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Abstract 
Codon usage bias (CUB) is defined as the selective and nonrandom use of synonymous codons by the organism 
for encoding the amino acids. One of the important plant transcription factor family is the ‘WRKY’ whose role 
has been investigated in the regulation of abiotic and biotic stress responses in plants. In this paper, the codon 
usage pattern of the WRKY transcription factor of the two important plant species Arabidopsis thaliana and 
Brassica rapa has been investigated. Various codon usage indices like ENc, CAI, correspondence analysis, 
RSCU analysis, neutrality plot and hierarchial clustering has been done. The GC codon status was high in 
Arabidopsis. The RSCU analysis of codons revealed that codons coding for arginine was maximum in both the 
plant species.Our results propose that natural selection was the main dominating factor guiding the evolution of 
different WRKY genes in both Arabidopsis thaliana and Brassica rapa. 
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1. Introduction 
The genetic code is the set of codons used by the living cells to convert the information encoded by the DNA 
into the proteins. When all the codons coding for the same amino acid are used by the same frequency the term 
synonymous codon is used. However, an unequal usage frequency for different synonymous codons has been 
observed. This unequal usage frequency of synonymous codons is termed as codon usage bias (CUB). The 
reason behind the differences in codon usage is the variation occurring in the choice between codons ending with 
C or G/A or T (Campbell & Gouri, 1990). CUB throws light on the origin of genes, species and the mutational 
forces acting on them (Wu et al., 2017) along with it also guides in predicting the functions of related genes, 
structure of protein and expression of protein (Zhao et al., 2016) (Song et al., 2015). The pattern of codon usage 
depends on the mutation pressure, natural selection and on the sequence of amino acids (Mandlik et al., 2014). 
The two widely accepted theories of CUB are neutral theory and selection-mutation-drift theory (Bulmer, 1991). 
The neutral theory states that mutations at degenerate coding positions are neutral and the synonymous codon 
choice is random. The other model says that codon bias is aided by a balance between mutation pressure and 
genetic drift (Yang et al., 2015). There are some other possible factors affecting the CUB within the species. 
These include gene length (Duret & Mouchiroud, 1999), gene expression level (Hambuch & Parsch, 2005), GC 
content (Hu et al., 2007), environmental stress (Goodarzi et al., 2008), RNA stability (Akashi, 1997), population 
size, recombination rate and codon position (Behura & Severson, 2012). Over the past few years with the advent 
of DNA sequencing technologies, a lot of plant genes have been sequenced and deposited in the databases. This 
has resulted in the increased study of CUB patterns of different plants and its genes (Gustafsson et al., 2004). 
Variation in CUB is a unique characteristic of the genome and between specific genes of the species (Supek & 
Vlahovicek, 2005). Differences in codon usage have also been found in genes within the species. In studies 
carried out on monocot and dicot species when the third codon position is modified with G or C an increased 
expression of modified genes was observed. These results give an idea about the relation between the translation 
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efficiency and codon bias in monocots and dicots (Kawabe & Miyashita, 2003). Codon usage tells about the 
specific pattern of gene expression and it has also been noted that the genes expressed under the same 
physiological state prefer the use of same codons (Chiapello et al., 1998). Plants are subjected to a wide variety 
of stresses simultaneously as they are sessile life forms. During the course of evolution physiological and 
biochemical adaptations developed in plants provides an advantage to combat a single stress but not multiple. 
Perception of the external stimulus is sensed by the receptors on the cell membrane that triggers the chain of 
molecular/biochemical reactions. WRKY are a large family of regulatory proteins which regulate diverse 
response against biotic and abiotic stresses through a complicated network of genes (Smith, 2000). WRKY 
transcription factors regulate the gene expression through activation and repression of W-box and W-box like 
sequences. A tight regulation is involved in the binding of WRKY proteins to the regulatory elements, as a result, 
they have become a target for crop improvement (Phukan et al., 2016). A possible cause for the expansion of the 
WRKY transcription factor family during the course of evolution is the exposure to a number of biotic and 
abiotic stresses (Eulgem et al., 2000). The study herein is focused to analyze the codon bias and base 
composition in WRKY transcription factor genes of Brassica rapa and Arabidopsis thaliana using different 
codon usage indices. This study will improve our understanding of WRKY gene usage pattern as well as there 
pattern of evolution and function in two plant species. 

