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Abstract

The cowpea (Vigna unguiculata (L.) Walp) it is a leguminous widely cultivated in Northeast of Brazil. In the
state of Ceara, its cultivation is performed mainly by family farms who make use of traditional varieties of good
adaptation to the growing region. Thus, characterizing traditional varieties with characteristics of adaptation to
regions with water shortage is essential for the production of food in the world, especially in semi-arid regions.
In this sense, the objective was to evaluate the physiological and biochemical responses in three genotypes of
cowpea, being two traditional varieties grown in Ceara (Sempre-Verde and Cabeca-de-Gato) and a genotype
characterized as a standard of drought tolerance (Pingo-de-Ouro-1,2) under three water regimes: irrigated,
moderate deficit and severe water deficit. The parameters evaluated were: gas exchange, chlorophyll a
fluorescence, photosynthetic pigments, organic solutes (proline, total carbohydrates, reducing and non-reducing
carbohydrates), starch and enzyme activity (APX, G-POD, CAT and SOD). The genotype Pingo-de-Ouro-1,2
confirmed its tolerance pattern in a water deficit condition, presenting greater water potential, higher
photosynthetic rate, high levels of total carbohydrates and high accumulation of proline. Among the traditional
varieties, the Cabega-de-Gato presented superior photosynthesis to Sempre-Verde higher Electron Transport Rate
(ETR), reflecting in a greater photochemical quenching (qP) and a greater accumulation of proline, indicating
that this variety presents more pronounced adaptive characteristics for water restriction conditions, which is a
common condition to the Brazilian semiarid.

Keywords: osmotic adjustment, chlorophyll fluorescence, biochemistry, drought tolerance, gas exchange, Vigna
unguiculata (L.) Walp

1. Introduction

The cowpea (Vigna unguiculata (L.) Walp.) is a legume originating in West Africa, having great nutritional and
economic importance where it is cultivated, such as the semi-arid tropics, Asia, Africa, south-east Europe, and
Central and South America. Its cultivation is justified by its development and productive capacity in arecas where
other crops do not produce satisfactorily, due to high temperatures and irregular rains (Akibode & Maredia,
2011). In Brazil, its cultivation is of great importance in the North and Northeast, with increasing progress in the
Central-West region (Rocha et al., 2009).

Plants generally acclimate or adapt to environments with limitations, involving various protection mechanisms,
such as, morphological, physiological, biochemical and molecular. Water is considered the most important and
limiting resource for growth and crop productivity, making its restriction one of the most prejudicial abiotic
stresses in relation to ability, survival and yield of crops (Pinheiro & Chaves, 2011; Simova-Stoilova et al., 2015;
Gagné-Bourque et al., 2016). To deal with these water restriction conditions the plants developed, over time, a
variety of adaptive strategies, based on the concepts of escape, avoidance and tolerance (Goufo et al., 2017). An
example would be the development of mechanisms of control at the physiological level, such as, regulation of
stomatal opening, directly affecting the perspiration and CO, assimilation (Alderfasi et al., 2017; Sicher, Timlin,
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& Bailey, 2012), modulation of gas exchange and alterations to biochemical level simultaneously (Goufo et al.,
2017; Rivas et al., 2016), in addition to morphological changes such as the development of deeper roots (Araus
et al.,, 2002), decrease of the growth rate and reduction of leaf area (Cardona-Ayala et al., 2013). At the
biochemical level, plants that present a standard tolerance to water deficit seek the maintenance of tissue
turgidity through osmotic adjustment, through the accumulation of inorganic or organic solutes, being that the
synthesis and/or accumulation of these solutes will depend on the water status of the plant and the genotype
(Blum, 2017; Rivas et al., 2016).

The role of osmoprotection in cowpea is not well established and presents divergences between the different
genotypes. In some cultivars under water stress, rapid and significant changes in proline levels are observed,
favoring osmotic adjustment (Hamidou, Zombre, & Braconnier, 2007; Costa et al., 2011). In other cultivars,
proline does not accumulate or only increases after several days of the imposition of the water deficit (Singh &
Reddy, 2011; Shui et al., 2013). This delayed response may be linked to the protection of the photosynthetic
apparatus (Goufo et al., 2017), once this solute acts on the reduction of NADPH from glutamate (proline
precursor), thus avoiding the generation of singlet oxygen (Cecchini et al., 2011). In addition to proline, other
organic solutes may be directly involved in osmotic adjustment and may contribute of differential form in
tolerance to water stress in cowpea.

