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Abstract 
Lowlands Dense Ombrophilous Forest is one phytophysiognomies of Atlantic Forest in Brazil. The main 
ecological characteristic of this forest is the Ombrophilous environment, related to high rainfall and temperature 
indexes. Nutrient cycling is well balanced in the periods of good thermo-pluviometric distribution. Global 
climatic changes have been intensifying in recent years making rainfall irregular, changing its distribution and 
intensity throughout the year. This can affect the natural regeneration and vegetative growth of the species. This 
study aimed to correlate litterfall and nutrient contribution with climatic variations, identifying the level of 
importance of this correlation and which nutrients may have their compromised cycling. Literfall was collected 
monthly in 40 collectors. N, P, K, Ca and Mg contents were determined and their stocks were calculated. The 
litter deposition was 8,261.15 kg ha-1 year-1 and was not influenced by rainfall and temperature. The N, P, K, Ca 
and Mg stock in this litter was 244.93 kg ha-1 year-1, being stored just of N 113.75 kg ha-1 year-1. P and K stocks 
varied with rainfall and temperature, suggesting that variations in these climatic variables may interfere in the 
cycling of these nutrients in this forest fragment. 

Keywords: nutrient cycling, nutrient supply, forest nutrition, tropical forests 

1. Introduction 
Nutrition of tropical forests is supplied by the stock of nutrients transferred to the soil. The contribution of litter 
is the main responsible for the entry of nutrients into the forest system (Wood, Lawrence, Clark, & Chazdon, 
2009; Diniz, Machado, Pereira, Balieiro, & Menezes, 2015). 

Litter also acts in light interception, shading of seeds and seedlings, and reducing water evaporation. 
Additionally, it aids in diminishing the impact of raindrops on soil, which reduces surface runoff and nutrient 
loss (Li, Niu, & Xie, 2014). It is a source of C and energy for soil organisms, and also considered the most 
dynamic and probably the most variable fraction not only between ecosystems but also within the same 
ecosystem (Jacoby, Peukert, Succurro, Koprivova, & Kopriva, 2017). 

The formation of litter layer depends on production and decomposition rate of organic matter that varies 
according to the substrate composition, decomposers activity, environmental conditions, especially temperature 
and relative humidity, and physical properties of the soil (Xiaogai et al., 2013). 

The contribution of each vegetal material varies depending on the vegetation typology and climatic condition 
(Banegas, Albanesi, Pedraza, & Santos, 2015). One way to evaluate this variation is monitoring litter production. 
Thus, it is possible to comprehend the process of nutrient cycling, to evaluate the productive capacity of the 
forest, and to relate available nutrients to the nutritional needs of the species. In fact, litter transport is an 
important bioindicator of climatic variations in forest environments, because it may vary according to air 
temperature and/or rainfall (Llausás & Nogué, 2012; Ferreira, Silva, Pereira, & Lamano-Ferreira, 2014). 

The largest litter contribution is due to water deficit in soil, which usually occurs during dry seasons (Silva, 
Poggiane, Lima, & Libardi, 2014). When this phenomenon is combined with high air temperatures, forest 
species are subjected to water stress and loss of plant material (mainly leaves), increasing the supply of litter on 
the soil. Additionally, since there is little moisture in soil during this period, the decomposition is reduced and 
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Table 1. Chemical and physical characterization of soil in the fragment of Lowlands Dense Ombrophilous 
Forest, Brazil 

Soil attribute 
Depth (m) 

