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Abstract 
Noni seeds have been used for years as an important medicinal source, with wide use in the pharmaceutical and 
food industry. Drying is a fundamental process in the post-harvest stages, where it enables the safe storage of the 
product. Therefore, the present study aimed to fit different mathematical models to experimental data of drying 
kinetics of noni seeds, determine the effective diffusion coefficient and obtain the activation energy for the 
process during drying under different conditions of air temperature. The experiment used noni seeds with initial 
moisture content of 0.46 (decimal, d.b.) and dehydrated up to equilibrium moisture content. Drying was 
conducted under different controlled conditions of temperature, 40; 50; 60; 70 and 80 ºC and relative humidity, 
24.4; 16.0; 9.9; 5.7 and 3.3%, respectively. Eleven mathematical models were fitted to the experimental data. 
The parameters to evaluate the fitting of the mathematical models were mean relative error (P), mean estimated 
error (SE), coefficient of determination (R2), Chi-square test (2), Akaike Information Criterion (AIC) and 
Schwarz’s Bayesian Information Criterion (BIC). Considering the fitting criteria, the model Two Terms was 
selected to describe the drying kinetics of noni seeds. Effective diffusion coefficient ranged from 8.70 to 23.71 × 
10-10 m2 s-1 and its relationship with drying temperature can be described by the Arrhenius equation. The 
activation energy for noni seeds drying was 24.20 kJ mol-1 for the studied temperature range.  
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1. Introduction 

Noni (Morinda citrifolia L.) is native to southeast Asia and Australia. Commercial plantations can be found in 
Tahiti, Hawaii and other countries of Polynesia, where most juices commercialized worldwide are produced 
(Silva et al., 2012). 

Noni has been traditionally used for more than 2,000 years by Polynesia and such use is attributed to the effects 
related to antibacterial, antioxidant, antiviral, antifungal, antitumor, analgesic, anti-inflammatory, hypotensive 
and immunostimulant activity (Wang et al., 2002; Costa, Oliveira, Silva, Mancini-Filho, & Lima, 2013; Lemos, 
Queiroz, & Figueirêdo, 2015). Since there are no selected cultivars, commercial exploitation of noni is carried 
out using plants grown from seeds. 

Drying consists in the removal of excess water contained in the seed by evaporation, which is usually obtained 
by hot-air forced convection. It can also be defined, according to Goneli, Nasu, Gancedo, Araújo and Sarath 
(2014), as a process which involves the simultaneous transfer of energy in the form of heat and mass between the 
product and the drying air, being one of the main steps of post-harvest. 

Mathematical modeling is used to represent the drying kinetics of various products and involves conditions such 
as air temperature, relative humidity, air speed and characteristics of the product. Resende, Rodrigues, Siqueira, 
and Arcanjo (2010) report that these studies can be applied to drying processes and systems, dimensioning, 
optimization and evaluation of viability of the execution on commercial scale. 

Several mathematical models have been successfully used by various researchers in agricultural products, such 
as annatto flour (Santos, Queiroz, Figueirêdo, & Oliveira, 2013); rice grains (Corrêa, Oliveira, Oliveira, Botelho, 
& Goneli, 2016); peanut fruits (Araujo, Goneli, Corrêa, Hartmann Filho & Martins, 2017); sunflower grains 
(Smaniotto, Resende, Sousa, Oliveira, & Campos 2017); common bean grains (Quequeto, Siqueira, Ferranti, 
Schoeninger, & Leite, 2017); soybean grains (Botelho, Hoscher, Hauth, & Botelho, 2018); potato (Lisboa et al., 
2018) and blackberry leaves (Martins et al., 2018). 



jas.ccsenet.org Journal of Agricultural Science Vol. 11, No. 5; 2019 

251 

To assess the fitting of the mathematical models to the drying data of plant products, several criteria can be used, 
such as the magnitudes of the mean relative error and mean estimated error, coefficient of determination, residual 
distribution and Chi-square test. However, some of these parameters have limitations, thus requiring the adoption 
of complementary criteria in the selection of the model to emphasize and endorse the decision-making. Thus, the 
Akaike Information Criterion (AIC) and Schwarz’s Bayesian Information Criterion (BIC) consist in evaluating 
the models based on the parsimony principle, since the number of parameters in the models is variable (Gomes, 
Resende, Sousa, Oliveira, & Araújo Neto, 2018; Ferreira Junior, Resende, Oliveira, & Costa, 2018). 