Due to these variations between rapid and late responses, the physiological and biochemical changes in cowpea
in a water deficiency condition are not yet fully understood. However, these late responses can be more specific
and can be directly related to the mechanisms induced by the diffusive and biochemical limitations of
photosynthesis in order to protect the photosynthetic apparatus against excess reactive oxygen species. In general,
atmospheric CO, diffuses through the stomata into the intercellular spaces and then through the mesophyll to the
carboxylation sites. The limitations to the assimilation of CO, imposed by the stomatal closure in the leaves
during the water stress can lead to an imbalance between the generation of electrons in photosystem II (PSII) and
the electron requirement for photosynthesis. In turn, this could lead to hyperexcitation and subsequent
photoinhibitory damage of the PSII reaction centers from the mesophyll and the biochemical limitations of
photosynthesis.

All this divergence between the answers, resulting from the great genetic diversity of the cowpea, is the object of
study by many researchers who seek to elucidate the interaction between the physiological and biochemical
processes to deal with drought and to identify promising genotypes (Singh & Reedy, 2011). The objective of this
work was to study the effects of water stress on physiological and biochemical responses in three genotypes of
cowpea with differences and responses that are important for the Brazilian semi-arid region.

2. Methodology
2.1 Plant Material, Growing Conditions and Experimental Design

The experiment was conducted in a greenhouse belonging to the Federal University of Ceara (UFC), in Fortaleza,
from June to August 2016, where the flux density of photosynthesizing photons at noon was approximately
1.300 mol m? s"'and average temperature of 32.0+2 °C. Three genotypes were used, two traditional varieties
being collected in the state of Ceara/Brazil: Sempre-Verde (from Tururu-CE/Brazil) and Cabega-de-Gato
(originally from Juazeiro do Norte-CE/Brazil); and the standard genotype for drought tolerance
Pingo-de-Ouro-1,2 (CE-1019). The seeds were pre-germinated on pre-weighed “germitest” type filter paper and
moistened with distilled water and maintained in a chamber under controlled conditions (temperature at 25 °C
and photoperiod of 12 hours) until the emergence of the radicles. Subsequently the seeds with the emerged
radicles (germinated) were transferred to 3 dm’ filled with sand, humus and vermiculite (6:3:1), previously
irrigated, to field capacity (CC). The plants were maintained in the CC with daily irrigation with distilled water
and, weekly, fertigated with Hoagland nutrient solution until the imposition of the water deficit that occurred at
32 days after seeding (DAS).

The treatments were applied when the plants reached the V4 stage (pre-flowering) and consisted of three water
regimes: Irrigated (absence of water stress); moderate water deficit (5 days of stress, having an irrigation with
100 mL on the third day); and severe water deficit (5 consecutive days of water stress), following the completely
randomized design (DIC), in a 3 X 3 factorial arrangement (3 varieties x 3 water regimes) with 5 repetitions. The
evaluations were performed after 5 days of the beginning of the irrigation suspension using the third and fourth
trefoil fully expanded for the physiological and biochemical evaluations. For the biochemical analyzes, the
leaves were collected and frozen in liquid N,, lyophilized and macerated for later use.
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2.2 Potential Leaf Water and Biometric Parameters

The leaf water potential was measured in the morning (05:00 a.m.-06:00 a.m.) using the fourth trefoil with the
aid of a Scholander type pressure pump.

The following biometric parameters were measured: plant height using a ruler graduated in cm; number of leaves
by direct counting; leaf area with the aid of an area integrator (LI-3100, Li-COR, Inc., Lincoln, NE, USA); and
the dry mass of leaves using a forced air circulation greenhouse at 60 °C for 72 hours and analytical balance.

2.3 Gas Exchange, Chlorophyll a Fluorescence

The gas exchange measurements were performed between 08:00 and 11:00 am on the central leaflet of the third
sheet completely expanded in all plants using an infrared gas analyzer (IRGA, model LI-6400XT, LI-COR,
Lincon, Nebraska, USA). Liquid photosynthesis (4), stomatal conductance (g;), transpiration rate (E), ratio
between internal concentration and CO, environment (Ci/Ca) were evaluated. For these parameters, the
photosynthetically active radiation (PAR) constant of 1200 pmol photons m™ s™', constant concentration of CO,
(400 ppm), temperature and ambient humidity.