0.0-0.05 0.05-0.20 0.20-0.40 

pH (H2O) 3.88 4.1 4.53 

P (mg dm-3) 1.37 1.3 1.1 

Ca (cmolc dm-3) 0.3 0.12 0.05 

Mg (cmolc dm-3) 0.83 0.46 0.4 

K (cmolc dm-3) 0.06 0.05 0.04 

Al (cmolc dm-3) 1.69 1.37 1.02 

(H+Al) (cmolc dm-3) 8.94 7 5.47 

SB1 1.19 0.63 0.49 

CEC effective (cmolc dm-3)2 2.88 2 1.51 

CEC potential (cmolc dm-3)3 10.13 7.63 5.96 

m (%)4 58.68 68.5 67.55 

V (%)5 11.75 8.26 8.22 

TOC6 (g kg-1) 34.15 22.43 17.71 

Fe (mg dm-3) 155.61 135.24 139.27 

Cu (mg dm-3) 1.82 1.81 1.87 

Zn (mg dm-3) 5.14 4.41 6.09 

Mn (mg dm-3) 9.92 8.79 9.39 

Total Sand (g kg-1) 498.2 413.7 384.1 

Coarse Sand (g kg-1) 420.7 321.1 296.6 

Fine Sand (g kg-1) 77.5 92.6 87.5 

Silt (g kg-1) 285.3 313.9 270.7 

Clay (g kg-1) 216.5 272.4 345.2 

Note. 1Sum of bases; 2Effective cation exchange capacity; 3Potential cation exchange capacity; 4Saturation by 
aluminum; 5Base saturation; 6Total organic carbon.  

 

Exchangeable Ca2+, Mg2+ and Al3+ were extracted with 1.0 mol L-1 KCl and determined by titration. P, K+, Fe, 
Cu, Zn and Mn were extracted by Mehlich-1. Available P was determined by spectrophotometry, K+ by flame 
photometry, and Fe, Cu, Zn and Mn by atomic absorption spectrophotometry. Potential acidity (H+Al) was 
extracted with 0.5 mol L-1 calcium acetate and determined by titration. With these results, sum of bases (SB), 
base saturation (V), Al saturation (m), effective cation exchange capacity (CECeffective) and potential cation 
exchange capacity (CECpotential) were all calculated. Physically, the soil was characterized by particle-size 
distribution, defining its textural class. All analytical procedures were according to P. Teixeira, Donagema, 
Fondana, and W. Teixeira (2017). 

2.2 Collection of Litter Supply and Analytical Procedures for Nutrients Determination 

Next to each 40 sampling sites used for chemical and physical analysis of the soil, a collector made by nylon net 
with one-millimeter mesh and 0.25 m height walls was installed, in a suspended form at approximately 0.50 m 
above the ground. The litter supply was evaluated monthly from June 2014 to May 2015.  

All material deposited inside the collectors was considered as litter, without fractionation. Its production was 
quantified from the following equation (Lopes, Domingos, & Struffaldi-De-Vuono, 2002): 

LP	=	(∑ MLP	×	12
1 10,000)/CA                                (1) 

Where, LP is litter production (kg ha-1 year-1); MLP is monthly litter production (kg ha-1 month-1); 10,000 is a 
transformation factor of m2 to hectare; CA is the collector area (m2). 

Each month, the deposited litter was packed in labeled paper bags and brought to a forced air circulation 
chamber at 65 oC until a constant weight was reached. This material was weighed for determination of dry 
weight, milled, homogenized and packed in previously cleaned and dried vials. 

The evaluated nutrients were: N, P, K, Ca and Mg. P, K, Ca and Mg were extracted by nitric-perchloric digestion 
(Bataglia, Furlani, Teixeira, Furlani, & Gallo-Júnior, 1983). Ca and Mg were determined by atomic absorption 
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rainfall, and was highest in the dry season, when evaluating the relationship between litter production in primary 
and secondary forests in the Brazilian Amazon.  

Espig et al. (2009) found a negative correlation between litter production and rainfall in an Atlantic Forest 
fragment in Pernambuco, Brazil. The correlation coefficient was low when the authors considered the entire litter 
deposited [r = -0.5491 (p < 0.05)] and a little higher [r = -0.5853 (p < 0.05)], when they considered only leaf 
deposition. 

