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Abstract 
Endophytes are the microbes residing internally in the host tissues without causing visible disease symptoms. 
They have found involved in a balanced interaction with the plants and providing benefits such as, growth 
enhancement and disease resistance. In this review we hypothesize that endophytes can be employed as a 
potential biocontrol agent, as biocontrol is becoming most suitable disease management strategy due to its health 
and environment conservational benefits. This aspect of endophytes should be consider, there are several 
investigations that have revealed and proved the role of endophytes as best biocontrol agent. Mutualistic 
interaction of endophytes involve different mechanisms, as it may trigger certain genes involved in induced 
systemic resistance (ISR) that may initiate defense mechanism against attack of pathogens or by formulating 
secondary metabolites and other chemical compounds that are directly toxic to the pathogens. There is a need to 
explore the endophytic interaction and its mechanism of causing disease resistance more precisely. 

Keywords: endophytes, biocontrol, induced systemic resistance (ISR), secondary metabolites, symbionts, 
arbuscular mycorrhiza fungi (AMF), endophytic diversity 

1. Introduction 
1.1 Endophytes 

Endophyte was defined as “endophytes colonize internal tissues of host without causing symptoms, but chances 
are there that endophytes may cause disease after completing latency period” (Petrini, 1991). The word 
endophytes literally means “within plants” (In Greek; endon-within and phyton-plants). Endophytes is a vast 
term with respect to its literal meaning, host plants and inhabitants, such as fungi (Stone, Bacon and White, 
2000), bacteria (Kobayashi & Palumbo, 2000), insects (Feller, 1995) and algae (Peters, 1991). Endophyte 
colonizes plant tissues internally (Carroll, 1986), without causing visible disease symptoms. They live in 
symbiotic interaction with plants. And they also show variation in symbiotic interaction, which ranges from 
facultative saprobe, to parasite, to mutualistic. However, like all endophytic interactions provides nutritional 
benefits and protection against environmental and microbial stresses (Schulz & Boyle, 2005). 

Endophytes can be extracted from the external plant tissues cleaned with disinfectant or can be isolated from 
internal parts of the plants (Hallmann et al., 1997) without damaging them. Both commensal microbes, which do 
not affect their host plants, and mutualistic symbionts that are useful for biological control are part of endophytes 
(Araújo et al., 2000). The relationship between endophytes and plants is a matter of great interest and has been 
discussed alot before (Sturz et al., 2000). 

Endophytes show great diversity with respect to their living, they are extensively found in association with the 
temperate grasses (Clay, 1989) and higher trees of forest. Endophytes are found present in plants belonging to 
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different regions such as temperate, tropical regions and in boreal forests (Zhang et al., 2006). Arbuscular 
mycorrhiza fungi are present extensively throughout the terrestrial ecosystem, and fossil records and molecular 
analyses shows their association with plants from their origin millions of years ago (Redecker, Kodner, & 
Graham, 2000). Mutualistic bacteria has been identified in both monocots and dicots, that ranges from higher 
plants such as oak and pear, to lower plants like sugar beet and maize (Ryan et al., 2007). 

Endophytic bacteria found within the plant system are dynamic, varied, and diverse (Sturz et al., 1997). For such 
plant-endophyte relationship to be stable and successful, some form of synchronization must be present. 
Bacterial endophytes lives, adapts and survives within the suitable environment provided by the host plants. And 
the host plants also get benefits from this partnership, such as growth promotion and protection (Shishido et al., 
1995). 

1.1.1 Endophytic Diversity 
Endophytes show more diversity and abundance than plant pathogens within the plant systems (Ganley et al., 
2004). These symbionts are very diverse, only small number of them has been characterized (Rodriguez et al., 
2009). Endophytes mostly belong to phylums Basidiomycota and Ascomycota and they may be from orders 
Hypocreales and Xylariales of class Sordariomycetes or Loculoascomycetes (Unterseher et al., 2011). 

However, many genera of fungal endophytes commonly reported are: Aureobasidium, species of Trichoderma, 
Fusarium and two yeast genera, Pichia and Candida. Endophytic fungi such as Physoderma citri, 
Colletotrichum spp., Botryosphaeria spp., Lasiodiploidia theobromae, Phomopsis citri (Diaporthe citri), 
Alternaria, Cladosporium, Mycosphaerella, and Guignardia/Phyllostictina were extracted from healthy citrus 
plants. Colletotrichum spp., and Guignardia citricarpa were the most prominent fungi species in different 
tangerine plants (Busby, Ridout, & Newcombe, 2016). 