Given the above, the present study aimed to fit different mathematical models to the experimental data of drying 
kinetics of noni seeds, determine the effective diffusion coefficient and obtain the activation energy for the 
process during drying under different air temperature conditions. 

2. Material and Methods 
2.1 Conduction of the Research 

The study was carried out at the Laboratory of Post-Harvest of Plant Products of the Federal Institute of 
Education, Science and Technology of Goiás, Campus of Rio Verde, located in the municipality of Rio Verde, 
GO, Brazil. 

2.2 Drying Kinetics 

Noni (Morinda citrifolia L.) seeds with initial moisture content of 0.46 (decimal, d.b.) were used. The moisture 
contents of the product were determined by the gravimetric method in an oven at 105±1 °C, for 24 hours, in two 
repetitions (Brasil, 2009). Drying was conducted under different controlled conditions of temperature, 40; 50; 60; 
70 and 80 °C and relative humidity, 24.4; 16.0; 9.9; 5.7 and 3.3%, respectively. Temperature and relative 
humidity of the ambient air were monitored by means of a data logger.  

The seeds were dried on unperforated trays containing 0.15 kg of product in a completely randomized design, in 
four repetitions. During the drying process, the trays with samples were periodically weighed on a scale with 
resolution of 0.01 g until the product reached its equilibrium moisture content, i.e., constant mass. 

Moisture content ratios of noni seeds during the drying, under the different air conditions, were determined using 
Equation 1 (Smaniotto et al., 2017):  

RX = 
X	– Xe

Xi	– Xe
                                        (1) 

where, RX: moisture content ratio, dimensionless; X: moisture content of the product (decimal, d.b.); Xe: 
equilibrium moisture content (decimal, d.b.); Xi: initial moisture content (decimal, d.b.).  

2.3 Mathematical Modeling 

Mathematical models traditionally used to describe the thin-layer drying kinetics of agricultural products were 
fitted to the experimental data of drying, as described in Table 1. 

 

Table 1. Mathematical models used to predict the thin-layer drying of agricultural products 

Model designation Models  

Page RX = exp(-ktn)  (2) 

Midilli RX = a·exp(-ktn) + bt (3) 

Newton RX = exp(-kt)  (4) 

Thompson RX = exp
-a – (a2 + 4bt)

0.5

2b
  (5) 

Henderson and Pabis RX = a·exp(-kt)  (6) 

Two Terms RX = a·exp(-k0t) + b·exp(-k1t)  (7) 

Verma RX = -a·exp(-kt) + (1 – a)·exp(-k1t)  (8) 

Logarithmic RX = a·exp(-kt) + c  (9) 

Wang and Singh RX = 1 + at + bt2  (10) 

Two-term Exponential RX = a·exp(-kt) + (1 – a)·exp(-kat)  (11) 

Valcam RX = a + bt + ct1.5dt2  (12) 

Note. t: Drying time, h; k, k0, k1: Drying parameters h-1; and a, b, c, d, n: Coefficients of the models. 
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The mathematical models were fitted to the experimental data of drying by nonlinear regression analysis, 
through the Gauss-Newton method, using a statistical program. The degree of fit for each drying temperature 
was determined considering the significance of the coefficients of regression by t-test, at 0.05 significance level, 
the magnitude of the coefficient of determination (R2), mean relative error (P), mean estimated error (SE) and the 
Chi-square test (2) at 0.05 significance level, according to Equations 13, 14 and 15. 

P = 
100

n
∑ Y –	Y

Y
n
i=1                                    (13) 

SE = 
∑ χ2n

i=1

GLR
                                      (14) 

χ2	= ∑ Y – Y
2

GLR
n
i=0                                     (15) 

Where, Y: value observed experimentally; Ŷ: value estimated by the model; n: number of experimental 
observations; and DF: degrees of freedom of the model.  

