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Abstract 

The agricultural processing industry is continually working to meet consumer demand for new products, 
diversifying the supply of non-perishable items ready for consumption, conveniently prepared to maintain the 
main characteristics of the raw material. The objective of this work was to dehydrate whole okra by 
lyophilization and convective drying at 50, 60, 70 and 80 °C and to evaluate the influence of drying processes on 
the chemical and physical quality of powdered products. The powders had acceptable contents of lipids, sugars, 
proteins, pectin, chlorophyll and carotenoids, high hygroscopicity and low solubility. Lyophilization produced 
powders with characteristics closer to those of the fresh raw material. Regarding the contents of ashes, pectin, 
lipids and chlorophyll b, the samples obtained by convective drying showed characteristics close and even 
superior to those of the lyophilized powder. 
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1. Introduction 

Okra (Abelmoschus esculentus (L.) Moench), belonging to the Malvaceae family, is a commercially important 
plant native to Africa, and its cultivation is expanding in almost all tropical and subtropical areas of the world 
(Lengsfeld et al., 2004; Jesus et al., 2014). In Brazil, okra was introduced with the slave trade and spread to all 
regions of the country, especially in the northeast and southeast, which have a very favorable climate for its 
development (Jain et al., 2012; Zheng et al., 2014). 

Okra is consumed when it is not yet ripe, alone or combined with other vegetables in different preparations 
(Agbo et al., 2010). It is antihelmintic, antiparasitic, emollient and indicated in the treatment of various diseases 
such as inflammation in the intestine, stomach and kidneys (Sousa et al., 2015). In addition to being beneficial to 
the digestive system, it contributes to the proper functioning of the intestine, due to its high content of 
polysaccharides and microemulsions (Adelakun et al., 2011). Its seeds are good sources of oil, proteins, fats, 
fibers and sugars (Fan et al., 2014; Mota et al., 2006). It is a rich source of mucilage, with considerable pectin 
and lignin contents (Kpodo et al., 2017). 

Expansion of okra supply and consumption should consider ready and semi-ready products, with extended shelf 
lives, obtained by applying conservation methods that, in addition to extending the shelf life, add value to the 
raw material (Gamboa-Santos et al., 2013). Drying is a widely used food preservation process in which water 
removal minimizes many of the deterioration reactions caused by moisture, which affect the quality of the 
product. Dried fruits and vegetables and their application as powder have aroused the interest of the food 
industry (Karam et al., 2016). 

According to Chopda and Barrett (2001), there is a wide variety of drying techniques available and the choice of 
the method should take into account the relationship between the costs involved and the final quality desired. At 
the extremes of lowest and highest costs are convective drying and lyophilization, respectively. Convective 
drying has as great advantages the low complexity and the simplicity of equipment, whose functions are mainly 
aimed at temperature control. When well applied, it can originate products with good quality and at a relatively 
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using the method described by Schoch (1964) using a centrifuge at 3200 rpm for 15 minutes, and the supernatant 
was collected and dried in an oven at 105 °C for 24 h, to determine the soluble mass. Wettability was determined 
by the method of Schubert (1993), expressed by the following ratio: mass (g)/time required for sample 
disappearance (min). 

Apparent density (ρap) was determined using a 10-mL cylinder previously weighed and then filled with the 
powder, based on the mass/volume ratio. Tapped density was determined with the same setup used to determine 
apparent density, and the cylinder with the sample was tapped against the bench 50 times from a preestablished 
height of 2.5 cm, calculating the mass/tapped volume ratio (Tonon et al., 2009). 

Carr index (CI) and Hausner Ratio (HR) were determined by the methodology of Wells (1988), calculated from 
the data of apparent density (ρap) and tapped density (ρt), according to Equations 3 and 4: 

CI = 
ρt – ρap

ρap
 × 100                                    (3) 

HR = 
ρt

ρap
                                       (4) 

2.3.4 Scanning Electron Microscopy 

Morphological analysis of the particles was carried out in a Shimadzu SSX-550 Superscan scanning electron 
microscope (SEM), operating at 15 kV. To obtain the images with the SEM, the samples were metalized with a 
gold alloy for 360 seconds with 10 mA current in a Shimadzu IC-50 metallizer, under high vacuum conditions, to 
provide a reflecting surface for the electron beams. Then, the samples were visualized in microscope and the 
morphological structures were photographed with magnifications of 500x. 