2. Materials and Methods 
2.1 Gene Sequence  

Complete coding DNA sequences of WRKY genes of Brassica rapa and Arabidopsis thaliana were taken from 
the NCBI nucleotide database (https://www.ncbi.nlm.nih.gov/). The presence of start codon and a stop codon at 
the end of the sequence was ensured. Sequences were also checked for the absence of stop codon in the coding 
frame. The length of the sequences only greater than 300 base pairs were considered in the study. 
2.2 Analysis of the Base Composition 

The program CAIcal (genomes.urv.es/CAIcal/) was used to calculate the GC content at the first, second and third 
nucleotide position (GC1, GC2 and GC3) respectively. GC12 is the average value of the GC content at the first 
and second nucleotide position. The values of GC1, GC2, GC3 and GC12 of Arabidopsis thaliana and Brassica 
rapa are mentioned in Tables 1 and 2 respectively.  

2.3 RSCU Analysis 

The relative synonymous codon usage (RSCU) value for a codon ‘i’ is defined as the value representing the ratio 
between the observed usage frequency of one codon in a gene and the expected usage frequency in the 
synonymous codon family. It is represented as,  

RSCUi = obsi/expi                                 (1) 

where, obsi is the observed number of occurrences of codon i and expi is the expected number of occurrences of 
the same codon (based on the number of times the relevant amino acid is present in the gene and the number of 
synonymous alternatives to i). The pattern followed for synonymous codon usage was assessed by RSCU 
analysis discrediting the influence of amino acid composition. This index reflects the relative usage preference 
for a specific composition of codons encoded in the same amino acid (Wang et al., 2016). The RSCU of the 
WRKY sequences of Arabidopsis thaliana and Brassica rapa were calculated using MEGA 7 software by 
excluding the stop codons and the codons which code amino acid by a single code. Given that all codons for the 
particular amino acid are used equally. The RSCU value > 1 depicts positive CUB, value < 1 depicts negative 
CUB and 1 represents no CUB (Sharp & Li, 1986). The RSCU value > 1.6 shows strongly preferred codons.  

2.4 ENc Analysis 

The CUB present in a gene were calculated using ENc (Effective number of codon usage). The value of ENc 
ranges from 20 (representing extreme bias where one codon for each codon family is used) to 61 (representing 
random usage of all synonymous codons). The program used for the ENc calculation was 
genomes.urv.es/CAIcal/. The ribosomal protein gene of Arabidopsis thaliana and Brassica rapa was used as a 
reference set. 

2.5 Codon Adaptation Index Analysis 

CAI (Codon Adaptation Index) is another widely used method of CUB. It measures the deviation present in the 
given protein-coding gene sequence with respect to a reference set of genes. The program 
genomes.urv.es/CAIcal/ was used for CAI calculation (Puigbò et al., 2008). The range of CAI value is from 0 to 
1. The synonymous codon usage pattern of ribosomal genes was used as a reference set. In order to ascertain the 
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relative influence of mutation and selection, the correlation analysis between CAI and ENc values was carried 
out. If the selection is given more preference over mutation, the value of correlation (r) between the two 
quantities should be very high(r→  -1). Contrastingly, if mutation force is more important, r approaches 0 (no 
correlation) (Chen et al., 2014).  

2.6 ENc and GC3 Plot 

ENc versus GC3 plot were used to analyze whether the codon usage in a set of genes is affected by mutation, 
selection and by other factors. When genes are distributed along the standard curve it is affected by mutation and 
if fall below the selection pressure operates on codon usage. The formula used in the study for calculation of 
expected ENc value and actual ENc value was described by Wright in 1990. The formula for actual ENc value is 
2 + (9/F2) + (1/F3) + (5/F4) + (3/F6), where, F2, F3, F4, F6 is the average homozygosity of the codons with 2, 3, 
4, and 6 synonymous codons respectively. Expected ENc value was calculated by the formula: 2 + GC3 + 
29/(GC3)2 + (1 – GC3)2.  

