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Abstract 
Sudden death syndrome (SDS) of soybean is a complex root rot disease caused by the semi-biotrophic fungus 
Fusarium solani (F. solani) and a leaf scorch disease; caused by toxins produced by pathogen in the roots. 
However, the mechanism of soybean resistant to F. solani is still poorly understood. Eighteen soybean cultivars 
were screened for SDS resistance, with one cultivar showing susceptibility and one cultivar showing resistance 
to F. solani infection. Histochemical analysis with diaminobenzidine (DAB) and Trypan blue staining indicated 
an accumulation of reactive oxygen species (ROS) and cell death in surrounding area of SDS which was higher 
in susceptible cultivar than in resistant cultivar. Furthermore, exogenous salicylic acid (SA) application also 
induced some level of resistance to F. solani by the susceptible cultivar. A biochemical study revealed that the 
activities of superoxide dismutase (SOD), peroxidase (POD), and enzymes involved in scavenging ROS, 
increased in susceptible cultivar after SDS infection. In addition, hydrogen peroxide (H2O2) and 
malondialdehyde (MDA) content also increased in the susceptible cultivar than in resistant cultivar. 
High-performance liquid chromatography (HPLC) analysis indicated that free and total salicylic acid (SA) 
content increased in the susceptible cultivar than in resistant cultivar. In addition, a real-time quantitative PCR 
analysis showed an accumulation of pathogen related (PR) genes in the resistant cultivar than in susceptible 
cultivar. Our results show that (i). F. solani infection can increase endogenous SA levels, antioxidase activities, 
ROS and cell death in susceptible soybean cultivar to induce resistance against Fusarium solani. (ii). F. solani 
infection induced the expression of SA marker genes in resistant soybean cultivar to enhance resistance. 

Keywords: Fusarium solani, soybean, disease resistance, salicylic acid, antioxidants 
1. Introduction 
Soybean production is often affected by many diseases in major cropping areas (Wrather et al., 2010). Sudden 
death syndrome (SDS) caused by Fusaruim solani (F. solani) occurs frequently in the top eight soybean 
producing countries in the world (Wrather et al., 2010). SDS is associated with root rot, vascular discoloration of 
stems, root chlorosis and necrosis, defoliation and plant death (Roy et al., 1997). Mostly, SDS is more easily 
detected in soybean fields after flowering, when the leaves show interveinal choroids and necrosis. Meanwhile, 
SDS can be expressed in severe and mild forms. The occurrence and geographical distribution of pathogens 
causing the latter is unknown (Scandiani et al., 2011).  

Exposure of plants to unfavorable conditions, makes them develop an integrated defense mechanism against 
fungal diseases which include chemical and physical barriers; and inducible defense (Dixon et al., 1994). So far 
as resistance responses other than susceptibility and immunity is concerned, the invasion of plant by fungal 
hyphae is likely to induce and sustain expression of some plant defense-related genes. Induced defenses attempts 
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to prevent or reduce pathogen access by activating molecules that are antimicrobial, antioxidants, involved in the 
SA signaling pathways (Lamb & Dixon, 1997). Phytohormones play important roles in regulating developmental 
process and signaling networks which are involved in plant response to a wide range of abiotic and biotic 
stresses (Robert-Seilaniantz et al., 2007; Bari & Jones, 2009). Three major signaling molecules, Salicylic acid 
(SA), Jasmonic acid (JA) and Ethylene (ET) are recognized as major defense hormones against various 
pathogens (Glazebrook et al., 2003; De et al., 2005; Koornneef & Pieterse, 2008). SA is associated with 
resistance against biotrophic and hemibiotrophic pathogens, and with triggering systematic acquired resistance 
(SAR) in many species including Arabidopsis thaliana and wheat (Triticum aestivum) (Görlach et al. 1996). 
Induction of SAR is accompanied by accumulation of SA and up-regulation of a set of genes encoding 
pathogenesis-related (PR) proteins in dicot plants such as tobacco (Nicotiana tabacum) and Arabidopsis thaliana 
providing a wide range of protection against pathogens (Ward et al., 1991; Uknes et al., 1992). The elevated 
expression of defense genes have been assumed as a molecular evidence of induced resistance (Sumayo et al., 
2014). Natriuretic Peptide Receptor 1 (NPR1) gene is a key regulator of the SA signaling pathways (Yan & Dong, 
2014). Enhanced Disease Susceptibility 1 (EDS1) gene was important for mediating resistance to a broad range 
of pathogens (viral, bacterial and fungal pathogens) yet showed specificity to the class of resistant R genes that it 
affected (Hu et al., 2005). The EDS1 protein has been found to be complex with both the pathogen effectors and 
their cognate proteins and partitioning of the EDS1 complex in the cytoplasm nucleus is required for full 
activation of local resistance (Zheng & Dong, 2013). EDS1 is required to induce SA biosynthesis (Zheng & 
Dong, 2013).  