Grasses mostly involve endophytic fungi belonging to family Clavicipitaceae, tribe Balansiae. There are five 
genera and about 30 species in the tribe (Luttrell & Bacon, 1977). The genera Atkinsonella and Myriogenospora 
contain only one specie while the genera Balansia, Balansiopsis and Epichloe’ contain more than one species. 
Balansia is the most diverse of all having 15 species (Diehl, 1950). These genera are classified on the basis of 
conidia formation (Clay, 1986). These fungi are termed endophytes, found in host meristem, young leaves and 
inflorescence (Leuchtmann & Clay, 1988). However, most species invade vegetatively running parallel to the 
long axis of host leaf and stem tissue cells (Clay, 1989). 

Arbuscular mycorrhiza fungi is a part of mutualistic rhizosphere, these are micro symbionts that are involved in 
improvement of plant nutrient uptake and provides protection against different stresses (Smith & Read, 1997). 
AMF involves biotrophic Glomeromycota associated with different species of plants (Van der Heijden et al., 
2015). 

Review of previous studies on bacterial endophytes have characterized some of the bacterial types isolated from 
within the plant tissues after surface cleaning of plant tissues by using disinfectant such as sodium hypochlorite 
(Miche & Balandreau, 2001). The diversity of endophytes extracted from the poplar trees have been explained in 
a study (Porteous-Moore et al., 2006). Five taxa of endophytic bacteria were identified as Microbacterium, 
Pseudomonas, Clavibacter, Curtobacterium, Cellulomonas by molecular techniques such as gene sequencing 
and by fatty acid analyses (Zinniel et al., 2002).  

Number of bacterial endophytes has been extracted from the vascular tissues of citrus varieties such as E. 
aerogenes, Acinetobacter baumanii, Bacillus spp., Burkholderia cepacia, Citrobacter freundii, Corynebacterium 
spp., Arthrobacter spp., Enterobacter cloacae, and Pseudomonas aeruginosa, Acromobacter spp., Acinetobacter 
iwoffii, Alcaligenes-Moraxella. 

Some studies have concluded bacterial endophytes as polyphyletic belonging to vast range of taxa, such as 
Actinobacteria, α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, and Fermicutes (Miliute et al., 2015). 

Rhizobacteria is also included in bacterial endophytes, playing vital role in host plants survival (Dobereiner, 
1993).  

1.1.2 Mode of Action 
Number of studies has been done but how endophytes effect the plant disease severity is still unknown (Busby, 
Ridout, & Newcombe, 2016). Induction of host defense mechanism is consider to happen first, as Bacteria 
(Sequeira et al., 1977), nematodes (Kosaka et al., 2001), Viruses (Ross, 1961) and fungi (Pozo et al., 2002) 
induces plant defense mechanism, such as Systemic acquired resistance (SAR) and Induced systemic resistance 
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(ISR) (Van Wees et al., 2000). For example, a fungi Colletotrichum tropicale has stimulated hundreds of genes 
and their expression caused greater plant immunity in Theobroma cocao (Mejia et al., 2014). 

Endophytes can also minimize the defense mechanism of plant allowing other pathogens to cause disease 
(Houterman et al., 2008). Many studies have been done and their results have shown suppressing effects of 
endophytes due to competition or endophytic metabolites (Martin et al., 2015). For example, Ampelomyces spp. 
Suppress the powdery mildew sporulation (Kiss, 2003). 

Induced systemic resistance (ISR) is a unique way by which endophytes enhances the plant defenses against 
number of pathogens. Various root-inhabiting mutualists, such as Trichoderma, Bacillus, mycorrhiza species and 
Pseudomonas triggers the immune system of plant for enhanced defenses against pathogens (Pieterse et al., 
2014). 

“Induced resistance” is a term used for the resistance stimulated by chemical or biological agents, which helps 
the plants to fight against the pathogen attacks in the future (Kuc, 1982). ISR is only initiated when endophytes 
colonizes the root system of host plants (Lugtenberg & Kamilova, 2009). Biofilm formation is important for the 
root establishment of B. subtilis, polysaccharides of host cell wall stimulates the matrix production by triggering 
the bacterial genes (Beauregard et al., 2013). 