2.7 Multivariate Statistical Analysis for RSCU Values of WRKY Genes 

One of the most commonly used statistical approach to analyze synonymous CUB is correspondence analysis 
(Greenacre, 1984) which was implemented in the NPSS 12 software. Correspondence analysis (COA) was 
applied on RSCU values to investigate the trend used by WRKY genes in the two plant species, Arabidopsis 
thaliana and Brassica rapa. In this analysis for minimization of the effect of amino acid composition on codon 
usage, each WRKY gene of the two plant species was plotted as a 59-dimensional vector space. Each dimension 
corresponds to the RSCU value of one sense codon. The three termination codons along with codons of 
methionine and tryptophan were excluded. The trend of variation among the genes can be observed from the 
measures of relative inertia. WRKY genes were finally ordered according to the position along the axis of major 
inertia. 
2.8 Hierarchial Clustering of WRKY Genes 

We used the 59 RSCU values of each WRKY gene from the two plant species for there systematic classification. 
Clustering is a technique that creates clusters of data points closer to each other, and also far apart from data 
points in other clusters. The heat map and phylogenetic tree of different WRKY genes of the two species were 
constructed using NCSS 12 software clustered heat map method. The relationship of RSCU with the phylogeny 
was further analyzed. Each coding WRKY gene sequence was considered as a separate class, and then according 
to the distance between these sequences, two sequences that have the minimum distance are merged into a single 
class. 

2.9 Neutrality Plot 

The two factors affecting the CUB are mutational pressure and natural selection. The extent to which mutational 
pressure affects CUB as compared to selection pressure were determined by neutrality plot analysis (Sueoka, 
1988). The occurrence of synonymous codon mutation is at the third position of the codon, but sometimes 
mutations may also occur in the first and second positions resulting into non-synonymous codons. A graph 
plotted using GC3s on the X-axis and GC12 on the Y axis and further calculation of regression line determined 
mutation-selection equilibrium coefficient. The regression curve effectively measures the degree of neutrality, 
regression line that falls near the diagonal (slope = 1) shows weak selection pressure on the CUB, whereas 
deviation of the regression curve from the normal indicate the large influence of natural selection on CUB 
(Kumar et al., 2016).  

3. Results 

3.1 Analysis of the Base Composition 

The AT and GC content of a gene have an important role to play in gene organization. The GC rich plant genes 
help the plant to respond to environmental stress (Tatarinova et al., 2010). Important features of the GC base pair 
are its higher mutability because cytosine gets frequently methylated. (Ossowski et al., 2010; Coulondre et al., 
1978) and more cost of synthesis as compared to AT pair. In the present study, the AT content was higher than 
GC content in each of the WRKY gene CDS examined in both the plant species. Although optimal codons were 
mostly found to end with G/C. Song et al. (2015) analyzed the WRKY genes of Glycine max and reported higher 
AT content as compared to GC content. AT content in Arabidopsis thaliana ranges from 50 % to 65% and of 
Brassica rapa ranges from 50% to 58%. The results showed that the G+C content at the three codon positions 
was noticeably different GC1 is higher than GC2, and GC3 was lowest in all the three positions in both the 
plants WRKY genes as shown in (Tables 1 and 2). The low GC3s content in Arabidopsis genes is consistent with 
the previous reports (Tatarinova et al., 2010). After comparing the G and C ending status of codons of WRKY 
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genes of Brassica rapa and Arabidopsis thaliana it was seen that the status of G and C ending codons was high 
in Arabidopsis thaliana genes as compared to Brassica rapa genes. A very high G and C ending status were 
present in some of the WRKY genes of two species. Out of the 70 WRKY genes analyzed from both the species, 
15 WRKY genes of Brassica rapa and 30 WRKY genes of Arabidopsis thaliana showed codons with more 
frequent G and C ends. There is the importance of codons ending with G and C ends in determining protein 
functions like it was observed that codon usage of genes encoding for regulatory proteins naming transposases, 
kinases, transcription factors, and phosphatases are biased towards G and C ending codons (Fennoy & 
Bailey-Serres, 1993). The status of CG and TA doublet codons were higher in Brassica rapa WRKY genes 
namely 1, 2, 8, 9, 10, 13, 15, 18, 21, 25, 32, 33, 44, 46, 47, 48, 53, 54, 56, 58, 59, 62, 64, 69, 70. The doublet TA 
is a least preferred combination at most of the second and third codon position in most of the eukaryotes. In our 
study, it was seen that in some of the WRKY genes of Arabidopsis thaliana namely WRKY 15, 16, 19, 21, 27 
the codon ending with TA is preferred. Kumar and Sharma.,1995 observed that G ending codons for threonine, 
alanine, proline, serine are avoided by B.napus, B. oleracea, and B. campestris. The WRKY genes of Brassica 
rapa also avoided G ending codons for threonine, proline, serine, and alanine, instead preference is given to 
codons ending with A, U, and C.  