The chlorophyll a fluorescence was performed using the fluorometer coupled to IRGA (6400-40, LI-COR, USA)
on the same sheet in which the gas exchanges were evaluated. The plants were acclimatized in the dark for 30
minutes, obtaining the minimum fluorescence parameters (Fo) and after a pulse of saturating light, the maximum
fluorescence (Fm) was obtained. Then, the potential photochemical efficiency of PSII, expressed by the Fv/Fm
ratio, was calculated. Then, the potential photochemical efficiency of PSII, expressed by the Fv/Fm ratio, was
calculated. With the fluorescence parameters collected in the clear (at the same moment of determination of the
gas exchanges) were determined the effective quantum yield of FSII ($FSII), electron transport rate (ETR),
photochemical quenching (qP), non-photochemical quenching (qN) and the non-photochemical extinction
coefficient (NPQ).

2.4 Photosynthetic Pigments

For the determination of photosynthetic pigments (chlorophyll a, b, total and carotenoids), leaf discs were
immersed in dimethylsulfoxide solution (DMSO) saturated with CaCOj; being kept in the dark at room
temperature until quantification. The absorbances of the extracts were measured in a UV/visible
spectrophotometer at wavelengths 480, 649 and 665nm, and the concentrations were calculated using equations
based on the specific absorption coefficients, according to Wellburn (1994).

2.5 Soluble Carbohydrates and Starch

The extracts for determination of soluble carbohydrates were prepared from 30 mg of lyophilized leaves that
were added to 5 mL of ethanol (80%) and placed in a water bath at 75 °C for 1 h and then centrifuged at 3000 x
g at 4 °C, being the supernatant collected and the extraction steps repeated 2x. The total carbohydrate levels and
reducing carbohydrate were quantified according to the methods proposed by Dubois (1956) and Nelson (1945),
respectively. The non-reducing carbohydrates were obtained from the subtraction of the aforementioned
parameters. The results were expressed as pmol of dry matter carbohydrate g™

The extracts for determination of carbohydrates were prepared with the precipitate remaining of ethanolic extract
of soluble carbohydrates with respect to the precipitate 4 mL of perchloric acid (30%) with subsequent stirring
and centrifugation. The determination followed the method proposed by Hodge and Hofreiter (1962) and the
concentration was expressed in pmol glucose g™ dry matter.

2.6 Proline Content

The extracts for proline quantification were prepared using 20 mg of lyophilized sheets added to 2.0 mL
deionized water where they remained for 1h with shaking every 10 m. After centrifugation at 3,000 x g for 15
min, the supernatant was collected for quantification. The quantification was determined according to Bates et al.
(1973) and the result expressed in pmol proline g dry matter.

2.7 Extraction and Antioxidant Enzyme Activity Assays

The enzymatic extracts were prepared from 1 g of fresh leaf, macerated in 4 mL of the potassium phosphate
buffer (50 mM and pH 7). From this extract, the enzymatic activities of ascorbate peroxidase (APX), guaiacol
peroxidase (GPOD), catalase (CAT) and superoxide dismutase (SOD) were measured, according to the methods
of Nakano and Asada (1981), Kar and Mirsha (1976), Havir and McHale (1987) and Beauchamp and Fridovich
(1971), respectively. The protein contents were quantified in the same extract of the enzymatic activities, from
the Coomassie Blue reagent by the method proposed by Bradford (1976), the enzymatic activities being
expressed in mmol of H,0, min™ g protein.
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2.8 Statistical Analysis

Data were submitted to analysis of variance ANOVA, and when significant at P < 0.05, the averages of the
biometric parameters were submitted to the Scott-Knott test. For the other parameters, the Tukey test was used.
Statistical analyzes were performed using the Sisvar program (Ferreira, 2011) and the graphs elaborated in
SigmaPlot 11.0.