The endophyte adapts new lifestyle for the sake of survival, in the dynamic medium of the host cells by 
host-specific metabolic cues (Lahrmann et al., 2013). Trichoderma spp. establishes around the plant roots, where 
it forms a structure like appressorium which is an important characteristic of pathogenic fungus (Mukherjee et al., 
2013). Pseudomonas, Bacillus, and Trichoderma strains for establishing themselves around plant roots uses 
auxin as a triggering agent for the formation of large number of lateral roots, which helps in better nutrient 
uptake and defense against pathogens (Contreras-Cornejo et al., 2009). 

Endophytes are found responsible of producing bioactive compounds that contributes to their biocontrol activity 
(Akinsanya et al., 2015). An endophytic fungus Phomopsis spp. is found responsible of producing number of 
secondary metabolites including antimicrobial and antifungal compounds (Erbert et al., 2012). The biologically 
active Xanthones were found in the fermentation products of Phomopsis spp. (Yang et al., 2013). 

3-Methyl-2-aryl benzofurans obtained from the fermentation products of endophytic fungi Phomopsis showed 
anti-TMV activity. 

1.1.3 Dependency 
Review of literature shows the dependency of endophytes on biotic and abiotic factors, host and pathogen 
(Busby et al., 2016). Environmental factors such as humidity, pH and temperature effects the endophytic 
interaction of fungi (Cook & Baker, 1983). For example, Trichoderma activity is influenced by soil moisture 
(Jones & Bienkowski, 2015), and Candida activity is effected atmospheric conditions add strength against apple 
pathogen (Usall et al., 2000). In a trial, variations were observed in the endophytic activity against Dutch elm 
disease, indicating that there may be some abiotic factors involved that influences endophytic activity (Martin et 
al., 2015). 

Nonconductive or poor soil conditions are thought to affect the biological control activity of endophytes against 
plant pathogens (Handelsman & Stabb, 1996). 

Disease triangle consists of three components, host, pathogen and the environment, each component should be 
present for the occurrence of the disease, besides environment the other two components also influences the 
activity of endophytes. In case of rust disease the influence of these components has been observed (Nischwitz et 
al., 2005; Kiss, 2003). 

But in an experiment, it has been proved that pathogen matters most in disease occurring activity. i.e., 
Colletotrichum gloeosporioides and Pestalotia psidii were tested against fifteen endophytic species. Fourteen of 
them showed defense against C. gloeosporioides, while nine were defensive against P. psidii (Pandey et al., 
1993). In another finding, nine endophytic species were tested against following wheat pathogens: Drechslera 
tritici-repenti, Alternaria triticimaculans, Zymoseptoria tritici, and Bipolaris sorokiniana. Nine of them showed 
full defense against Zymoseptoria tritici and Drechslera tritici-repentis, eight showed defense against Bipolaris 
sorokiniana, and four against Alternaria triticimaculans (Perello et al., 2002). 

2. Claims 
In this review we have claimed that “Endophytes are potential biocontrol agent” and our claim is based on the 
present research literature that has been reviewed in this regard. 



jas.ccsenet.org Journal of Agricultural Science Vol. 11, No. 4; 2019 

116 

Endophytes are believed to have biocontrol potential against plant pathogens (Sapak et al., 2008). Presence of 
endophytes in plant systems provides beneficial effects (Ting et al., 2010). Many studies have concluded the role 
of endophytes as potential biocontrol agent mainly against pathogens of vegetable and fruit crops, as in case of 
Chinese cabbage (Narisawa et al., 1998). Endophytes shows biocontrol agent properties against pathogens of 
tomato (Hallman & Sikora, 1995), banana (Ting et al., 2008), barley (Boyle et al., 2001). Biocontrol properties 
are also shown by endophytes by controlling Ganoderma boninense in oil palm (Sapak et al., 2008). 

Number of investigations has revealed that endophytic fungi can be used as a biocontrol tool (Sikora et al., 2008). 
The endophytic fungi play antagonistic role and minimizes the threat of nematode attack (Sikora, 1992). 
Endophytic Fusarium oxysporum decreased the number of nematodes on banana (Sikora et al., 2008). 