2.4 Statistical Analysis 

The results of chemical and physical analyses were subjected to analysis of variance and the means were 
compared by Tukey test at 0.05 probability level, using the program Assistat, Beta version 7.7 (Silva and 
Azevedo, 2009). 

3. Results and Discussion 

3.1 Chemical Characterization 

Table 1 shows the chemical parameters of fresh okra and its powders dehydrated by lyophilization and 
convective drying at temperatures of 50, 60, 70 and 80 °C. Fresh okra showed high water content, which was 
already expected because vegetables are usually commercialized with water content equal to or higher than 90% 
w.b. This condition, according to Franco and Landgraf (2005), favors the development of molds, yeasts and 
pathogenic bacteria, which requires immediate consumption or processing aiming at minimum shelf life or 
prolonged periods of storage. 

 

Table 1. Mean values and standard deviations of the parameters evaluated in okra (Abelmoschus esculentus (L.) 
Moench) fresh and dehydrated by lyophilization and convective drying 

Parameters Fresh Lyophilization

Convective drying 

Temperature (°C) 

50 60 70 80 

Water content (% d.b.) 840.20±0.21a 4.82±0.06 d 9.12±0.36 b 8.77±0.07 b 7.01±0.34 c 5.59±0.15 d 

Water activity 0.994±0.00 a 0.128±0.002 e 0.269±0.002 b 0.227±0.002 c 0.219±0.004 c 0.175±0.011 d

Total titratable acidity (% citric acid, d.b.) 1.05±0.01 a 1.06±0.04 a 0.83±0.02 b 0.61±0.07 c 0.57±0.07 c 0.42±0.03 d 

pH 6.29±0.01 6.32±0.00  6.39±0.01  6.43±0.02  6.49±0.00  6.55±0.03  

Ashes (% d.b.) 6.49±0.06 b 7.44±0.44 a 7.01±0.06 ab 7.27±0.03 a 7.38±0.12 a 7.39±0.02 a 

Lipids (% d.b.) 9.38±0.61 a 3.16±0.22 b 2.97±0.10 b 3.02±0.10 b 3.10±0.29 b 3.69±0.29 b 

Proteins (% d.b.) 29.74±0.53 a 25.65±1.19 b 23.54±0.18 c 21.80±0.34 c 19.64±0.46 d 18.98±0.76 d

Total sugars (mg/100 g d.b.) 63.50±0.71 a 39.70±0.07 b 28.14±0.03 c 24.93±0.08 d 21.24±1.99 e 18.55±0.77 f 

Reducing sugars (mg/100 g d.b.) 10.06±0.54 a 6.38±0.05 c 7.53±0.25 b 7.45±0.05 b 7.25±0.33 bc 7.18±0.55 bc

Pectin (% d.b.) 13.60±0.34 a 13.69±0.68 a 8.57±1.08 c 12.63±0.14 b 13.41±0.20 a 13.43±0.11 a

Note. Means followed by the same letter in the rows do not differ statistically by Tukey test at 0.05 probability 
level. 
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In the powders produced after drying, water content tended to decrease with the increment of temperature in the 
convective drying processes. There was no statistical difference between the powders dehydrated at temperatures 
of 50 and 60 °C, with significant reduction in the powder dehydrated at 70 and 80 °C, and the powder obtained 
at 80 °C was statistically similar to the lyophilized powder. Castro et al. (2017), studying the influence of 
spouted bed drying at temperatures of 70, 80 and 90 °C on taro (Colocasia esculenta), observed that water 
contents decreased with the increase in drying temperature from 82.05% to 6.81, 6.16 and 5.61% w.b., 
respectively. The water contents found in the unpeeled okra powders after both drying methods are within the 
standards of the Brazilian legislation for products dried and processed in the form of powder and flour, which 
establishes water content of up to 15% (Brasil, 2005). 

