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Abstract 
As well as most agricultural products, some medicinal plants need to go through a drying process to ensure 
quality maintenance, however each product behaves differently. Therefore, the present study aimed to evaluate 
the drying kinetics of spiked pepper (Piper aduncum L.) leaves and determine their thermodynamic properties at 
different drying temperatures in laboratory scale. Leaves with initial moisture content of 78% w.b. (wet basis) 
were subjected to drying at temperatures of 40, 50, 60 and 70 ºC and air speed of 0.85 m s-1 in an experimental 
fixed bed dryer. The drying kinetics of the leaves was described by statistical fitting of mathematical models and 
determination of effective diffusion coefficient and activation energy. Enthalpy, entropy and Gibbs free energy 
were also evaluated for all drying conditions. It was concluded that, among the models evaluated, only Midilli 
and Valcam can be used to represent the drying of Piper aduncum leaves; the first for the two highest 
temperatures (60 and 70 ºC) and the second for 40 and 50 ºC. The activation energy was approximately 55.64 kJ 
mol-1, and the effective diffusion coefficient increase with the elevation of temperature. The same occurs with the 
values of Gibbs free energy, whereas the specific enthalpy and entropy decrease. 

Keywords: spiked pepper, AIC and BIC, activation energy, medicinal plant 

1. Introduction 
The species Piper aduncum L., popularly known as spiked pepper, has organic compounds with antifungal action 
which act on the elimination of skin and hair diseases (Monzote, Scull, Cos, & Setzer, 2017). It has a stimulating 
action for digestion, liver and healing (Maia et al., 1998). Its essential oil can be used to combat fungi of the 
species Colletotrichum musae, Trichophyton mentagrophytes, Trichophyton tonsurans and Magnaporthe grisea 
(Guerrini et al., 2009), besides the action against the protozoa Leishmania amazonenses and Trypanosoma cruzi 
(Bastos & Albuquerque, 2004; Villamizar, Cardoso, Andrade, Teixeira, & Soares, 2017), which caused infectious 
diseases in humans. 

Drying is one of the main processes conducted to ensure the maintenance of quality of most agricultural products. 
There are several advantages in using drying, such as product preservation, stability of aromatic components at 
room temperature for long periods of time, protection against enzymatic degradation and oxidation, mass 
reduction, energy saving for not requiring refrigeration, and it also contributes with more adequate conditions of 
storage, making the product available during any period of the year. 

Since it is a complex process, which involves heat and mass transfers (Yilbas, Hussain, & Dincer, 2003; Delgado 
& Lima, 2016; Haghi & Amanifard, 2008), several studies have been conducted in the attempt to describe drying, 
especially at laboratory scale, by fitting mathematical models, using statistical parameters. Modeling allows 
describing the drying kinetics (Al-Ali & Parthasarathy, 2019) and therefore predicting the behavior of the 
product during the process, as well as optimizing the operation parameters in the dryer project (Nadi, 2016). 
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According to Silva, Siqueira, Martins, Miranda and Melo (2017), along the drying process it is interesting to not 
only describe the drying kinetics, but also to monitor the thermodynamic properties. They provide important 
information on the properties of water and on the energy required in the process, such as enthalpy and entropy, 
which characterize variations existing in the water-product system (Corrêa, Oliveira, Botelho, Goneli, & 
Carvalho, 2010). 

Given the above, the present study aimed to describe the drying kinetics of Piper aduncum leaves, selecting the 
mathematical model that best represents the phenomenon, and determine the diffusion coefficient and 
thermodynamic properties of the product. 

2. Material and Methods 
2.1 Research Conduction 

Piper aduncum L. leaves were collected at the Federal University of Grande Dourados (UFGD), in the garden of 
the Faculty of Agrarian Sciences (FCA). 

The collection was carried out randomly on consecutive days, at the same time, provided that there was no dew 
on leaf surface to avoid a possible interference in the drying curve of the leaves. After collection, the leaves were 
sent to the laboratory and properly selected, so that those which had damaged parts were eliminated.  

2.2 Drying Kinetics of the Leaves 

The leaves were distributed on four screen-bottom trays and placed in an experimental dryer. The dryer is 
equipped with a system which accurately controls the drying air flow and temperature. 

Initial and equilibrium moisture contents of the samples were determined by the gravimetric method in the oven, 
at 103±1 ºC, for 24 h, in four replicates (ASABE, 2010). The drying temperatures adopted were 40, 50, 60 and 
70 ºC, under controlled conditions. Drying air speed was monitored using a spinning-cup anemometer and 
maintained at around 0.85 m s-1. 

The drying of the leaves began with moisture content of approximately 78% w.b. (wet basis) and ended when the 
leaves reached equilibrium moisture content. However, a final moisture content of 9.0% w.b., which is the one 
adopted commercially, was adopted to plot the data. 