In order to select a single model to describe with satisfaction the drying process of noni seeds under different air 
condition, the models which obtained the best fits were subjected to Akaike Information Criterion (AIC) and 
Schwarz’s Information Criterion (BIC). According Wolfinger (1993), lower values of AIC and BIC indicate 
better fit of the model, and BIC is the strictest criterion. Gomes et al. (2018) state these criteria can be 
additionally included in the selection of drying models. These information criteria were determined by Eqs. 16 
and 17. 

AIC = -2logL + 2p                                  (16) 

BIC = -2logL	+ p ln(N – r)                               (17) 

Where, L: maximum likelihood; p: number of parameters of the model; N: total number of observations; and r: 
rank of the matrix X (incidence matrix for fixed effects).  

2.4 Effective Diffusion Coefficient 

The effective diffusion coefficient for the drying conditions was calculated by fitting the model, based on the 
liquid diffusion theory, to the observed data. This equation is the analytical solution for the second Fick’s law, 
considering a cylindrical shape with six-term approximation (value established when diffusion coefficient 
variation is lower than 0.1 × 10-13 m2 s-1), disregarding the volumetric shrinking of the seeds, according to 
Brooker, Bakker-Arkema, and Hall, (1992), using the following expression:  

RX = 
X – Xe

Xi – Xe
 = ∑ 4

λn
2 ·exp -

λn
2·D·t

r
α
n=1                             (18) 

Where, t: drying time; D: liquid diffusion coefficient, m2 s-1; r: equivalent radius (0.0051 m); n: number of terms; 
and λn: roots of the zero-order Bessel’s equation. 

The volume (Vs, mm3) of each seed was obtained by measuring the three orthogonal axes (length, width and 
thickness) in thirty seeds before drying, using a digital caliper, according to the expression proposed by 
Mohsenin (1986):  

Vs	= 
π(abc)

6
                                       (19) 

Where, a: seed longest axis; b: seed middle axis; c: seed shortest axis. 

Equivalent sphere radius (r, mm) was determined using Equation 20: 

r = 
3Vs

4π

3
                                        (20) 

The influence of temperature on the effective diffusion coefficient was evaluated using the Arrhenius equation, 
described as follows: 

Def = D0·exp
Ea

RTa
                                   (21) 

Where: D0: pre-exponential factor; R: universal gas constant, 8.314 kJ kmol-1 K-1; Ta: temperature, K; and Ea: 
activation energy, kJ mol-1. 

The coefficients of the Arrhenius equation were linearized by applying the following logarithm: 

LnD = LnD0	– 
Ea

R
.

1

Ta
                                   (22) 
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3. Results and Discussion 
Table 2 shows the magnitudes of the mean relative error (P, %), mean estimated error (SE, decimal), coefficient 
of determination (R2, %) and Chi-square test (2, decimal) for the eleven models fitted, during the drying of noni 
seeds under the different air conditions. 

 

Table 2. Statistical parameters obtained for the eleven models fitted to describe the thin-layer drying of noni 
seeds under different temperature conditions 

Models 
40 ºC  50 ºC 60 ºC 70 ºC  80 ºC 

P SE  P SE P SE P SE  P SE 

(2) 9.6453 0.0145  5.1538 0.0115 3.1754 0.0057 13.9373 0.0119  13.5536 0.0218

(3) 7.4228 0.0102  6.7811 0.0109 3.8226 0.0055 4.5705 0.0057  2.3903 0.0059

(4) 30.0947 0.0427  15.2642 0.0258 4.1205 0.0058 18.0614 0.0133  17.1940 0.0234

(5) 4.1139 0.0087  6.0862 0.0076 2.2928 0.0055 9.2948 0.0093  10.3460 0.0181

(6) 24.4868 0.0349  12.4547 0.0230 3.9765 0.0059 17.7621 0.0136  17.0296 0.0242

(7) 2.9883 0.0072  4.8345 0.0065 3.1383 0.0054 2.3494 0.0050  2.4380 0.0056

(8) 2.6576 0.0084  15.2596 0.0270 3.1236 0.0056 18.0614 0.0141  2.9132 0.0099

(9) 12.9446 0.0170  82.4013 0.1375 3.4236 0.0057 2.4264 0.0059  3.4721 0.0104

(10) 84.9693 0.1290  57.7342 0.0831 51.7075 0.0589 83.4109 0.0885  31.3259 0.0550