Rainfall variations throughout the year are very frequent in tropical regions, which can influence the contribution 
of litter in an inversely proportional way. However, this did not occur because rainfall from June to September 
2014 and from March to May 2015 were very variable (Figures 2 and 4), preventing a significant correlation 
with litter supply. 

The air average temperature, especially near oceans, does not vary much (Figure 2) because there is a thermal 
regulation promoted by the relative humidity of the air coming from the ocean, which makes the contribution of 
litter not have correlation with this climatic variable (Figure 4). 

3.2 Litter Nutrient Contents 

Nutrient contents provided in the litter corresponded to the following decreasing order: N > Ca > Mg > K > P 
(Table 2). Dickow, Marques, and C. Pinto (2009) also observed this behavior in an area with tree species from 
secondary rainforests in the South of Brazil. 

 

Table 2. Monthly concentrations and annual average of litter nutrients in the fragment of Lowlands Dense 
Ombrophilous Forest, Brazil 

Month/year N P K Ca Mg 

----------------------------------------------------- g kg-1 ----------------------------------------------------

Jun-14 13.09 b 0.78 b 2.74 a 8.28 b 5.80 c 

Jul-14 14.94 a 0.82 b 1.52 b 9.57 b 6.00 c 

Aug-14 14.10 a 0.95 a 0.91 c 5.99 c 6.10 c 

Sep-14 13.78 b 0.89 b 1.02 c 7.40 c 6.50 b 

Oct-14 12.59 b 0.85 b 1.10 c 8.31 b 7.10 a 

Nov-14 13.01 b 0.95 a 1.67 b 8.16 b 7.40 a 

Dec-14 14.67 a 1.00 a 1.49 b 6.03 c 4.00 e 

Jan-15 13.66 b 1.09 a 2.78 a 4.59 c 3.60 e 

Feb-15 13.74 b 1.11 a 2.53 a 5.31 c 3.80 e 

Mar-15 14.44 a 1.01 a 1.48 b 9.44 b 5.09 c 

Apr-15 14.38 a 1.05 a 2.29 a 10.88 a 4.70 d 

May-15 14.52 a 0.85 b 1.25 c 11.18 a 5.50 c 

Average  13.91 0.95 1.73 7.93 5.5 

Fcalculated 3.67** 5.98** 29.65** 8.09** 44.69** 

C.V. (%)1 17.37 29.24 22.37 31.8 21.66 

Note. 1Coefficient of variation = 100 × standard deviation/average. Averages followed by equal letters in 
columns do not differ from each other by Scott-Knott test (P < 0.05). **Significant by test F (P < 0.01). 

 

Villa, Pereira, Alonso, Beutler, and Leles (2016) observed that P had the lowest concentration (N > Ca > K > 
Mg > P) in restoration areas. Pinto, Martins, Barros, and Dias (2009) also observed this same distribution 
sequence in a semideciduous seasonal forest at the beginning of succession in Viçosa, Minas Gerais, Brazil. 

N contents ranged from 12.59 to 14.94 g kg-1, with no significant differences between the months July, August 
and December 2014, and March, April and May 2015 (higher levels), as well as between June, September, 
October and November 2014, and lastly January and February 2015 (lower levels) (Table 2).  

The P average content recorded was 0.95 g kg-1 (Table 2). This value is higher than that determined by Espig et 
al. (2009), which was 0.50 g kg-1. The authors reported that the fragment presented a more advanced 
successional stage, which caused P to be translocated from old leaves to young ones due their mobility. 
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The K average content was 1.73 g kg-1 (Table 2). K content in litter observed in this study was lower than that 
determined by Espig et al. (2009) in Atlantic Forest area of Pernambuco, Brazil. This may be related to low rates 
of this nutrient in biogeochemical cycling (Smith et al., 2015). The low K content may also be related to the ease 
of this nutrient leaching directly from leaf surface by rainwater, due to its high solubility. 