 

Table 1. Gene length, CAI value, percent GC content at first, second, third position, ENc value of Arabidopsis 
thaliana WRKY genes 

Gene Name Gene length CAI value %GC %GC1 %GC2 %GC3 %GC12 ENC value 

WRKY 1 1392 0.735 44.3 54.5 40.3 47.4 37.9 53.6 
WRKY 2 2064 0.738 44.5 53.3 46.9 50.1 33.1 49 
WRKY 3 1869 0.736 43.1 50.2 45.4 47.8 33.7 49.4 
WRKY 4 1545 0.699 46.7 55.1 49.3 52.2 35.5 49.4 
WRKY 6 3969 0.681 36 35.1 36.9 36 35.9 54.3 
WRKY 7 1401 0.694 44.8 41.8 46.3 44.05 46.5 58.2 
WRKY 8 981 0.714 42.2 46.5 38.5 42.5 41.6 50.8 
WRKY 9 1125 0.734 42.3 48.5 40.5 44.5 37.9 51.1 
WRKY 10 1458 0.69 44.5 52.1 41.2 46.65 40.3 50 
WRKY 11 975 0.64 48 49.5 46.5 48 48 57.3 
WRKY 12 657 0.67 41.9 42 44.7 43.35 38.8 48.9 
WRKY 13 915 0.68 43.1 46.6 42.6 44.6 40 50.9 
WRKY 14 1266 0.629 48.5 48.6 46.9 47.75 50 55.1 
WRKY 15 1176 0.674 42.5 45.4 48 46.7 34.2 48.6 
WRKY 16 4119 0.713 42.3 50.5 35.2 42.8 41.2 54.5 
WRKY 18 1065 0.716 41.6 40.3 46.5 43.4 38 49.7 
WRKY 19 5889 0.70 42.7 48.7 40.7 44.7 38.9 54.1 
WRKY 20 1872 0.68 45.5 49.4 47.1 48.25 40.1 54.1 
WRKY 21 1500 0.679 41.5 41.4 35.2 38.3 47.8 53 
WRKY 22 897 0.641 48.4 49.8 52.2 51 43.1 56.4 
WRKY 23 1014 0.683 44.4 50 41.7 44.15 41.4 53.7 
WRKY 24 540 0.679 44.1 48.9 38.3 43.6 45 61 
WRKY 25 1182 0.726 42 47.2 42.6 44.9 36 48.7 
WRKY 26 1020 0.69 43 42.4 44.7 43.55 42.1 56.7 
WRKY 27 1047 0.70 43.4 55 45.6 50.3 29.5 47.8 
WRKY 28 957 0.704 42.9 47 45.5 46.25 36.4 50.5 
WRKY 29 915 0.636 45.6 45.9 47.2 46.55 43.6 56 
WRKY 30 912 0.726 43.4 48 40.8 49.85 41.4 49.3 
WRKY 31 1617 0.684 49.3 54.2 45.5 49.85 48.2 56.3 
WRKY 32 1704 0.658 44.1 37.1 51.9 44.5 43.1 54.3 
WRKY 33 1539 0.728 43.1 42.7 48.1 45.4 38.6 45.7 
WRKY 34 1704 0.698 46.6 51.7 47.1 49.4 40.9 56.6 
WRKY 35 1284 0.653 48.6 46.7 49.3 48 49.8 56.6 
WRKY 36 1164 0.682 43.4 48.2 41 44.6 41 56.9 
WRKY 38 864 0.712 41.6 46.2 40.3 43.25 38.2 55.1 
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WRKY 39 993 0.734 42.8 44.7 46.2 45.45 37.5 52.4 
WRKY 40 837 0.673 45 41.2 47 44.1 47 51.4 
WRKY 41 942 0.636 44.9 43 46.5 44.75 45.2 55.3 
WRKY 42 1587 0.685 47.3 52.7 44.2 48.45 45 57.1 
WRKY 43 382 0.691 43.6 44.7 35.1 39.9 51.1 61 
WRKY 44 1050 0.747 42.7 46.9 49.1 48 32 46.7 
WRKY 45 444 0.699 47.1 47.3 40.5 43.9 53.4 46.6 
WRKY 46 888 0.68 40.9 41.2 33.1 37.15 48.3 48.9 
WRKY 47 1470 0.69 46.2 52.7 45.7 49.2 40.2 57.1 
WRKY 48 1200 0.72 41.9 45.2 41.5 43.35 39 48.1 
WRKY 49 894 0.745 36.5 40.6 33.2 36.9 35.6 57 
WRKY 50 1080 0.719 39.3 37.5 43.1 40.3 37.2 52.3 
WRKY 51 945 0.698 34.8 35.9 31.1 33.5 37.5 52.5 
WRKY 53 1329 0.693 41.3 40.6 41.8 41.2 41.5 55.8 
WRKY 54 1041 0.708 44.1 47.8 40.6 44.2 43.8 49.2 
WRKY 55 1101 0.655 46 46.6 41.1 43.85 50.1 59.7 
WRKY 56 588 0.734 41.2 48 39.8 43.9 35.7 51.6 
WRKY 57 864 0.691 47.5 51.7 49.7 50.7 41 49.3 
WRKY 58 1272 0.672 47 54.2 44.8 49.5 42 55 
WRKY 59 609 0.691 40.4 39.9 39.4 39.65 41.9 56.4 
WRKY 60 816 0.696 43.1 48.2 39.3 43.75 41.9 52.2 
WRKY 61 1443 0.704 42.3 45.1 43 44.05 38.7 51.9 
WRKY 62 909 0.659 47.2 40.9 58.4 49.65 42.2 55.9 
WRKY 63 726 0.721 42 49.6 36.8 43.2 39.7 55.5 
WRKY 64 750 0.724 41.6 49.2 36.8 43 38.8 51.1 
WRKY 65 780 0.603 49.5 50.4 48.8 49.6 49.2 53.9 
WRKY 66 819 0.68 41 36.3 39.6 37.95 47.3 56.2 
WRKY 67 765 0.72 42.5 47.8 38 42.9 41.6 52.5 
WRKY 69 966 0.65 46.2 49.7 44.4 47.05 44.4 57.32 
WRKY 70 1083 0.63 41.2 37.7 42.9 40.30 42.9 52.90 

