), 
respectively; parts of the nuclear larger subunit (LSU) of the rDNA were used in the analysis with the primers 
LROR and LR5, as described by Vilgalys and Hester (1990). In addition, parts of the β-tubulin (BenA) with the 
primers Bt2a and Bt2b (Glass & Donaldson, 1995) and RNA-polymerase II subunit (RPB2) with the primers 5F 
and 7CR (Liu, Whelen & Hall, 1999). The reactions were prepared in a final volume of 50 μL using the 
following reagents and concentrations: 60 ng of DNA of each sample, 1 × dAmpliTaq Gold® 360 Master Mix 
(Life Technologies) and 0.5 pmol/μL of each primer (forward and reverse). 

Amplified PCR products were purified with the Illustra® GFX PCR DNA and Gel Band Purification kit (GE 
Healthcare Life Sciences) and sequenced on an ABI3500 automated sequencer (Applied Biosystems, Life 
Technologies Q7, CA, USA). The sequences were edited using Geneious software, version 9.1.6 (Kearse et al., 
2012) and deposited into the NCBI GenBank database. 

The taxonomic identification of the Penicillium sp. isolate was verified in the GenBank database using the NCBI 
BLAST program (http://blast.ncbi.nlm.nih.gov/Blast.cgi).  

2.3 Antagonistic Action of Penicillium sp.  

The isolates of Penicillium sp. and A. welwitschiae were paired in the following two culture media laid on Petri 
plates: PDA and Czapek Yeast Agar (CYA). For this bioassay, inoculum of both fungi (mycelium plugs 
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containing spores) were transferred, with a sterilized inoculating needle, to both media at two equidistant points 
(1.5 cm from the edge of the plate) and incubated at 28 °C. The treatments consisted of different time intervals (0, 
24, 48 and 72 h) between the inoculations of both fungi, as follows: first, Penicillium sp. was inoculated in all 
plates. Then, at times 0 (immediately after Penicillium sp. inoculation), 24, 48 and 72 h after inoculation with 
Penicillium sp., A. welwitschiae was inoculated. Penicillium sp. was given time advantage because it has a lower 
growth rate. The control consisted of inoculating only A. welwitschiae in both media. Each treatment had 10 
replicates and each replicate consisted of one inoculated plate. Measurements of the A. welwitschiae colony 
diameter (cm) were done, at 3-day intervals, until the pathogen reached the border of the plaques, for all 
treatments. 

For data analysis, the percentage inhibition of mycelium growth was calculated using the following formula:  

Pi = {[(Rcontr – Rtreat)/Rcontr] × 100} – 100                   (1) 

where,  

Pi = Percentage of inhibition; Rcontr = radial growth of the control; Rtreat = radial growth of the treatment 
(Menten, Machado, Minussi, Castro & Kimati, 1976).  

2.4 Penicillium sp. Pathogenicity Test  

Sisal bulbils of 20 cm height and 90 days old were micro-wounded in the stem region at four equidistant points 
and inoculated by spraying with 2 mL of a spore suspension containing 107 conidia mL-1 of Penicillium sp. The 
negative control consisted of spraying bulbils with distilled water, and the positive control consisted of spraying 
with the inoculum of the A. welwitschiae isolate with 107 conidia mL-1. The plants were grown in a greenhouse 
and observed daily for external symptoms of bole rot disease. Three plants from each treatment were collected 
after 5 and 10 days of inoculation to search for internal disease symptoms and fungal colonization. Fourteen 
plants were maintained in the greenhouse to observe the development of disease symptoms for 30 days. 
Fragments of stem and root tissues were cut and treated with alcohol 70% (v/v) for 2 min, followed by sodium 
hypochlorite 1% (v/v) for 2 min, and three washes in sterilized distilled water (Pereira et al., 1993). The tissue 
fragments were transferred to a saline PDA medium (6% of NaCl, w/v, supplemented with 1 mL-1 of 
oxytetracycline) and incubated in a BOD incubator at 28 °C for seven days.  

Evaluation of endophytic colonization by Penicillium sp. was carried out by counting the number of fragments of 
sisal root and stem tissues with mycelium growth. The frequency of colonized fragments was calculated 
considering the total number of plated fragments.  

2.5 Control of Bole Rot Disease by Penicillium sp. in Sisal Plants 

Sisal bulbils, planted in plastic bags with holes in the bottom and filled with 1 kg of soil, were micro-wounded in 
the stem region at four equidistant points and inoculated with Penicillium sp. by spraying it with 1 mL of spore 
suspension (107 conidia mL-1). After inoculation with the antagonistic fungi, the sisal bulbils were inoculated 
with A. welwitschiae at time 0 (immediately after Penicillium sp. inoculation), and at 24, 48 and 72 h after 
Penicillium sp. inoculation). The positive control consisted of bulbils inoculated only with A. welwitschiae while 
the negative control consisted of bulbils treated with distilled water. The experimental design was randomized 
with 20 replications, with one bulbil (plant) per replication. Plants were maintained in the greenhouse and 
irrigated every three days.  

Disease severity was evaluated 18 days after inoculation with A. welwitschiae according to the following scale: 
(0) no symptoms, (1) initial symptoms, (2) advanced symptoms, and (3) plant death (Figures 1A-1D). Mckinney 
infection index was determined (Mckinney, 1923) with the disease severity data. The IMC were determined by 
using the following formula: 

IMC% = [Σ(f × v)/N × X] × 100                             (2) 

where,  

f = infection class (notes) frequencies; v = number of plants in each class; N = total of plants observed; X = 
highest value in evaluation scale.  
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growth.  

The role of P. citrinum as the biological control agent (BCA) of fungal pathogens through plant/endophyte 
interactions was shown in sunflower (Helianthus annuus L.) with stem rot caused by Alternaria alternata 
(Waqas et al., 2015a) and by Sclerotium rolfsii (Waqas et al., 2015b). P. citrinum isolated from the coastal sand 
dunes of South Korea and its flora was also found to promote plant growth by activating gibberellin production, 
which was considered important for the conservation and revegetation of these stressful environments (Khan et 
al., 2008).  

The semi-arid region in Bahia, Brazil, where sisal has been produced for fiber extraction for several decades is a 
stressful environment subject to high temperatures, high UV radiation, and drought conditions. Sisal has been 
produced in this region of Brazil mostly in family-based farming systems without the use of agricultural inputs 
or adequate soil management practices, in areas with sandy and sandy loam soils (Table 1). Under these 
conditions, P. citrinum may have an important role as a soil fungus and plant endophyte with growth promoting, 
stress alleviating, and biocontrol traits that can contribute to the growth of this economically important crop in 
this harsh environment.  

5. Conclusion 
Herein we found that P. citrinum CCMB617 is an endophyte of sisal plants and a soil inhabitant adapted to the 
semiarid region of Bahia, Brazil, where sisal has been grown for decades. We found that P. citrinum is a 
potential biocontrol agent against A. welwitschiae, the causing agent of sisal bole rot disease, when inoculated at 
48 and 72 hours before the plant’s contact with the pathogen, causing mycelium growth inhibition.  

We believe that it is possible to use P. citrinum in the nursery phase of sisal plant propagation to produce plants 
colonized by P. citrinum as a disease-prevention strategy. Future research should investigate the mechanisms 
underlying the antagonistic action of P. citrinum and the secondary metabolites involved in this process to 
effectively harness this trait in favor of sisal production. 
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