As observed for water content, the fresh okra had high water activity. Such high values can cause several 
physicochemical and microbiological alterations during the storage of the product (Bejar et al., 2012) and need 
to be reduced in order to increase its shelf life and add value. The lyophilized powder had the lowest water 
activity, with statistical difference (p < 0.05) between the powders produced by convective drying, and this 
variable tended to decrease as drying temperature increased. The low water activity found in okra powders is 
sufficient to provide stability during storage, which is guaranteed at aw < 0.6 according to Fellows (2000). 
Monteiro et al. (2018) dehydrated slices of pumpkin (Cucurbita moschata var. ‘Menina Brasileira’) by different 
methods and obtained water activities of 0.145 and 0.438 for the methods of lyophilization and air circulation 
oven, respectively. Silva et al. (2017) dried onion and organic beet in air circulation oven at temperature of 70 °C 
and found water activities of 0.280 and 0.285, respectively.  

Okra showed low acidity (TTA), a common characteristic of vegetables, as reported by Pereira et al. (2016), who 
characterized chard, lettuce and cabbage physicochemically and found contents of 0.08, 0.07 and 0.30% of citric 
acid (d.b.). Lyophilized okra powder was statistically similar to the fresh material, preserving its acidity after 
dehydration. In the samples subjected to convective drying, increasing temperature led to a trend of reduction in 
acidity. According to Melo et al. (2015), this is probably due to the thermal degradation of the organic acids. 
Since TTA encompasses all acids present in the product, any loss observed in some of the constituent acids can 
interfere in the results. 

The pH in the fresh sample was close to neutrality, with values higher than 6.0. Nascimento et al. (2013) 
evaluated okras irrigated by different depths of saline water and found pH between 6.04 and 6.19 in okra at the 
lowest water depth. In powders obtained by convective drying, pH values tended to increase as the drying 
temperature increased. The lyophilized powder had the lowest value and was the closest one to the fresh sample, 
indicating lower alteration, followed by the samples obtained at gradually higher temperatures. The inverse 
correlation between pH and total titratable acidity was observed in all samples, corroborating the effect of 
heating on both parameters. 

For ash contents, there were statistical differences between the fresh material and the powders, with similarity 
between fresh okra and the powder dehydrated by convective drying at 50 °C and no statistical difference 
between the other samples dried by convection. Crocetti et al. (2016), characterized beet (Beta vulgaris L.), fresh 
and dehydrated by convective drying (50 °C) and lyophilization, and found ash contents of 8.87 % d.b. in the 
fresh material and 9.98 and 9.05% in the powders, respectively. Karaman et al. (2014), studying the effects of 
three drying methods (lyophilization, oven drying and vacuum drying) on the physicochemical properties of 
persimmon (Diospyros kaki), observed that the ashes were statistically stable in the powders obtained through all 
drying methods. 

Regarding the lipids, a degradation was observed after dehydration in comparison to the fresh okra, which had 
content of 9.38% d.b., whereas the contents in the powders ranged between 2.97 and 3.69% d.b. There was no 
statistical difference between the powder obtained by lyophilization and those by convective drying, with a slight 
trend of concentration of lipids as the drying temperature increased. Higher values than those in the fresh 
material were found by Soares et al. (2012), characterizing okra seed flower, 14.01% w.b. Silva et al. (2016) 
characterized flours of eggplant (Solanum melongena L.) genotypes obtained by convective drying (60 °C) and 
found values between 4.0 and 6.0%, respectively. 