 

Table 2. Gene length, CAI value, percent GC content at first,second,third position, ENc value of Brassica rapa 
WRKY genes 

Gene Name Gene length CAI value %GC %GC1 %GC2 %GC3 %GC12 ENC value 

WRKY 1 858 0.68 44.5 49.0 42.3 42.3 45.65 53.0 
WRKY 2 2583 0.67 48.4 54.0 47.3 43.9 50.65 51.6 
WRKY 3 1428 0.68 47.4 54.2 47.1 41.0 50.65 56.0 
WRKY 4 1653 0.66 49.1 55.7 50.2 41.3 52.95 53.7 
WRKY 6 1047 0.67 47.4 52.3 44.8 45.0 48.55 58.2 
WRKY 7 1140 0.62 50.0 49.6 51.0 49.3 50.30 55.8 
WRKY 8 987 0.70 43.0 48.2 41.3 39.5 44.75 52.7 
WRKY 9 1965 0.70 43.3 50.2 40.4 39.2 44.50 56.1 
WRKY 10 999 0.72 46.1 56.0 38.8 43.5 47.40 52.8 
WRKY 11 657 0.57 51.7 49.2 48.9 56.8 49.05 55.8 
WRKY 12 882 0.66 43.2 43.4 42.5 43.8 42.95 49.6 
WRKY 13 1191 0.69 41.5 45.6 42.9 36.1 44.25 47.2 
WRKY 14 960 0.65 48.0 50.1 46.6 47.4 48.35 57.6 
WRKY 15 612 0.62 48.8 48.8 51.2 46.2 50.00 53.1 
WRKY 16 612 0.67 44.8 49.5 40.7 44.1 45.1 44.1 
WRKY 18 969 0.63 49.9 49.2 40.6 51.7 44.50 48.1 
WRKY 19 2709 0.72 43.0 48.4 36.2 39.9 41.80 56.5 
WRKY 20 1608 0.69 42.9 47.4 47.4 45.2 50.30 53.5 
WRKY 21 1020 0.69 47.4 45.3 48.2 41.6 46.75 49.8 
WRKY 22 897 0.57 46.4 48.5 53.5 45.6 51.0 51.1 
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WRKY 23 972 0.70 52.8 51.2 43.5 56.5 47.35 53.8 
WRKY 24 531 0.70 44.2 48.0 37.3 38.0 42.65 46.8 
WRKY 25 1122 0.68 42.0 51.6 42.0 40.7 46.80 51.3 
WRKY 26 960 0.72 44.9 45.9 42.5 41.2 44.20 50.6 
WRKY 27 1035 0.655 44.6 54.2 46.4 45.3 50.30 48.9 
WRKY 28 939 0.68 46.5 46.3 43.8 38.8 45.05 52.7 
WRKY 29 927 0.64 43.7 45.6 46.6 40.9 46.10 57 
WRKY 30 942 0.72 45.0 50.0 43.8 42.7 44.45 51.8 
WRKY 31 1560 0.67 43.8 51.7 46.6 42.7 48.45 58.3 