3. Results and Discussion
3.1 Leaf Water Potential

The water potential in the early morning reduced in all varieties studied with the progression of the water deficit,
being this reduction more pronounced in the traditional varieties under severe water deficit (Figure 1). The
greatest water potential (less negative) observed in the tolerant genotype (Pingo-de-Ouro-1,2) is consistent with a
higher water economy under severe water deficit, which may be related to the tolerance pattern evidenced by this
variety (Rivas et al., 2016). Strategies to mitigate the effects of the reduction of the water potential (Horie et al.,
2011; Rivas et al., 2016), stomatal closure and osmotic adjustment (Farooq et al., 2011; Goufo et al., 2017).
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Figure 1. Leaf water potential in the morning in varieties of cowpea in the water regimes: irrigated, moderate
deficit and severe deficit. The bars indicate the default error. Averages followed by distinct capital letters differ
statistically between varieties within the same treatment, and distinct lowercase letters differ within the same
variety at different water regimes (Tukey, p < 0.05)

3.2 Biometric Parameters

For the height of the plants was not significant difference observed between the genotypes and in the water
regimes studied (Figure 2A). However, the number of leaves (NF), leaf area (LA) and leaf dry mass (LDM)
interacted significantly among genotypes and water regimes (Figures 2B, 2C and 2D). The Cabega-de-Gato and
Pingo-de-Ouro-1,2 genotypes presented lower NF and LA in the severe deficit (Figures 2B and 2C). The tolerant
genotype maintained constant the NF and LA independent of the presence or absence of stress, presenting the
lowest values when compared to the Sempre-Verde varieties in the severe deficit (Figures 2B and 2C). Studies
performed by Hadi, Hussain, and Arif (2012), and Freitas et al. (2017) evaluating cowpea genotypes also
observed a reduction in AF, being this a common characteristic in some genotypes. This modulation can be
considered a mechanism of escape to desiccation, once the reduction of the transpiratory area keeps the water
status higher for a longer time. The soil water scarcity affects the plant growth by reducing cell turgor and in
extreme situations promotes foliar abscission (Slama et al., 2006). It is interesting to note that the Sempre-verde
genotype did not show variation in LA or NF, however, there was greater accumulation of biomass, probably due
to the higher LA that it presented, this led to present significant differences to the Cabega-de-Gato, genotype,
which reduced the biomass in the presence of water deficit (Figure 2D). Khater et al. (2018) emphasize that LA
and LDM evaluation are biometric parameters indicated for the evaluation of water stress by drought in cowpea
plants. Possibly the Cabeca-de-Gato destined the sugars as reserve in the form of starch (Figure 6D) for future
supply. In general, the behavior of genotypes in significantly reducing its growth parameters is related to another
defense mechanism, in the face of water stress. However, it is worth mentioning that the standard tolerance
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genotype Pingo-de-Ouro-1,2, managed to maintain a good performance, in front of the two regimes of water
scarcity, keeping its growth indifferent to the control treatment.
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Figure 2. Influence of plant height deficit (A), number of leaves (B), leaf area (C) and leaf dry matter (D) in the
varieties of cowpea in water regimes: irrigated, moderate deficit and Severe deficit. Averages followed by
distinct capital letters differ statistically between the varieties within the same treatment, and distinct lowercase
letters differ within the same variety at different water regimes (Scott-Knott, p < 0.05)

3.3 Photosynthetic Pigments

In the absence of stress, the chlorophyll a was lower only in the traditional Cabecga-de-Gato variety, and under
stress conditions, there was only a reduction in chlorophyll a in the two traditional varieties in the moderate
deficit (Figure 3A). The genotype Pingo-de-Ouro-1,2 did not present significant difference in the levels of
photosynthetic pigments in function of water deficit (Figures 3A-3D). However, the traditional varieties
presented a modulation in the chlorophyll content, whereas in the Cabeca-de-Gato there was an increase of
chlorophyll @ and b in function of water stress (Figures 3A and 3B), in the Sempre-Verde there was only
reduction in chlorophyll @ in the conditions of stress (Figure 3A).