Many studies have also concluded that some bacteria, along with endophytic bacteria (EB), enhances the 
symbiotic activity of AMF in the host, and can be used as biocontrol agent against plant pathogens 
(AzcÓnAguilar et al., 1998). So, it has been recommended to use AMF and EB together as biocontrol partners 
and it has been proved (Gianinazzi et al., 2010). 

Endophytes consist of mutualistic symbionts that can be used as potential biocontrol agent of plant pathogens. 
The potential of endophytes during symbiont/host interaction has been revealed in number of studies (Sturz et al., 
2000). 

Endophytic bacteria live in the same environmental conditions as the plant pathogens, such as vascular wilt 
pathogens. This is a positive aspect for endophytes to serve as biocontrol agents. Excessive research on 
biocontrol properties of microbes has revealed that endophytic symbionts extracted from plant tissues shows 
potential as biocontrol agent against pathogens (Duijff et al., 1997), nematodes (Hallmann et al., 1998) and 
insects (Azevedo et al., 2000). 

Biological control of plant pathogens has been observed and proved on grasses having symbiotic association 
with endophytes. In vitro and field demonstration has been performed and suppression of diseases have noted in 
case of grasses associated with endophytes (Siegel & Latch, 1991). In past, potential use of endophytes as 
biocontrol agent has been revealed by many investigators (Schardl, 2001; Sturz et al., 2000). 

2.1 Why Biocontrol? 

Because, there are growing concerns with the detrimental environmental effects of chemicals used to control 
plant diseases. They cause soil, water and air pollution, and are often made from expensive and non-renewable 
petrochemicals that have many adverse effects on natural environment. Moreover, repeated chemical treatments 
are required for efficient control with increases the initial economic cost (Clay, 1989). And also, use of chemicals 
to control diseases favors the addition of resistant mutants to pest population. As a result, biocontrol has become 
an important integrated management strategy (Waage & Greathead, 1988). 

The chemical compounds used for the management of plant diseases are not safe for the healthy environment. 
Consequently, we need to devise integrated managemental strategies. So, biocontrol is employed as a reasonable 
strategy for disease management (Mejia et al., 2008). 

As human pathogens are becoming resistant to antibiotics similarly the plant pathogens have become resistant to 
many chemicals used for their control. With the excessive use of chemicals pathogens have develop resistant 
strains. For example, Ustilago, Pythium, Phytophthora, Penicillium, Mycosphaerella, Sphaerotheca, Verticillium, 
Botrytis, Cercospora, Colletotrichum, Fusarium, Aspergillus and Alternaria are the fungal pathogens that have 
developed resistant strains against fungicides used against them (Agrios, 2005). Resistant strains of Erwinia 
amylovora to antibiotic streptomycin, causal agent of fire blight, had been known since the late 1950s (McManus 
& Jones, 1994). 

3. Evidences 
Endophytes are potential biocontrol agent is supported by number of evidences from the literature reviewed. 

Some members of Acremonium sp. can colonize roots or shoots and can decrease nematodes population; 
including Acremonium coenphialum (Pedersen et al., 1988), Acremonium lolii (Stewart, 1993) and Acremonium 
strictum (Goswami et al., 2008). Acremonium implicatum is a fungus that negatively affect Meloidogyne 
incognita causing root galls. This fungus was isolated from these galls caused due to Meloidogyne incognita (Lin 
et al., 2013) also from eggs of Meloidogyne hapla (Figure 1). 

Greenhouse demonstration has revealed the effective role of F. oxysporum isolates in controlling R. similis in 
Uganda (Niere et al., 1998). Studies have proved the effectiveness of biological control of R. similis using 
Fusarium oxysporum in banana cultivars (Figure 2) (Pocasangre et al., 2000). Evidences have proved that 
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Despite of all the progress briefly described here, endophytes still need attention of researchers. As it can become 
an ultimate tool to handle plant diseases more effectively. Especially, the complex decline diseases that are major 
threat to the perennial plants and difficult to manage, e.g., destructive mango wilt disease. 

At the end, by considering the great potential of endophytes the road map for the future research can be designed. 
The understanding of the plant-microbe interaction should be given primary importance because by knowing this 
interaction better, it could one day leads to develop crop plants that can interact with endophytes/beneficial 
microbes more efficiently. Eventually, we can move towards gaining our goals of sustainable agriculture. 
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