WRKY 32 1380 0.68 48.1 55.4 38.9 47.3 50.75 54.7 
WRKY 33 1557 0.63 47.8 45.1 45.2 42.0 47.40 44.6 
WRKY 34 1650 0.68 43.7 51.3 46.1 36.2 48.40 58 
WRKY 35 1212 0.63 46.4 46.5 49.7 42.5 48.15 59 
WRKY 36 1152 0.70 48.8 48.4 45.5 50.2 44.65 55.6 
WRKY 38 477 0.74 42.2 44.7 49.8 37.2 44.05 44.8 
WRKY 39 1029 0.71 42.8 46.1 40.9 40.3 45.35 49.4 
WRKY 41 996 0.65 43.1 45.5 43.4 38.8 45.05 53.2 
WRKY 42 1560 0.67 46.2 51.7 44.6 48.5 48.45 58.3 
WRKY 43 382 0.69 48.1 44.7 44.6 47.3 39.9 61.0 
WRKY 44 1050 0.74 43.6 46.9 45.2 51.1 48.00 46.7 
WRKY 45 435 0.69 42.7 46.2 35.1 32.0 41.70 49.2 
WRKY 46 852 0.66 46.0 40.8 37.3 54.5 39.05 54.1 
WRKY 47 1473 0.67 47.1 50.3 46.2 50.7 48.25 52.8 
WRKY 48 1179 0.70 42.7 42.7 43.5 42.0 43.10 54.3 
WRKY 49 987 0.71 40.4 43.2 35.9 42.2 39.55 54.9 
WRKY 51 597 0.74 41.5 39.7 41.7 43.2 40.70 55.2 
WRKY 53 972 0.62 48.3 50.0 45.7 49.1 47.85 56.9 
WRKY 54 894 0.72 43.6 52.7 36.6 41.6 44.65 52.1 
WRKY 55 855 0.66 49.0 50.9 45.6 50.5 48.25 61.0 
WRKY 56 561 0.68 42.8 47.6 38.5 42.2 43.05 54.2 
WRKY 57 885 0.68 47.0 51.2 50.8 39.0 51.00 51.5 
WRKY 58 3249 0.67 46.9 51.9 46.3 42.6 49.10 56.9 
WRKY 59 591 0.71 40.4 40.1 38.6 42.6 39.35 57.7 
WRKY 60 927 0.69 42.6 48.2 39.8 39.8 44.00 49.6 
WRKY 61 1197 0.69 43.5 46.1 43.4 41.1 44.75 53.6 
WRKY 62 702 0.66 46.3 47.9 39.3 51.7 43.60 57.4 
WRKY 64 777 0.68 46.2 52.5 37.8 48.3 45.15 55.6 
WRKY 65 786 0.61 49.9 51.5 48.1 50.0 49.80 61.0 
WRKY 66 1359 0.70 42.2 44.4 38.6 43.7 41.50 52.1 
WRKY 67 831 0.70 44.0 49.1 38.3 44.8 44.85 54.8 
WRKY 68 960 0.67 44.1 51.6 40.6 40.0 46.10 55.9 
WRKY 69 849 0.63 51.4 54.8 46.6 52.7 50.70 57.2 
WRKY 70 852 0.68 44.1 46.1 37.0 49.3 41.55 55.0 