Okra had considerable contents of protein and the dehydration process caused a statistical reduction in these 
values in comparison to the fresh material. The values in the lyophilized powder were approximately 4% lower, 
followed by the samples obtained from convective drying, in which the contents decreased gradually with the 
increment in temperature. Higher value, 22.14% w.b., was reported by Soares et al. (2012) for okra seed flour. 
Gonçalves et al. (2016), drying peels of green banana (Musa acuminata) at temperatures of 55, 65 and 75 °C, 



jas.ccsenet.org Journal of Agricultural Science Vol. 11, No. 5; 2019 

241 

reported reductions in protein contents with the increment of temperature, equal to 7.42, 7.37 and 6.99%, 
respectively, a behavior similar to that found in the present study. 

The contents of total sugars drastically changed after drying, decreasing with the lyophilization, the best 
treatment, by approximately 37% compared with the fresh sample. The values were progressively lower as 
temperature increased during the convective drying until a minimum point at 70 °C, which represents a 71% 
reduction in comparison to the initial value. Guiné et al. (2011), evaluating the drying of pumpkin slices in air 
circulation oven at temperatures of 30 and 70 °C, observed reduction of 65% in total sugars as the drying 
temperature increased. 

The contents of reducing sugars also decreased after dehydration. However, the convective drying stood out for 
maintaining the contents of reducing sugars, which were superior or at least statistically similar to those found 
after lyophilization. A slight decline in the contents of reducing sugars was observed as drying temperature 
increased, and such degradation is probably due to caramelization processes. According to Lan et al. (2010), the 
effect of temperature associated with the reduction in water activity leads to rapid increase in browning rate in 
the Maillard reaction, affecting the composition of the pigment formed, a reaction which involves reducing 
sugars and amino acids. Similar behaviors in relation to reducing sugars and total sugars were observed by Sojak 
et al. (2014) in the analysis of quality parameters of giant pumpkin (Cucurbita maxima) dehydrated using several 
technologies of convective drying (chamber dryer, tunnel dryer and fluid bed dryer) at temperatures from 40 to 
80 °C. In this study, considerable reductions in the sugars were found at the highest temperatures (70 and 80 °C). 

For pectin contents, there was no degradation in the samples dehydrated by lyophilization and at temperatures of 
70 and 80 °C by convective drying, which were statistically equal to the fresh material. Wang et al. (2016) found 
value of 16.70% in the extraction of pectin from the lyophilized mango peel, whereas Kpodo et al. (2017) 
evaluated pectin contents in six genotypes of okra (Abelmoschus esculentus L.), isolated by aqueous extraction at 
pH 6.0, and obtained values of 11 and 14%, within the same range found in the present study. 

3.2 Characterization of Pigments and Colorimetric Parameters 

Table 2 shows the values of pigments and colorimetric parameters of fresh okra and its powders obtained by 
lyophilization and convective drying. Color and pigments are the most important quality attributes influencing 
the overall acceptance of products by consumers and can be used to visually assess the effects of drying on the 
product, because these are the bioactive chemical compounds which impart the color observed in the product 
(Xiao et al., 2014; Huang et al., 2016). 

 

Table 2. Mean values and standard deviations of chlorophylls and colorimetric parameters evaluated in okra 
(Abelmoschus esculentus (L.) Moench), fresh and dehydrated by lyophilization and convective drying 

Parameters Fresh Lyophilization 

Convective drying 

Temperature (°C) 

50 60 70 80 

Chlorophyll a (µg/g d.b.) 14.21±0.42 a 8.90±0.01 b 7.79±0.09 c 7.50±0.02 d 6.79±0.03 e 5.23±0.03 f 

Chlorophyll b (µg/g d.b.) 25.44±0.77 a 2.20±0.01 c 2.63±0.04 b 2.76±0.09 b 2.29±0.05 c 1.80±0.01 d 

Total chlorophyll (µg/g d.b.) 38.56±1.12 a 16.06±0.02 b 14.47±0.13 c 14.06±0.06 d 12.62±0.04 e 9.74±0.05 f 

Carotenoids (µg/g d.b.) 18.62±0.30 a 3.43±0.01 b 1.90 ±0.05 d 2.08±0.04 d 2.10±0.02 d 2.66±0.05 c 

Luminosity (L*) 50.53±0.04 f 70.04±0.02 a 58.41±0.23 e 59.85±0.22 d 60.29±0.11 c 65.80±0.06 b 