Chlorophyll a is a pigment linked to the photochemical phase, while chlorophyll 5 functions as an accessory
pigment transferring energy to the reaction centers (Kume et al., 2018). Both dry matter and chlorophyll content
(Chl) are important parameters for the evaluation of tolerance to water stress in plants (Xu et al., 2013). The
decrease in chlorophyll content is a consequence of drought, negatively affecting photosynthesis (Silva et al.,
2014). However, the increase in the a and b Chl levels in the Cabega-de-Gato can be justified by the reduction of
leaf area and total dry mass (Figures 2C and 2D) or the capacity of the genotype to increase levels as a response
to stress (Perdomo et al., 2017), being the fall in the photosynthesis possibly consequence of the biochemical
limitation.

The carotenoids act in the absorption and light transfer, besides the chlorophyll protection against the
photoxidation (Havaux et al., 2014). In this study were not observed significant differences neither between the
varieties nor in the different water regimes, which may be related to the NPQ having remained stable (Figure 5).
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Figure 3. Influence of water deficit on the accumulation of photosynthetic pigments: chlorophyll a (A),
chlorophyll b (B), total chlorophyll (C) and carotenoids (D) in varieties of cowpea in water regimes: irrigated,
moderate deficit and severe deficit, and carotenoids in the Pingo-de-Ouro-1,2 genotypes; Sempre-verde and
Cabeca-de-Gato. Statistical details described in Figure 1

3.4 Effect of Water Stress on Gas Exchange and Chlorophyll Fluorescence a.

The decrease of 4 in all genotypes (Figure 4A), shows a clear relationship with soil water content, decreasing as
stress becomes more pronounced. The limitation in photosynthesis may be a consequence of the reduction of gs
(Silva et al., 2012) that limits transpiration as a form of water economy (Sikder et al., 2015), being a defense
strategy the water restriction in semi-arid regions (Condon et al., 2004), because it will reduce the loss of water
to the atmosphere. However, the CO, supply, the main substrate of photosynthesis, is reduced, causing stomatal
limitation (Cunniff, Charles, Jones, Colin, & Osborne, 2016). The reduction of gs is among the first responses of
plants to water stress (Munjonyji et al., 2017), being this a good indication of bean crops (Medrano et al., 2004).

The limitation of photosynthesis may be diffusional, when limited only by the entry of CO, into the mesophyll
and at the carboxylation sites (Singh & Reddy, 2011), as observed in the Pingo-de-Ouro-1,2 genotype (Figure
4B), or may be biochemical when the limitation goes beyond diffusion, with limitation in phosphorylation,
Rubisco regeneration and Rubisco activase (Singh & Reddy, 2011), as observed by the traditional genotypes by
the high Ci/Ca ratio (Figure 4C), where the Sempre-Verde presented lower values for both physiological
mechanisms with lower levels of Chl @ and biochemicals being more affected by drought.

Plants under water stress can present photoinhibitory damage, however, were not observed differences in the
maximum quantum efficiency parameter (Fv/Fm) in the present study, indicating that the plants had no
significant commitment in the photochemical apparatus. According to Tezara et al. (2005), differences are not
observed in this parameter in an experiment in a greenhouse. This fact is sustained when we observe that here
was no significant increase in non-photochemical quenching (NPQ), once this mechanism is used as a PSII
protector because it dissipates energy in the form of heat, thus avoiding ERO’s formation (Ashraf & Harris,
2013). There is a strong relationship between gas exchange and fluorescence parameters when comparing A4 with
ETR and gqP (Graph 5). The reduction of photosynthesis is linked to the decline of qP, thus concluding that the
decline in NAPD" reduction capacity acts as a protection to the photosynthetic apparatus. Therefore, it can be
related that the lower photosynthesis rate in the Sempre-Verde genotype is also a consequence of a lower qP,
translated into a lower ETR.
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Figure 4. Influence of water deficit on photosynthesis (A), stomatal conductance (B), ratio Ci/Ca (D), transpiration
(C) of the Pingo-de-Ouro-1,2, Sempre-Verde and Cabega-de-Gato genotypes. Statistical details described in

Figure 1
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Figure 5. Influence of water deficit on potential PSII (A), electron transport rate (ETR) (B),
quenching-photochemical (gp) (C), non-photochemical dissipation in the dark (NQP) (D) of the genotypes
Pingo-de-Ouro-1,2, Sempre-Verde and Gato-de-Gato. Statistical details described in Figure 1
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3.5 Osmotic Adjustment