 

3.2 RSCU Analysis 

The maximum RSCU value of 5 was found in Brassica rapa codon (UUU) coding for phenylalanine and the 
value 4.5 for codon (AGA) in Arabidopsis thaliana. Phenylalanine acts as building block of proteins and is also 
involved in secondary metabolite synthesis which helps in plant defense (Tzin & Galili., 2010). The codon 
coding for arginine was found out to be maximum in both of the species with RSCU value > 2. The codon AGA 
has been given higher preference as compared to AGG, CGG, CGA, CGC codons coding for arginine in most of 
the WRKY genes observed in Arabidopsis thaliana and Brassica rapa. Thirty Brassica rapa WRKY genes and 
twenty Arabidopsis thaliana WRKY genes possessed this higher RSCU values. The number of preferred codons 
in all the WRKY genes of both the species were different. A maximum number of preferred codons in 
Arabidopsis thaliana is twenty-six and the minimum is twelve. WRKY 57 has the maximum number of preferred 
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Figure 2A. Cluster tree based on the RSCU value of Arabidopsis thaliana WRKY genes 

 

 
Figure 2B. Cluster tree based on the RSCU value of Brassica rapa WRKY genes 



jas.ccsenet.org Journal of Agricultural Science Vol. 11, No. 4; 2019 

85 

Clustering of relative synonymous codon usage (RSCU) values of each codon among WRKY genes of (A) 
Arabidopsis thaliana (B) Brassica rapa. Each rectangular box on the map represents the RSCU values of codon 
(shown in rows) across WRKY genes. The intensity of color coding indicates different RSCU values. 

3.7 Neutrality Plot 

Neutrality plot was drawn with GC12 as Y-axis and GC3 as X-axis. The dot represents each WRKY gene of the 
particular species. This plot helps us to know about the key determining factors that shaped codon usage (Kumar 
et al., 2016). When the slope of the regression line is equal to 1, a perfect correlation is said to occur between 
GC12 and GC3 and mutation pressure is a dominant factor resulting in CUB. In (Figure 3A) the observation of 
neutrality plots of WRKY genes CDS in Arabidopsis thaliana shows the negative (-0.08) slope of regression line 
while the slope was zero in Brassica rapa (0.03) this indicates that the influence of direct mutation pressure for 
CUB is only 3% in Arabidopsis thaliana while the impact of natural selection was calculated out to be 97%. The 
genes showed low mutation bias level and it can be said that natural selection is a dominant force acting in 
shaping the codon usage pattern of WRKY genes of Brassica rapa and Arabidopsis thaliana. Highly expressed 
genes, such as translation elongation factors and ribosomal proteins have natural selection acting on them to 
ensure efficient translation (Hershberg & Petrov, 2008).  