Also, Chitosan which is used in agriculture in seed treatment and biopesticide helping plants to fight off against 
fungal infections, induced a significant increase in the activities of polyphenoloxidase, peroxidase, and enhanced 
the content of phenolic compounds in tomato fruits, thus providing protection against gray mould and blue 
mould diseases (Liu et al., 2007). Plants resistance can be induced by application of synthetic compounds such 
as functional analogs of SA, for example benzothiadiazole-7-carbothioic acid (acibenzolar-S-methyl) or 
benzothiadiazole (BTH). It has been shown that BTH which is a nontoxic compound, induced systematic 
resistance by exogenous root-treatment in tomato and controlled crown and root rot caused by F.oxysporum 
radices-lycopersici (Benhamou & Bélanger, 1998). Fusarium wilt of tomato was effectively controlled by foliar 
spray of validamycin A or validoxylamine A, which induced SA accumulation and development of systematic 
resistance (Ishikawa et al., 2005). Exogenous application of SA induces plant resistance to different kinds of 
pathogens that are associated with oxidative burst, cell wall enforcement and up-or down-regulation of gene 
expression (Oostendorp et al., 2001). 

Production of ROS such as the superoxide anion (O2
.-) and hydrogen peroxide (H2O2), as one of the earliest 

response to pathogen attack, can trigger hypersensitive cell death. Abnormally high production of ROS causes 
damage to biomolecules, whereas ROS at moderate concentrations act as a second messenger in signal cascades 
that mediate several responses in plant cells including program cell death (Sharma et al., 2012). The 
hypersensitive response (HR), as an early defense response, restricts pathogen infection to the site of attempted 
ingress by necrosis and cell death. Plants have an efficient antioxidative, enzymatic and non-enzymatic 
protective mechanisms to scavenge excess ROS. Several antioxidative enzymes including superoxide dismutase 
(SOD), catalase (CAT), and peroxidase (POX) are involved in detoxification of ROS (Zhang et al., 1995; D. H. 
Lee & C. B. Lee, 2000).  

Although much efforts have been made to identify mechanisms of resistance against SDS, much remains to be 
elucidated about the physiological and molecular capabilities of the soybean plant against F. solani infection. 
Here we performed a comparative study between resistant and susceptible soybean cultivars to distinguish the 
effects of some antioxidant and biosynthetic enzymes in response to F. solani infection. We also investigated the 
effect of exogenous application of SA, as a key factor in SAR, on soybean resistance to F. solani infection. 
Finally, to identify possible PR genes involved in the resistance process between the resistant and susceptible 
cultivar, RT-qPCR analysis was performed. 

2. Materials and Methods 
2.1 Plant Materials and Chemicals 

Eighteen soybean cultivars used in the study were provided by Key Laboratory for Crop Genetics and Breeding 
of Sichuan Agricultural University, China. Seeds were surface-sterilized for 20 min in a 20% solution of sodium 
hypochlorite and then rinsed three times with sterilized water. Seeds were grown in an 11.5 cm diameter paper 
cups filled with perlite and placed in a climatically grown chamber. Conditions in the growth chamber included 
day/night at a regulated temperature of 25 ºС. Watering was done as required to promote seed germination.  
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2.2 Fungal Growth and Inoculation  