The osmotic adjustment, represented by the increase in the concentration of compatible solutes, is a mechanism
associated with water stress (Pandey et al., 2017). Studies conducted by Lobato (2008) showed the increase in
proline content, which can be observed by the present study in the two traditional varieties (Figure 7). The
Pingo-de-Ouro-1,2 genotype did not show an increase in this solute, either due to the stress intensity or because
it is characteristic of the genotype itself, or still, possibly for presenting other mechanisms of tolerance (Unyayar,
Keles, & Unal, 2004). According to Goufu (2017), proline acts in the NADH reduction and avoids the generation
of singlet oxygen and allows dehydrated plant cells to resist dehydration, maintaining turgor (Ferreira, 2002;
Zegaoui et al., 2017).

The carbohydrates (Figure 6) are also accumulated in plants that show water stress tolerance (Ebtedaie &
Shekafandeh, 2016), and their accumulation dependent on the degree of dehydration and the consequence of the
degradation of starch (Tsoata, Njock, Youmbi, & Nwaga, 2015), directly affecting water potential (Figure ). In
addition, according to Issifu et al. (2019), the accumulation of starch (Figure 6D) may signify a survival strategy,
because it ensures an energetic supply for the respiration, as observed by Cabeca-de-Gato, that with imposition
of the continuous deficit increases the reserve accumulation. In this way, the lowest accumulation of starch by
the Pingo-de-Ouro-1,2 and Sempre-Verde can reflect on long-term damage from carbon starvation.
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Figure 6. Influence of water deficit on total carbohydrate contents, reducing, non-reducing, and starch grains of
the Pingo-de-Ouro-1,2 genotypes, Sempre-verde and Cabeca-de-Gato. Statistical details as described in Figure 1
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Figure 7. Influence of the water deficit on the concentration of proline in the genotypes Pingo-de-Ouro-1.2,
Sempre-Verde and Cabega-de-Gato. Statistical details as described in Figure 1. Statistical details as described in
Figure 1

3.6 Antioxidant Enzymes

Plants subjected to abiotic stress present an excessive production of reactive oxygen species (ERO’s). As a
defense mechanism, the plants have an enzymatic system to prevent ERO’s from causing severe damage in lipids,
proteins, carbohydrates and DNA, resulting in oxidative stress (Sadeghipour, 2015). The SOD participates as the
first line of defense (Apel & Hirt, 2004; Jing, Zhou, & Zhu, 2016) functioning as trigger for the action of other
enzymes (CAT, and APX), once it acts by increasing H,O, levels (Pereira et al., 2012). The APX and CAT are the
two main enzymes involved in the removal of ROS (Sharma et al., 2012), being the last one, that presents the
highest activity rate (Sadeghipour, 2015).

The genotypes presented increase in the activity of the enzymes, with emphasis on the G-POD enzyme (Figure
8B) in the Pingo-de-Ouro-1,2 and CAT (Figure 8C) in the Sempre-Verde. For the latter, it is observed that the
high activity of this enzyme with the decrease of the photosynthesis at the biochemical level, denotes a high level
of oxidative stress. While CAT levels have remained constant in the Cabega-de-Gato, it may denote a lack of
sensitivity of this parameter or the stress level was not enough to increase the activity. It can be observed that
there was a great increase in the enzymes of Sempre-Verde, but they were not translated into protection of the
photosynthetic apparatus, showing clear damages in the photosynthetic parameters.
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Figure 8. Antioxidative activities of the ascorbate peroxidase (APX), guaiacol peroxidase (G-POD), catalase
(CAT) superoxide dismutase (SOD) genotypes of Pingo-de-Ouro-1,2, Sempre-Verde and Cabega-de-Gato (1),
moderate stress (M) and severe stress (S). Statistical details as described in Figure 1

4. Conclusion

The water stress affects negatively the genotypes of cowpea, with alterations in both morphological and
physiological levels and each genotype respond differently to drought. The Pingo-de-Ouro-1,2 genotype
confirmed its tolerance pattern, presenting higher photosynthetic rates, total carbohydrate accumulation and high
proline content, being this parameter invariable for this genotype. Among the tested local varieties, the
Cabega-de-Gato stood out because of the higher rates of photosynthesis, ETR and proline accumulation in
relation to Sempre-Verde.
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