 

      
(A)                                       (B) 

Figure 3. Neutrality plot (GC12 against GC3) (A) Arabidopsis thaliana, the regression line is y = 0.063x + 0.502, 
R2 = 0.0072; (B) Brassica rapa, y = 0.143x + 0.401, R2 = 0.0031 

 

3.8 Effect of Gene Expression Level and Protein Length on Codon Usage Bias 

In the (Figures 4A and 4B) and (Figures 5A and 5B) the significant negative correlation between CAI and GC3 
(R2 = 0.3, p < 0.05, slope = -0.4) and (R2 = 0.19, p < 0.05, slope = -0.5) were shown in case of Arabidopsis 
thaliana and Brassica rapa WRKY genes respectively. In Figures 6A and 6B, positive correlation was observed 
between protein length and ENc (R2 = 0.004, p > 0.05, slope = 0.003) in Arabidopsis thaliana and Brassica rapa 
WRKY genes respectively. We can conclude that protein length affects codon usage bias in WRKY genes of the 
two plant species.  
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(A)                                       (B) 

Figure 4. CAI versus GC3 plot of (A) Arabidopsis thaliana WRKY genes, y = 0.4x + 0.85, R2 = 0.39 and (B) 
Brassica rapa WRKY genes, y = 0.042x + 0.86, R2 = 0.35 

 

      
(A)                                        (B) 

Figure 5. ENc versus CAI plot of (A) Arabidopsis thaliana WRKY genes, y = -0.657x + 48.007, R2 = -0.19 (B) 
Brassica rapa WRKY genes, y = -0.543x + 46.005, R2 = -0.23 
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4. Discussion 
Our analysis of codon usage patterns among the WRKY genes of Arabidopsis thaliana and Brassica rapa 
reveals that most of the WRKY genes in both the species have higher AT content as compared to GC content the 
reason might be the small size of a protein sequence as shorter sequences have higher AT bias (Wuitschick & 
Karrer, 1999). The G+C content was lowest at GC3 codon position and the status of G and C ending codons were 
found to be high in some of the WRKY genes in Arabidopsis thaliana and Brassica rapa. These results suggest 
that selection has driven codon usage of genes having an important function to have high GC content. Many 
factors affect the codon usage pattern among and within the species. In highly expressed genes codons that 
improve translational efficiency are selected while in the genes that have a low level of expression mutation-drift 
determines the codon usage (Bulmer, 1991). In the study, the ENC versus GC3 plot of WRKY genes of 
Arabidopsis thaliana and Brassica rapa showed that natural selection influences the major codon usage pattern. 
Similar results about WRKY genes of Medicago truncatula were obtained by Song et al. (2015). The gene 
expression level of different genes must be known if the analysis is done to know about the relationship between 
codon bias and gene expression level. In eukaryotes, it is difficult to find out the gene expression level as there is 
the difference in expression at different times and different tissues. In our study, we use CAI to evaluate the 
expression level of WRKY genes. CAI has now been considered as a well-accepted measure of gene expression 
(Naya et al., 2001; Gupta et al., 2004). The hierarchical clustering grouped the WRKY genes with similar RSCU 
values within the same cluster, the genes present in the same cluster showed similar functions. The presence of 
codons AGA coding for arginine with RSCU value greater than 2 was seen in all the WRKY gene sequences 
analyzed. The preferential use of arginine can be linked to oxidative stress response. A study performed in 
budding yeast revealed about the reprogramming of tRNA, which leads to the codon biased mRNA coding for 
arginine to be expressed under oxidative stress conditions (Gu et al., 2014). Arginine codons also plays a role in 
the evolution and the variability of Hepatitis A virus strains (Andrea et al., 2011). Insights into the study of 
synonymous codons usage pattern of WRKY genes in Arabidopsis thaliana and Brassica rapa is provided by 
our study. After comparison of RSCU values of different amino acids of Arabidopsis thaliana and Brassica rapa 
WRKY genes, it was seen that some WRKY genes have a small difference in the codon usage and hence can be 
used in transgenic studies. 

5. Conclusion 
In order to know regarding the forces that are responsible for CUB of WRKY transcription factor genes in two 
related species Arabidopsis thaliana and Brassica rapa, we examined the WRKY coding sequences of both the 
plant species that were present in the database. Different indices that help in the prediction of CUB have been 
calculated and on the basis of CAI values, it was investigated that WRKY genes are highly expressed genes that 
has higher AT content as compared to GC content and they show a moderate level of biases in both the plant 
species. Natural selection acts as main determining force shaping the codon usage pattern. WRKY genes having 
similar RSCU values were found to share similar functions. A positive correlation is seen between the coding 
sequence length of WRKY genes and effective number of codons. 
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