Green intensity (-a*) 0.72±0.05 e 5.09±0.10 a 3.42±0.03 b 2.90±0.05 c 2.86±0.08 c 1.25±0.05 d 

Yellow intensity (+b*) 26.85±0.07 a 23.46±0.03 c 20.73±0.29 f 22.17±0.08 e 22.71±0.15 d 24.51±0.34 b 

Chroma (C*)  26.84±0.07 a 24.02±0.04 b 21.23±0.29 d 22.38±0.07 c 22.88±0.15 c 24.59±0.35 b 

Hue angle (o) 88.51±0.10 a 77.75±0.23 f 80.68±0.09 e 82.56±0.13 d 82.98±0.17 c 87.08±0.09 b 

Note. Means followed by the same letter in the rows do not differ statistically by Tukey test at 0.05 probability 
level.  

 

Fresh okra has higher contents of pigments and the dehydration process led to their degradation. The lyophilized 
powder stood out for retaining chlorophyll a, preserving approximately 62.63% of the molecule and 41.66% of 
total chlorophyll, in comparison to the fresh material, statistically differing from the powders obtained by 
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convective drying. This was already expected because the lyophilization process minimizes the changes in the 
product’s characteristics (Azeredo, 2004). 

In the convective drying, increasing dehydration temperature led to gradual reduction of chlorophylls a, b and 
total. Such degradation at higher drying temperatures is due to protein denaturation, which leaves the chlorophyll 
unprotected. Consequently, chlorophyll degradation occurs and this process varies also according to pH and 
variations of temperature, light and oxygen in the sample (Bohn & Walczyk, 2004). Similar behavior was 
reported by Reis et al. (2012) in the convective drying of basil (Ocimum basilicum L.) leaves, which caused 
degradation of chlorophylls with the increase in drying temperature.  

As occurred with the chlorophylls, carotenoids also degraded in comparison to the fresh material. The 
lyophilized powder had the highest retention, about 18% of the initial value. In the convective drying, carotenoid 
contents tended to increase with the increment in dehydration temperature, i.e., greater retention of carotenoids, 
which may be related to the shorter drying time and lower exposure to hot air. Nóbrega et al. (2014) found 
similar behavior in acerola residue, a content of 8.99 μg/g in the fresh material and a trend of greater retention of 
carotenoids as temperature increased, with values between 4.52 and 5.53 μg/g in the powders obtained by fixed 
bed drying, at temperatures from 60 to 80 °C. 

Regarding the colorimetric parameters, the powders showed a significant difference in all measurements in 
comparison to the fresh sample. Luminosity (L*) in the powders, in all cases, was higher than that found in fresh 
okra, with highest value in the lyophilized powder and increasing values in powders obtained by convective 
drying as the temperature increased. This is probably related to the shorter residence time of the samples in the 
drying at higher temperatures. Ren et al. (2017), studying the effects of drying methods (freeze drying, hot air 
drying, oven drying and vacuum oven drying) on organic and non-organic onions (varieties Red Baron and 
Hyfort), observed that the freeze-dried material showed greater luminosity compared to the other drying methods. 
Krumreich et al. (2016), studying ‘uvaia’ (Eugenia pyriformis) dehydrated by lyophilization and convective 
drying, found luminosity values of 89.19 and 64.76, respectively, corroborating the results in the present study.  

The green component (-a*) increased with the drying and maximum difference from the fresh sample was found 
in the lyophilized powder. The increase in convective drying temperature led to reduction in green color, 
indicating a less pronounced effect of exposure time in comparison to temperature. According to Buchaillot et al. 
(2009), during the drying process, magnesium molecules are converted to pheophytin and pyropheophytin, 
causing a decrease in the green color of the samples. Unlike the other colorimetric parameters, yellow intensity 
decreased in all powders in comparison to the fresh sample. The values in the powder obtained at 80 °C were the 
closest ones to those in the fresh sample, followed by the lyophilized powder and the samples from the highest to 
lowest temperatures.  

