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Abstract 
The possibility of using fuel cells powered by solar hydrogen for energy generation in greenhouses with 
reference to the island of Crete, Greece has been examined. Change of fossil fuels used in greenhouses with 
renewable energies and sustainable energy technologies is very important for mitigation of climate change. 
Various renewable energy sources and low carbon emission technologies including geothermal energy, biomass, 
solar photovoltaics and co-generation systems have been used so far. Use of solar photovoltaics for generating 
electricity consumed in water electrolysis for hydrogen production has been investigated. Hydrogen feeding a 
proton exchange membrane fuel cell co-generating electricity and heat was used in a greenhouse located in Crete, 
Greece. The system could be useful in a stand-alone greenhouse with annual specific energy consumption at 150 
KWh/m2. A solar photovoltaic system with nominal power at 33.33 KWp powering an electrolytic cell at 5.71 
KW could produce annually 2,083 kg hydrogen. The hydrogen could feed a fuel cell at 1.71 KWel generating 
annually all the electricity required in a greenhouse of 1,000 m2. Co-produced heat could also cover 11.11% of 
the annual heat requirements in the greenhouse. It was found though that the overall electric efficiency of the 
system was very low at 4.5%. The low overall efficiency and the size of the solar-PV required indicate that the 
abovementioned energy system is not suitable in commercial agricultural greenhouses. 
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1. Introduction  
Modern agricultural greenhouses are energy-intensive production systems requiring large amounts of energy. In 
order to cope with climate change it is necessary to use non-conventional and low carbon emissions energy 
technologies instead of using fossil fuels in greenhouses. Various renewable energy technologies as well as 
efficient energy technologies, including solar energy, biomass, low-enthalpy geothermal fluids, co-generation 
systems and heat pumps, have been used, so far providing heat, cooling and electricity in them. However new 
emerging fuels like hydrogen (H2) powering fuel cells (FC) could be used in greenhouses, co-generating heat and 
power (CHP) for covering their energy needs. In the Mediterranean region where solar resources are abundant, 
solar-PV electricity can be used for H2 production with electrolysis of water. H2 could then be used in FCs for 
CHP. This results in the reduction of their carbon footprint and in the improvement of their sustainability.  

1.1 Energy Generation With Hydrogen and Fuel Cells 

Dodds et al. (2015) have reported on H2 and fuel cell technologies for heating. The authors stated that H2 and 
fuel cell technologies have been neglected as an alternative option for heating. They mentioned that fuel cell 
CHP has lower carbon emissions than natural gas-fuelled CHP systems while its cost is reducing. Therefore FC 
technologies consist of a viable option for heating in the near future. Genoglu et al. (2009) have reported on the 
design of a proton exchange membrane fuel cell (PEMFC) system for residential applications. The system 
consisted of solar-PV panels, batteries and an electrolyzer producing H2. H2 was stored in a tank and used by a 
PEMFC for electricity generation in the building. The authors estimated the nominal power of the PV panels at 
2.5 KWp, and of the PEMFC at 4.8 KW. They concluded that small RES applications in residential buildings 
should include solar-PV panels, wind turbines and FCs. Gigliucci et al. (2004) have reported on a demonstration 
of a PEMFC suitable for residential applications either in stand-alone or in grid-connected buildings. The 
characteristics of the FC were: electric power 4 KW, thermal power 4.8 KW, electric efficiency 18% and total 
efficiency 50%. The authors stated that the FC behaved as expected while its efficiency was low and it should be 
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improved. They mentioned that its improvement does not require any major technological developments. 
Briguglio et al. (2011) have evaluated a low temperature fuel cell system for residential CHP. The authors 
investigated experimentally the heat recovery from a 5 KW PEMFC working in a stack temperature at 71 oC. 
They stated that hot water was obtained at 68 oC and it was removed with a heat exchanger under different power 
levels while the overall efficiency of the FC was up to 85%. Nishimira et al. (2018) have investigated an 
integrated power generation system with solar-PVs and fuel cells for residential applications in seven Japanese 
cities. The authors considered that the electricity requirements of the households were covered with solar-PV 
electricity. The gap between electricity demand and solar electricity supply was covered with FC electricity 
based on hydrolytic H2 produced when solar electricity was in surplus. They concluded that the most appropriate 
number of households whose electricity demand could be fully covered by the integrated solar-PV and FC 
system was 16. Zabalza et al. (2007) have reported on the feasibility of using fuel cells in the tertiary sector in 
Spain. The authors stated that the high capital cost of FCs and the need to replace the FC stack every 6-7 years 
increase the cost of electricity generation. They concluded that an increase at 160% of the KWh price sold to the 
grid is required in order for the FCs to be competitive with other mature co-generation technologies. Chen et al. 
(2015) have reported on a 5 KW PEMFC-based residential micro-cogeneration cooling heat power (CCHP) 
system with absorption chiller. The authors described a micro tri-generation system driven by a PEMFC 
supplying electricity, hot water, space heating and space cooling to residences in summer and winter. They stated 
that the maximum efficiency of the system was 70.1% in the summer and 82% in the winter. 