The moisture ratio of Piper aduncum leaves was determined through the following expression (Wang et al., 
2018): 

RX = 
X	– Xe

Xi	– Xe
                                       (1) 

where, RX: moisture ratio of the product, dimensionless; X: moisture content of the product (decimal d.b.); Xi: 
initial moisture content of the product (decimal d.b.); and Xe: equilibrium moisture content of the product 
(decimal d.b.). 

2.3 Mathematical Modeling and Diffusion Coefficient 

Periodic weighing at preestablished periods of time allowed obtaining the data required to fit the mathematical 
model (Table 1) through nonlinear regression. 
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Table 1. Mathematical models used to predict the thin-layer drying of agricultural products 

Model Model designation  

Modified Henderson and Pabis (Karathanos, 1999) RX = a·expሺ-ktሻ + b·expሺ-k0tሻ + c·exp(-k1t) (2) 

Verma (Verma et al., 1985) RX = -a·expሺ-ktሻ + ሺ1 – aሻ·exp(-k1t) (3) 

Two-term exponential (Sharaf-Eldee et al., 1980) RX = a·exp൫-kt൯ + (1 – a)·exp(-kat)  (4) 

Two terms (Henderson, 1974) RX = a·exp൫-k0t൯ + b·exp(-k1t)  (5) 

Midilli (Midilli, 2002) RX = a·exp(-ktn) + bt (6) 

Logarithmic (Yagcioglu et al., 1999) RX = a·expሺ-ktሻ + c (7) 

Henderson and Pabis (Henderson & Pabis, 1961) RX = a·exp൫-kt൯  (8) 

Page (Page, 1949) RX = exp(-ktn) (9) 

Newton (Lewis, 1921) RX = expሺ-ktሻ (10)

Wang and Singh (Wang & Singh, 1978) RX = 1 + at + bt2 (11)

Valcam (Siqueira et al., 2013) RX = a + bt + ct1.5·dt2 (12)

Thompson (Thompson et al., 1968) RX = exp
-a – (a2 + 4bt)

0.5

2b
  (13)

Approximation of diffusion (Kassem, 1998) RX = a·exp൫-kt൯ + (1 – a)·exp(-kbt)  (14)

Note. t: Drying time, h; k, k0, k1: Drying parameters, h-1; and a, b, c, d, n: Coefficients of the models. 

 

The effective diffusion coefficients for the several drying temperatures were determined using Equation 15, 
based on the liquid diffusion theory, which considers an infinite flat slab. 

 (15) 

where, Def: effective diffusion coefficient, m2 s-1; t: drying time, h; L: thickness of the product, m; and n: number 
of terms of the model. 

Thickness (L) was measured using a digital micrometer, with resolution of 0.001 mm. To obtain the average 
thickness of Piper aduncum leaves, 50 leaves were randomly chosen among the set of leaves which were going 
to be dried, and readings were taken at six preestablished points, three on each side of the midrib (Silva et al., 
2017). 

The behavior of the effective diffusion coefficient according to the different temperatures applied during the 
drying process was evaluated with Arrhenius equation, described in Equation 16. 

        (16) 

where, D0: pre-exponential factor; R: universal gas constant, 8.314 kJ kmol-1 K-1; Ta: temperature, K; and Ea: 
activation energy, kJ mol-1. 

2.4 Thermodynamic Properties 

The thermodynamic properties, specific enthalpy, specific entropy and Gibbs free energy, as a function of the 
drying kinetics of Piper aduncum leaves, were determined according to the method described by Jideani and 
Mpotokwana (2009), using Equations 17, 18 and 19. 

h = Ea – RTa                                    (17) 

         (18) 

                                (19) 

where, h: enthalpy, J mol-1; s: entropy, J mol-1; G: Gibbs free energy, J mol-1; kB: Boltzmann’s constant, 1.38 x 
10-23 J K-1; and hp: Planck’s constant, 6.626 x 10-34 J s-1.  

2.5 Statistical Parameters 

The experimental data of the thin-layer drying kinetics of Piper aduncum leaves were analyzed and subjected to 
nonlinear regression analysis, through the Gauss-Newton method, using the program Statistica 7.0. 
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The degree of fit of each model was analyzed considering the magnitudes of the coefficient of determination (R2), 
mean relative error (P) and standard deviation of the estimate (SE). The models which obtained the best fits were 
subjected to the Akaike (AIC) and Bayesian (BIC) Information Criteria. The values of mean relative error (P), 
standard deviation of the estimate (SE), AIC and BIC were calculated according to the following equations: 

                           (20) 

                            (21) 

AIC = -2logL + 2p                                  (22) 

BIC = -2logL + p·ln(N – r)                               (23) 

where, Y: valued observed experimentally; Ŷ: value estimated by the model; n: number of experimental 
observations; DF: degrees of freedom of the model; p: number of parameters of the model; N: total number of 
observations; r: rank of X matrix (incidence matrix of fixed effects); and L: maximum likelihood. 