In relation to chroma (C*), highest values were found in the fresh material, followed by the powders obtained by 
convective drying at 80 °C and the lyophilized powder. Chromaticity increased with the increment in the 
convective drying temperature, varying between 21.23 and 24.59. Chroma values, when they are close to zero, 
correspond to neutral colors (gray) with greater opacity of the samples; however, values close to 60 are 
equivalent to vivid colors, i.e., more intense shades (Mendonça et al., 2003). Similar values were found by 
Oliveira et al. (2016) in ‘baru’ (Dipteryx alata Vogel) dried at temperatures of 80 and 100 °C in air circulation 
oven, 22.24 and 24.26.  

Hue angle (h) exhibited the same behavior of chroma, with higher values in the fresh sample and in the powder 
dried at 80 °C, followed by the other powders dehydrated at gradually lower temperatures, differing from the 
lyophilized powder, which had the lowest value. All values were distant from the red region, which corresponds 
to the angle h = 0°, and were close to the yellow region, equivalent to the angle h = 90° (Alves et al., 2008). 
Alessi et al. (2013) observed average hue angles of 46.32 in fresh mini tomatoes (Sweet Grape) and 45.24 in 
tomatoes dehydrated in the oven at temperature 60 °C, corroborating the data found here.  

3.3 Physical Parameters of the Powder 

The mean values of physical parameters for okra powder dehydrated by lyophilization and convective drying are 
presented in Table 3. High hygroscopicity was observed in all powders studied and, according to Gea (2006), 
powders with hygroscopicity higher than 25.0% are extremely hygroscopic. Highest value was found in the 
powder obtained at temperature of 50 °C, followed by reductions as temperature increased, with the lyophilized 
powder in intermediate position. Fernandes et al. (2014), in powders from the pulp of tomatoes cv. ‘Saladete’, 
dehydrated at temperatures of 60 and 80 °C in air circulation oven, found hygroscopicity values ranging from 
41.40% to 57.88%. These authors observed that hygroscopicity is directly linked to water content, so that 
powders with lowest water contents were the least hygroscopic. Hygroscopicity assessment in foods is closely 
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associated with the physical, chemical and microbiological stability of these products (Tonon et al., 2009), 
allowing one to select the most suitable package to store the samples taking into account the relations between 
product value, package cost and permeability level of package. 

 

Table 3. Mean values and standard deviations of the physical parameters evaluated in okra powders dehydrated 
by lyophilization and convective drying 

Parameters Lyophilization 

Convective drying 

Temperature (°C) 

50 60 70 80 

Hygroscopicity (%) 82.97±0.38 bc 86.64±0.98 a 83.98±0.02 b 82.94±0.03 bc 81.81±0.54 c 

Wettability (g/min) 2.05±0.04 a 0.91±0.03 c 1.62±0.05 b 1.62±0.01 b 2.12±0.09 a 

Solubility (%) 62.08±1.01 a 29.39±0.23 e 31.02±0.58 d 34.40±0.56 c 40.42±1.24 b 

Apparent density (g/cm³) 0.122±0.01 d 0.511±0.06 a 0.510±0.01 a 0.484±0.01 b 0.355±0.01 c 

Tapped density (g/cm³) 0.193±0.01 e 0.631±0.02 a 0.628±0.01 b 0.572±0.01 c 0.418±0.01 d 

Carr Index (%) 36.67±2.89 a 19.00±1.73 b 17.33±0.59 c 15.33±0.58 d 15.00±0.00 d 

Hausner Ratio 1.58±0.07 a 1.23±0.03 b 1.21±0.01 b 1.18±0.01 c 1.18±0.00 c 

Note. Means followed by the same letter in the rows do not differ statistically by Tukey test at 0.05 probability 
level. 