1.2 Energy Demand and Use of Sustainable Energies in Agricultural Greenhouses 

Vourdoubas (2018) has studied the use of solar-PVs in grid-connected agricultural greenhouses with 
net-metering regulations in Greece. The author has estimated that the payback period of solar-PV investments in 
greenhouses varies between 7.2 and 14.4 years depending on the financial subsidy in their capital cost offered by 
the government. Gousgouriotis et al, 2007 have assessed the economic viability of biomass heating systems with 
reference to two agricultural greenhouses located in Chalkidiki, Northern Greece. The heating load of the 
greenhouses was 170 W/m2 and the annual heat demand for a 5,000 m2 greenhouse was 1,519 MWh (304 
KWh/m2). The authors stated that the initial cost of the biomass burning system is higher than the cost of the 
conventional heating system. However the lower biomass cost counterbalances its higher investment cost and the 
use of biomass is profitable. Vourdoubas, 2015 has presented a case study of an agricultural greenhouse using 
solid biomass as heating fuel in Crete, Greece. The author stated that the annual heating needs of the greenhouse 
were 220 KWh/m2 of covered area for keeping the indoor air temperature at 23 oC. He also estimated that the use 
of heating energy had a share at 95.31% of the total energy consumption. Campiotti et al. (2012) have reported 
on sustainable greenhouse horticulture in Europe. The authors stated that the installed energy power load of 
greenhouses in Europe depends on local climate conditions and varies from 50-150 W/m2 in southern Europe to 
200-280 W/m2 in northern and central Europe while for complete air-conditioned greenhouses it could reach 400 
W/m2. They concluded that the prospects for growth of a sustainable greenhouse industry based on geothermal, 
biomass and solar-PV technologies are excellent. Tudisca et al. (2013) have reported on the Italian policy 
regarding the use of solar-PV systems in greenhouses. The authors have investigated the economics of a 
greenhouse located in Sicily that has installed solar-PVs according to the feed-in tariff regulations. They stated 
that due to high feed-in tariffs the solar-PV system was very profitable. Compernolle et al. (2011) have reported 
on the use of CHP systems in agricultural greenhouses for reducing CO2 emissions. The authors have 
implemented two case studies for lettuce and tomato crops. Their findings indicated that the CHP system was 
economically viable with positive NPVs in both crops while the profitability of the CHP system was influenced 
by its efficiency. Raslavicius et al. (2011) have reported on the benefits of small-scale CHP plants used in 
industrial greenhouses powered by liquid bio-fuels. The authors have studied the use of rapeseed oil as a fuel in 
small-scale CHP plants providing useful heat and electricity in greenhouses, indicating that it consists of a viable 
option in rural Lithuania. Rocamora et al. (2006) have reported on hybrid solar photovoltaic thermal (PV/T) 
system applications in greenhouses. The authors stated that the hybrid solar PV/T systems can be mounted on the 
greenhouse roof simultaneously providing heat and electricity. Electricity could be used in the greenhouse or 
sent into the grid while co-generated heat could be stored and used in the winter. Nayak et al. (2007) have 
reported on an integrated hybrid solar (PV/T) greenhouse system. The authors evaluated a hybrid solar PV/T 
collector integrated with a greenhouse with and without airflow. They stated that the overall efficiency of the 
hybrid solar PV/T system with airflow collector was 72% while it was 41% without an air collector. 