3. Results and Discussion 
In Table 2, from the mean relative error (P) it can be observed that only Midilli (6) and Valcam (12) models 
showed values lower than 10% for all drying temperatures studied. According to Mohapatra and Rao (2005), the 
mean relative error is a parameter that can be used for recommending or not a model, and it reflects the deviation 
of the observed values from the curve estimated by the model (Kashaninejad, Mortazavi, Safekordi & Tabil, 
2007). Thus, for the models mentioned, the deviation can be considered as acceptable.  

 

Table 2. Coefficients of determination (R2, decimal), mean relative error (P, %) and standard deviation of the 
estimate (SE, decimal) for the eleven models analyzed, during the drying of Piper aduncum leaves under 
different conditions of temperature (°C) 

Models 
40 °C  50 °C 60 °C  70 °C 

P SE R²  P SE R² P SE R²  P SE R² 

(2) 2.42 0.009 0.99  10.39 0.029 0.99 25.48 0.080 0.94  3.91 0.016 0.99 

(3) 114.5 0.191 0.60  12.10 0.033 0.60 10.83 0.028 0.99  7.50 0.025 0.99 

(4) 31.12 0.049 0.97  12.92 0.033 0.97 14.15 0.039 0.98  34.14 0.112 0.86 

(5) 11.50 0.021 0.99  5.33 0.050 0.99 11.84 0.035 0.98  7.06 0.024 0.99 

(6) 5.40 0.013 0.99  5.77 0.017 0.99 5.07 0.015 0.99  2.76 0.012 0.99 

(7) 12.11 0.021 0.99  6.23 0.016 0.99 10.00 0.026 0.99  6.84 0.038 0.98 

(8) 28.97 0.047 0.97  20.69 0.048 0.97 25.48 0.071 0.94  28.98 0.096 0.90 

(9) 15.02 0.031 0.98  12.01 0.034 0.98 7.56 0.026 0.99  6.66 0.028 0.99 

(10) 12.11 0.021 0.99  22.19 0.049 0.99 30.30 0.081 0.92  34.14 0.109 0.86 

(11) 6.87 0.019 0.99  4.67 0.019 0.99 10.81 0.027 0.99  7.15 0.022 0.99 

(12) 2.60 0.010 0.99  4.34 0.015 0.99 5.16 0.015 0.99  4.51 0.017 0.99 

(13) 31.12 0.049 0.97  22.19 0.050 0.97 30.30 0.083 0.92  34.14 0.112 0.86 

(14) 10.47 0.021 0.99  12.10 0.033 0.99 12.71 0.036 0.98  7.63 0.026 0.99 

 

According to the values of standard deviation of the estimate (SE), as in the case of the mean relative error, 
Midilli (6) and Valcam (12) models were also those with the best results. According to Draper and Smith (1998), 
the standard deviation of the estimate indicates the capacity of a model to accurately describe a certain physical 
process and the lower its magnitude, the better the quality of fit of the model to the experimental data. 

Also in Table 2, it can be observed that only Midilli (6), Logarithmic (7), Page (9), Wang and Singh (11), Valcam 
(12) and Approximation of diffusion (14) models showed coefficients of determination (R2) above 98% for all 
drying temperatures. Thus, according to Kashaninejad et al. (2007), they can satisfactorily represent the drying 
phenomenon. 

Among the models which stood out considering the previously calculated statistical parameters (Midilli and 
Valcam), Akaike (AIC) and Schwarz’s Bayesian (BIC) Information Criteria (Table 3) were also considered as 
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According to Nkolo Meze’e, Noah Ngamveng, and Bardet (2008), in order for the sorption sites in agricultural 
products to be available, Gibbs free energy (G) needs to be attributed since it is able to measure the capacity of a 
system to perform work. Due to the positive values, it can be understood that the drying kinetics of Piper 
aduncum leaves does not occur spontaneously. Thus, it is necessary to insert external energy to the product for 
the process to occur. In this case, the heated air is understood as the external energy. 

4. Conclusions 
Midilli and Valcam models are adequate to represent the drying kinetics of Piper aduncum leaves at 
temperatures of 60 and 70 °C and of 40 and 50 °C, respectively. 

The effective diffusion coefficient increases with the elevation of air temperature in the drying of Piper aduncum 
leaves. 

The relationship between the effective diffusion coefficient and drying air temperature can be described by the 
Arrhenius equation, which has an activation energy for the diffusion of Piper aduncum leaves of 55.64 kJ mol-1. 

The increment in drying air temperature promotes reduction in the values of specific enthalpy and entropy, 
whereas the values of Gibbs free energy showed the opposite behavior. 
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