 

For wettability, the highest values were found in the powders obtained by lyophilization and convective drying at 
80 °C, which did not differ statistically. In powders obtained by convective drying, wettability tended to increase 
as drying temperature increased, which can be related to the lower water content obtained under this condition. 
Wettability rate is characterized by the susceptibility of the particles to be penetrated by water and is related to 
both food chemical composition and physical factors, especially size and shape of particles and temperature of 
the reconstitution water (Tonon et al., 2009). Duarte et al. (2017), subjected fruits of the Cerrado region, ‘marolo’ 
(Annona crassiflora) and ‘cagaita’ (Eugenia dysenterica), to lyophilization and found wettability rates of 4.54 
and 1.15 g/min, respectively, the latter of which was close to the values found in okra powders. 

Powder solubility is an important property of food raw materials since slightly soluble powders may lead to 
difficulties in processing and result in economic losses for the industry (Sharma et al., 2012). The powder 
obtained by lyophilization stood out from the others with the best solubility and, as observed for wettability, 
followed by the samples dried at the highest temperatures, significantly decreasing until temperature of 50 ºC 
was reached. Higher values have been found by Caparino et al. (2012) in lyophilized whole mango pulp powder, 
89.70%, and by Franco et al. (2016) in yacon (Smallanthus sonchifolius) powder obtained by convective drying 
at temperatures of 50, 60 and 70 °C, in the range from 80.89 to 84.16%. Kuck and Noreña (2016) claim that the 
lower the water content, the more soluble the product, and this behavior is corroborated by the data found in the 
present study. 

Highest values of apparent density were found in powders obtained at the lowest temperatures of convective 
drying; these values gradually decreased with increasing temperature but were all higher than those found in the 
lyophilized powder. A correlation between apparent density and solubility was observed, suggesting that the 
lower the density the higher the solubility and, according to Sogi et al. (2015), this leads to lower formation of 
lumps. Similar values to those observed in powders obtained by convective drying were found by Ahmed et al. 
(2016), who evaluated the effects of particle size of commercial lentil flours and found mean apparent density of 
0.480 to 0.600 g/cm3. Similar value to that found in the lyophilized powder was reported by Sogi et al. (2015) for 
Tommy Atkins mango powder obtained by lyophilization, which showed apparent density of 0.170 g/cm3. 

Tapped density ranged from 0.193 to 0.631 g/cm3; its lowest value was found in lyophilized powder and its 
highest value was found in the powder obtained by convective drying at 50 °C, as observed for apparent density. 
Similar values of tapped density were found by Fernandes et al. (2014) in tomato powder produced by foam mat 
drying at temperatures of 60 and 80 °C, in the range from 0.180 to 0.454 g/cm3. 

The mean values of Carr index (CI), or compressibility index, decreased from the lyophilized powder to the 
powders produced at the highest temperatures, not differing statistically between the temperatures of 70 and 
80 °C, but with the same trend of reduction. The Carr index measures the flowability of powders: good, 15-20%; 
fair, 20-35%; bad, 35-45%; and very bad, CI > 45% (Santhalakshmy et al., 2015). Based on these criteria, 
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of smaller pores and thinner walls. Caparino et al. (2012) dehydrated whole mango pulp using different drying 
methods (Refractance Window® drying, drum drying, spray drying and lyophilization) and, by analyzing the 
microstructure of the samples, found that lyophilization led to the formation of more porous powders compared 
to the other types of drying. 

In powders obtained by convective drying, the increase in dehydration temperature caused lower porosity and 
lower presence of irregular surfaces up to temperature of 80 °C, and their appearance was similar to that of the 
lyophilized powder but differs from it for having fewer voids. Agglomeration of the structures, possibly due to 
higher water content, was observed particularly in the powders obtained at 60 °C (Figure C) and 70 °C (Figure 
D).  

4. Conclusions 

The powders had acceptable contents of lipids, sugars, proteins, pectin, chlorophyll and carotenoids, high 
hygroscopicity and low solubility. Lyophilization produced powders with characteristics closer to those of the 
fresh raw material. Regarding the contents of ashes, pectin, lipids and chlorophyll b, the samples obtained by 
convective drying showed characteristics close and even superior to those of the lyophilized powder. 
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