1.3 Use of Fuel Cells in Agricultural Greenhouses 

Gangualy et al. (2010) have studied the use of an integrated solar-PV-electrolyzer-fuel cell system for powering a 
stand-alone greenhouse located in Kalkuta, India. The authors stated that solar-PV panels with nominal power at 
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3.825 KWp combined with a 3.3 KW electrolyzer and a PEM fuel cell at 0.96 KWel could cover all the energy 
demand of a 90 m2 floriculture greenhouse. Blanco et al, 2014 have experimented with a pilot 
solar-PV-electrolyzer-fuel cell system for powering a geothermal heat pump heating a stand-alone greenhouse in 
Italy. The heat pump was powered with electricity generated by a PEM fuel cell. Hydrogen was produced by an 
electrolyzer powered by a solar-PV system and stored in a tank. The authors stated that on partially cloudy days, 
the operation of the electrolyzer was intermittent with breakdowns in H2 production. On the contrary during the 
days with clear sky the electrolyzer was operating continuously. Anifantis et al. (2017) have reported on the 
thermal energy assessment of a small scale photovoltaic, hydrogen and geothermal stand-alone system for 
greenhouse heating. The authors used an experimental system located in Bari, Italy. Considering the efficiency of 
the solar-PV panels at 12%, the electrolyzer at 48%, the fuel cell at 40% and the coefficient of performance of 
the heat pump at 4.7, the authors estimated the overall efficiency of the system at 11%. They noted that this 
efficiency is rather low compared with the efficiency of solar thermal systems which is around 40%. Sardella, 
2013 has analyzed a fuel cell system for commercial greenhouse applications. The author has investigated the 
feasibility of integrating a PEM fuel cell with a commercial greenhouse. He stated that a 3 KW fuel cell system 
can cover 25% of the electricity demand and 30% of the heating demand in a 1,000 m2 commercial greenhouse. 
Mulloney (1993) has reported on the use of fuel cells in large commercial greenhouses. The author stated that in 
the U.S. there already exist independent power plants producing power for the grid while the co-generated heat 
was used in large greenhouses. He proposed, alternatively, the use of fuel cells generating electricity, with high 
efficiency at 40-50%, co-generating useful heat used in the greenhouses during the winter. The fuel cell would 
additionally tri-generate CO2 which could be used for enrichment of the indoor atmosphere in the greenhouse, 
increasing its productivity. Vadiee et al. (2015) have analyzed a fuel cell system for commercial greenhouse 
applications. The authors have estimated that a PEMFC at 11.6 KW could cover the total annual electricity 
demand and 40% of the annual heat demand of a 1,000 m2 greenhouse. The electrical efficiency of the FC was 
54% and its thermal efficiency 24%. The authors suggested that it would be better if the FC would supply only 
part of the heating demand in the greenhouse instead of covering it totally. A large stationary Quad-gen fuel cell 
for power, heat, hydrogen and CO2 generation has been reported in the Fuel cells bulletin, 2014. According to 
this report an innovative project with a budget at US $ 6.8 mil. has been developed in British Columbia. Landfill 
gas is cleaned by an innovative system and used by a molten carbonate fuel cell generating electricity, heat, 
hydrogen and CO2. Co-produced heat by the fuel cell and CO2 produced from landfill gas would be utilized by 
commercial greenhouses. 

The aims of the current work are: 

(a) The description of a sustainable energy system based on solar energy and H2 for covering the energy needs in 
a modern greenhouse; 

(b) The calculation of the size of the required sustainable energy system. 