Ca presented a mean content of 7.93 g kg-1 (Table 2). This high content occurs because Ca is a structural 
component found in the cells of the plant tissue, and one of the last nutrients to be released to the soil through 
litter decomposition (Dickow et al., 2009; Villa et al., 2016). However, this may also be related to the low 
mobility of Ca in plant tissues and to the longevity of leaves, which causes it to remain in larger amounts in 
senescent leaves than other nutrients (Maillard et al., 2015).  

Mg contents presented significant differences between the evaluated months (Table 2). The average content was 
5.50 g kg-1, higher than those determined by Golley et al. (1978) and Espig et al. (2009), which were 2.04 g kg-1 
and 2.42 g kg-1, respectively. Low content can sometimes be explained by the translocation of this nutrient from 
senescent leaves to younger ones, decreasing the concentration in the litter (Maillard et al., 2015). The soil of 
this fragment studied presented high levels of exchangeable Mg (Table 1), reflecting on nutrition of species and 
consequently on contribution. 

3.3 Nutrients Supply of Litter 

The annual nutrient contribution from litter to soil presented the following decreasing order: N > Ca > Mg > K > 
P (Table 3). Contribution of N and Ca is high in most of the analyzed tropical forests. This happens especially 
because both occur in larger proportions in leaf component (Lima et al., 2018), which corresponds to most of the 
litter (Kumar & Tewari, 2014). 

 

Table 3. Monthly and annual contribution of nutrients from litter in the fragment of Lowlands Dense 
Ombrophilous Forest, Brazil 

Month/year N P K Ca Mg 

------------------------------------------------- kg ha-1 ------------------------------------------------

Jun-14 5.09 g 0.30 e 1.07 b 3.22 d 2.20 e 

Jul-14 6.78 f 0.37 e 0.69 c 4.34 d 2.70 e 

Aug-14 6.89 f 0.46 d 0.44 d 2.92 d 3.00 e 

Sep-14 9.17 d 0.59 c 0.67 c 4.92 c 4.30 c 

Oct-14 12.21 b 0.83 b 1.07 b 8.07 b 6.80 b 

Nov-14 17.46 a 1.27 a 2.24 a 10.95 a 10.00 a 

Dec-14 9.47 d 0.65 c 0.96 b 3,89 d 2.50 e 

Jan-15 10.11 c 0.80 b 2.06 a 3.39 d 2.60 e 

Feb-15 10.16 c 0.82 b 1.87 a 3.92 d 2.80 e 

Mar-15 8.38 e 0.59 c 0.86 c 5.47 c 3.40 d 

Apr-15 8.17 e 0.59 c 1.30 b 6.17 c 2.60 e 

May-15 9.86 c 0.58 c 0.85 c 7.59 b 3.70 d 

Average 9.48 0.66 1.17 5.41 3.9 

Total (kg ha-1 year-1) 113.75 7.85 14.08 64.85 44.4 

Fcalculated 147.98** 62.60** 45.53** 19.67** 233.49** 

C.V. (%)1 17.22 31.15 22.73 31.59 24.16 

Note. 1Coefficient of variation = 100 × standard deviation/average. Averages followed by equal letters in 
columns do not differ from each other by Scott-Knott test (P < 0.05). ** Significant by test F (P < 0.01). 

 

The amount of nutrients contributed to soil was 244.93 kg ha-1 year-1 (Table 3). N was the most contributed 
(46.4% of annual contribution) and P the least contributed (3.2% of annual contribution). Forest nutrition may be 
dependent on nutrient cycling because the soil of the fragment presented low natural fertility (Table 1). The 
nutrient cycling may be influenced by climatic variations, both for nutrient supply and for decomposition of the 
vegetal material. 

Aerts (1996) explained that P is a very mobile element in plant. The translocation occurs from 40 to 60% of this 
element located in the older leaves to the younger organs of the plant before foliar abscission. This causes this 
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