(11) 17.7895 0.0226  15.2641 0.0264 2.3093 0.0056 18.0613 0.0137  17.1940 0.0242

(12) 8.5382 0.0127  5.2472 0.0080 3.6587 0.0079 5.9356 0.0088  3.5228 0.0127

Models 
40 ºC  50 ºC 60 ºC 70 ºC  80 ºC 

R2 2  R2 2 R2 2 R2 2  R2 2 

(2) 99.7012 0.1027  99.8248 0.0560 99.9617 0.0349 99.8273 0.1540  99.4476 0.1536

(3) 99.8605 0.0844  99.8584 0.0807 99.9680 0.0467 99.9646 0.0565  99.9687 0.0313

(4) 97.3209 0.3103  99.0867 0.1590 99.9584 0.0432 99.7729 0.1896  99.3205 0.1827

(5) 99.8915 0.0438  99.9243 0.0662 99.9661 0.0252 99.8962 0.1027  99.6205 0.1173 

(6) 98.2707 0.2607  99.3063 0.1354 99.9590 0.0437 99.7751 0.1963  99.3226 0.1930

(7) 99.9305 0.0340  99.9496 0.0576 99.9689 0.0384 99.9726 0.0290  99.9206 0.0319

(8) 99.9029 0.0292  99.0867 0.1734 99.9686 0.0362 99.7729 0.0790  99.8945 0.0354

(9) 99.6036 0.1424  76.2406 0.9364 99.9686 0.0396 99.9724 0.0283  99.8835 0.0422

(10) 76.3111 0.9045  90.9385 0.6275 95.9445 0.5688 90.4938 0.9219  96.4892 0.3550

(11) 99.2704 0.1894  99.0867 0.1659 99.9667 0.0254 99.7729 0.1996  99.3205 0.1949

(12) 99.7853 0.0972  99.9239 0.0625 99.9348 0.0447 99.9152 0.0733  99.8386 0.0461

 

In relation to the mean relative error (P), it can be observed that only the models Midilli (3), Two Terms (7) and 
Valcam (12) had values lower than 10% for all drying temperatures studied. According to Mohapatra and Rao 
(2005), this parameter can be used to recommend or not a model. Mean relative error values reflect the deviation 
of the observed values relative to the curve estimated by the model (Kashaninejad, Mortazavi, Safekordi & Tabil, 
2007). Thus, in this case, the deviation can be considered as acceptable for the models evaluated. 

According to Draper and Smith (1998), the mean estimated error (SE) indicates the capacity of a model to 
accurately describe a certain physical process, and the lower its magnitude, the better the fitting quality of the 
model relative to the experimental data. Thus, the model Two terms stood out among the others, for showing the 
lowest values under all different conditions of the drying air (Table 2), hence demonstrating a good fit. 

Based on the coefficient of determination (R2), only the models Newton, Henderson and Pabis, Logarithmic and 
Wang and Singh were below 99%. According to Kashaninejad et al. (2007), models with coefficients of 
determination above 98% can satisfactorily represent the drying phenomenon. Nevertheless, Mohapatra and Rao 
(2005) report that the coefficient of determination as single criterion of evaluation to select drying models is not 
a good parameter to represent the drying phenomenon. 

Table 2 also shows that all models had low values in the Chi-square test (2), and the higher the value of 2, the 
higher also the discrepancy between experimental values and the expected trend (Molina Filho, Pedro, 
Telis-Romero, & Barbosa, 2006). 
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the biological and physical characteristics of the different agricultural products can influence the variations of the 
values activation energy. 

4. Conclusions 

The model Two terms showed the best fit to the data and was selected to describe the drying kinetics of noni 
seeds. 

The effective diffusion coefficient tends to increase with elevating temperature, showing values from 8.6968 to 
23.7089 × 10-10 m2 s-1. 

The activation energy was equal to 24.20 kJ mol-1, obtained through the Arrhenius equation, which establishes 
the dependence of the diffusivity in relation to the temperature. 
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