The fungi Fusarium solani isolate 2hao3 was provided by the Key Laboratory for Major Crop Diseases of 
Sichuan Agricultural University, China. Isolate was obtained from soybean roots and preserved on potato 
dextrose agar (PDA) prior to sub cultures. 2 mm plug from the stock culture was used for sub cultures for 
inoculation by placing fungal isolate on PDA medium in petri dishes. The fungus was incubated at a temperature 
of 28 ºС for 7 days in the dark in a growth chamber. The seedlings were removed from the perlite after 3-day 
growth period and washed with distilled water prior to inoculation. Inoculation was performed by using the 
hypocotyl inoculation method described previously by (Haas & Buzzell, 1976). Disease development was 
observed for 2 days. Control plants were inoculated with 7 days grown PDA on a petri dish without fungus. 
Fungal inoculated and non-fungal inoculated seedlings were placed in a growth chamber at a temperature range 
of about 25 ºС without light condition.  

2.3 Screening and Disease Assessment  

Assessment of disease severity on all the 18 soybean cultivars was done according to (Ishikawa et al., 2005) with 
some modifications. At 2 days post inoculation (dpi) by F. solani the disease index (on 1-5 scale) on each plant 
was recorded according to vascular browning and the mean value of 10 plants from each cultivar calculated for 
disease severity. For evaluation of vascular browning, the basal stems were cut and vascular browning was rated 
on a scale of 1-5; where 1 = no symptoms or vascular browning; 2 = 1-25% vascular; 3 = 6-50% vascular 
browning; 4 = 51-75% vascular browning; 5 = more than 75% vascular browning. The mean value recorded for 
Nandou12 was 1 = no symptoms and Juiyuehuang recorded 5 = more than 75% vascular browning (Figure 1). 
These formed our basis for selecting Nandou12 as resistant and Juiyuehuang as susceptible cultivars. 

2.4 Histo-chemical Stainings 

Tissue staining with Trypan blue (1.25 mg/ml, sigma) and DAB (1 mg/ml, sigma) was performed as previously 
described (Thordal-Christensen et al., 1997; Shirasu et al., 1999; Lam, 2004) with suitable modifications. 
Samples were stained at 48 hours post inoculation (hpi).  

2.4.1 Exogenous SA Application  

To determine whether exogenous SA application can induce systematic acquired resistance in soybean, we first 
sprayed (For 48 h: at every 6 h intervals) the seedlings with SA which was dissolved in deionized water at a 
concentration of 100 µM and 200 µM in order to compare the disease development to seedlings inoculated with 
fungus without exogenous SA application. This assay was conducted as previously described (Spletzer & Enyedi, 
1999).  

2.4.2 Reverse Transcription and Quantitative PCR (RT-qPCR) Analysis 

Total RNA was extracted using a plant total RNA Miniprep purification Kit (Tiangen, http://www.tiangen.com/) 
cDNA was reversely transcribed from 2 µg of total RNA using an oligo dT20 primer and MLV reverse 
transcriptase (http://www.invitrogen.com). First strand cDNAs of reversely transcribed 50ng of RNA was used for 
semi-quatitative RT-PCR analysis Extaq DNA polymerase (TaKaRa) and qPCR with Universal SYBR® GREEN 
qPCR Master Mix (2×) (Gangchi Bio). The parameters of the semi-quantitative PCR were as follows: 95 ºC for 5 
min, 95 ºC for 15 s, 50 ºC for 30 s, 72 ºC for 1kb min-1, and another cycle (step 2) was repeated according to the 
gene expression level of the specific genes. Parameters of the qPCR were as follows 95 ºC for 3 min, 95 ºC for 
15 s and 55 ºC for 15 s, and 72 ºC for 20 s, go to step 2 for 39 more cycles. Then increment of 0.5 ºC from 65 ºC 
to 95 ºC for 5 seconds was used for melt curve analysis. ΔΔCq method was used to normalize the qPCR data 
according to (Du et al., 2016). GmACT3 (Glyma09g17040) was amplified as an internal control. Gene-specific 
primer pairs were designed using Primer 5.0 (Table 1).  