2. Hydrogen Production With Water Electrolysis and Solar Electricity 
Proton exchange membrane fuel cells operate in low temperatures generating electricity while the co-produced 
heat can be recovered and used. H2 can be produced with water electrolysis which is an old and mature 
technology that requires the use of electricity. It can be stored and used when needed for continuous electricity 
generation with fuel cells. If electricity used in electrolysis is generated by renewable energies, like solar-PV 
energy, its production does not generate any carbon emissions. Although the efficiency of solar-PV systems is 
low in the range of 15%, solar electricity generation is currently competitive with electricity generated by fossil 
fuels. The efficiency of water electrolysis is higher than that of solar-PV modulus at around 75-80%. Solar H2 
production is an attractive option in areas with high solar energy resources like the Mediterranean region, 
particularly if the generated electricity is not needed during the time of high irradiance and its storage is 
necessary. Its storage as H2 is an alternative to its storage in electric batteries. Total efficiency of PEMFCs 
fuelled by H2 is high at around 80-85%, depending on the ratio of power to heat generated. Their economics are 
more attractive if apart from electricity the co-produced heat could be used in various applications. Co-produced 
heat could be used for space cooling with the use of absorption cooling systems; in this case PEMFCs operate as 
tri-generation systems. Stationary PEMFCs can be used in various applications although they are not yet fully 
commercialized. 
3. Energy Requirements in Greenhouses 
Modern agricultural greenhouses require energy for covering their needs in heating, cooling and lighting, and in 
the operation of various electric devices and machinery. Their energy requirements depend on various factors 
including the type of construction, the local climate and the cultivated crop. Annual energy requirements in 
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southern European countries are lower compared with northern European countries. Some “village type” 
greenhouses in the Mediterranean region used for vegetable production with low yields have low energy 
requirements since they are not heated at all or they are partly heated. The main energy sources and fuels used in 
modern greenhouses are electricity, oil and natural gas. Renewable energy sources, if available, are occasionally 
used for heating including solid biomass and geothermal fluids at temperatures of 50-80 oC. Ground source heat 
pumps are energy-efficient devices with COPs of around 3-4 for heating and cooling but due to their high capital 
cost their use is rather limited so far. Very efficient CHP systems with overall efficiencies at 85-90% are also 
used in industrial greenhouses, usually fuelled by natural gas. Solar-PV systems are also used for electricity 
generation with net-metering regulations, particularly in recent years after the sharp drop in the prices of PV 
modulus, although their efficiency is low at around 15%. In modern greenhouses in southern Greece, control of 
the indoor temperature over the year requires large amounts of energy while the share of heat energy could 
exceed 90% in the total energy mix.  

4. Sizing Fuel Cells Covering Annual Energy Requirements in Greenhouses 
An autonomous energy system based on solar energy, H2 and in FCs generating zero carbon emission electricity 
and heat for stand-alone greenhouses located in Crete, Greece has been examined and the size of the energy 
systems has been calculated. The energy system consists of: 

(a) A solar-PV system generating electricity; 

(b) A water electrolyzer using the generated solar electricity for H2 production which is stored in a tank, and 

(c) A PEMFC using H2 and producing electricity covering all the annual electricity requirements in the 
greenhouse. Co-produced heat could cover part of its heating needs. 

The following assumptions have been made: 

(a) The covered area of the greenhouse is 1,000 m2 and its specific energy consumption is 150 KWh/m2. The 
share of electricity in the energy mix is 10% and of heat 90%. Electricity demand in the greenhouse is constant 
during the year. The FC will generate all the electricity annually required in the greenhouse; 

(b) The electric efficiency of the FC is 40% and its heat efficiency is 40%; 

(c) Average energy of hydrogen is 36 KWh/kg while its density at 700 bar is 42kg/M3; 

(d) The fuel cell operates 8,760 hours/year. 

Energy requirements and energy generation by the FC are presented in Table 1.  

 

Table 1. Size of the FC for energy generation 

Annual electricity generation by the FC 15.000 KWhel 

Annual heat generation by the FC 15,000 KWhth  

Additional heat required in the greenhouse 120,000 KWhth 

Total annual energy generation by the FC 30,000 KWh 

% of annual heating needs covered 11.11% 

Size of FC 1.71 KWel 

Annual hydrogen requirements 2.083 Kg 

Volume of the H2 at 700 bar 49.6 M3 

 
5. Sizing of the Solar-PV System Producing the Hydrogen Required in the Fuel Cell With Water 
Electrolysis 
The annually required hydrogen in the FC could be produced with water electrolysis powered with solar 
electricity generated by a solar-PV system. In order to calculate the size of these systems the following 
assumptions have been made: 

(a) Annual electricity generation by a solar-PV system in Crete, Greece is 1,500 KWh per KWp; 

(b) Energy efficiency of water electrolysis is 75%; 

(c) Efficiency of the solar-PV system is 15%; 

(d) Operation of electrolysis is 8,760 hours/year;  
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(e) Overall electric efficiency of the system is the product of the efficiency of the solar-PV system, water 
electrolysis and the electric efficiency of the FC. Overall energy efficiency in hydrogen production is the product 
of the efficiency in the solar-PV and in water electrolysis. 

The size of the required solar-PV system generating the required power for water electrolysis and H2 production 
is presented in Table 2. 

 

Table 2. Size of the solar-PV system required for the production of solar H2 used in the FC 

Energy of solar hydrogen produced annually 37,500 KWh 

Annual electricity requirements in water electrolysis 50,000 KWh 

Power of water electrolyzer 5.71 KW 

Nominal power of the solar-PV system generating the electricity annually required in water electrolysis 33.33 KWp 

Efficiency of solar hydrogen generation 11.25% 

Overall electric efficiency 4.5% 

Overall heat efficiency 4.5% 

Overall total efficiency of heat and power co-generation 9% 

 
6. Advantages and Drawbacks of the Above-Mentioned Energy System Used in Agricultural Greenhouses 
A solar-PV system combined with H2 production via water electrolysis and energy generation with a PEMFC 
could be used for covering part of the energy needs in a stand-alone greenhouse. Although this system is 
currently technically feasible it is not economically viable. However it could provide carbon-free energy in 
greenhouses promoting their environmental sustainability and contributing to the mitigation of climate change. 
When hydrogen production technologies are mature and the use of FCs is fully commercialized, these energy 
systems could be used in various applications including in stand-alone agricultural greenhouses. The 
above-mentioned autonomous energy system has various advantages as well as drawbacks which are presented 
in Table 3. 

 

Table 3. Advantages and drawbacks of the above-mentioned energy system 

Advantages Drawbacks 

The described system could be used in stand-alone greenhouses 
resulting in zero carbon emissions due to electricity use 

Operation of PEMFCs for general use is still expensive 

Solar-PV and water electrolysis are mature technologies. 
PEMFCs are expected to be cost-effective in the near future 

The system has a low overall electric and thermal efficiency 

The system can be useful in areas with high solar irradiance 
located away from electric grid infrastructure 

The system is suitable only for specific applications 

 Although the technical feasibility of such systems can be established, 
their economics are not currently favorable 

 The co-generated heat cannot be used in the summer in the 
greenhouse except if it could be combined with an absorption 
cooling system 

 

7. Discussion 
Co-generation systems fuelled with natural gas are currently used for energy generation in large commercial 
greenhouses. Use of renewable energy sources in them is desirable for economic and environmental reasons. 
Solid biomass and low enthalpy geothermal energy are already used for heat generation in greenhouses 
worldwide. The recent sharp decrease in the price of solar-PVs favors their use for power generation. Studies on 
the use of hybrid solar PV/T co-generation systems in greenhouses have been reported although commercial 
applications have not been found. Various feasibility studies regarding the use of FCs in agricultural greenhouses 
have been published presenting their advantages, drawbacks and their future prospects. However the current high 
cost of FCs does not favor their use in various applications. Integration of solar-PVs with FCs results in low 
overall energy efficiencies which increases their cost and does not favor their commercial use. Their technical 
feasibility has been established though and the technologies of solar-PVs, water electrolysis for H2 production 
and FCs are well known. Future prospects of using solar-PVs with FCs in small residential applications are 
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positive. Therefore the use of similar energy systems in agricultural greenhouses could be an economically 
viable solution in specific cases in the future.  

8. Conclusions 
A sustainable energy system based on solar energy and H2 covering the energy needs in greenhouses has been 
described. The system is consisted of an electrolytic cell fuelled by solar-PV electricity for H2 generation. H2 is 
then fed in a PEMFC co-generating electricity and heat used in an agricultural greenhouse. The covered area of 
the greenhouse was 1,000 m2 with specific annual energy consumption at 150 KWh/m2 located in Crete, Greece. 
The nominal power of the solar-PV system was 33.33 KWp while the power of the electrolytic cell was 5.71 KW 
producing annually 2,083 kg H2. H2 was fed in a PEMFC at 1.71 KWel generating all the required electricity in 
the greenhouse at 15,000 KWh/year. Co-produced heat by the PEMFC can also cover 11.11% of its annual heat 
requirements. The overall electric efficiency of the energy system was low at 4.5% and the size of the solar-PV 
required relatively large. These results indicate that the abovementioned sustainable energy system is not suitable 
for commercial agricultural greenhouses but probably only for stand-alone greenhouses located in areas with 
high solar irradiance and without electric grid infrastructure. Further work should be focused in the 
implementation and operation of the abovementioned energy system in a greenhouse and the assessment of its 
performance. 
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