2.4.3 Endogenous SA Measurement 

SA was extracted and measured according to modification from previous studies (Wang et al., 2011). 200 mg of 
soybean tissue was ground to fine powder with N2 and extracted once with 1.5 ml of 90% methanol followed by 
one extraction with 1.5 ml of 100% methanol. The methanol fraction was equally split into two micro centrifuge 
tubes (for total and free SA analyses, respectively) and dried in the fume hood overnight. The pellet was 
dissolved by adding 500 μl of 100 mM sodium acetate (pH 5.5). To half of the duplicated samples, 40 μl of 
β-glucosidase (Sangon, A662003-0010) were added to digest glucosyl-conjugated SA (total SA) for 1.5 h at 
37 °C. (About 80 units/g fresh weight). All the samples were treated with an equal volume of 10% trichloroacetic 
acid (TCA) and centrifuged at 10,000g for 10 min. The supernatant was extracted twice with 1 ml of extraction 
solvent (ethylacetate: cyclopentane: 2-propanol 100:99:1, v/v). The top (organic) phase was collected in a micro 
centrifuge tube and dried in a fume hood overnight. The residual fraction was re-suspended in 0.5 ml of 55% 
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methanol by vortex and was passed through a 0.2-um nylon spin-prep membrane (Fisher 07-200-389) via 
centrifugation for 2 min (14,000 g) before being subjected to HPLC analysis. A Dionex AS50 HPLC instrument 
with an Acclaim 120C18 reverse column (4.6 × 250 mm) and an RF2000 fluorescence detector was used to 
separate and detect SA. The mobile phase included a gradient of methanol and 0.5% acetic acid. SA was detected 
at 6.5 min with 301-nm excitation/412-nm emission. The standard curve was made from quantification of SA at 
concentration of 10, 8, 6, 2, and 1 mg mL-1

 and used to calculate the final concentration in each sample using 
Microsoft Excel software. 

2.4.4 Determination of Antioxidant Enzymatic Activity  

The enzymes activity was carried out by grinding 0.5 g of 2 days infected soybean tissues with 2 mL ice-cold 25 
mM HEPES buffer (pH 7.8) containing 0.2 mM, EDTA, 2 mM ascorbate and 2% PVP. Further, the homogenates 
were centrifuged at 4 ºC for 15 minutes at 13,000 g and the supernatant was used for enzyme activities analysis. 
All the various steps in the preparation of the enzyme extract were carried out at 4 °C. Peroxidase (POD) activity 
was measured according (Egley et al., 1983), the total volume of 2 mL mixture contained 25 mM (Ph 7.0) 
sodium phosphate buffer, 0.1 mM EDTA, 5% guaiacol (2-ethoxyphenol), 1.0 mM H2O2 and 100 μl enzyme 
extract. Superoxide dismutase (SOD) activity was also measured as previously described (Giannopolitis and Ries 
2010).  

2.4.5 H2O2 Measurement  

Hydrogen peroxide H2O2 content from the 2days infected soybean tissues was measured according to (Du et al., 
2011). About 1 g of soybean hypocotyl was homogenized in an ice bath with 5 ml 0.1% (w/v) TCA. The 
homogenate was transferred into a tube and centrifuged at 12,000 g for 20 min at 4 ºС. 0.5ml of the supernatant 
was added to 0.5 ml 10 mm potassium phosphate buffer (Ph.7.0) and 1 ml potassium iodide (KI). The 
absorbance of supernatant was read at 390 nm. H2O2 content was determined by a standard curve.  

2.4.6 Malondialdehyde (MDA) Content Measurement 

MDA content of the 2days infected soybean tissues was quantified according to (Sun et al., 2006; Qian et al., 
2007). About 1 g of soybean tissues (hypocotyl) was homogenized with 5% trichloroacetic acid (TCA) on ice 
and centrifuged at 3,000 g for 10 min at 4 ºС. 2 mL of the supernatants was transferred into another tube added 
with 2 ml 0.67% thiobarbituric and incubated at 100 ºС for 15 min. The cooled mixture was centrifuged at 4,000 
g for 10min. The supernatants were subjected to analysis at 450 nm (A450) 532 nm 600 nm (A600) in spectrometer. 
The amount of MDA was calculated using an extinction coefficient of 155 Nm-1 cm-1 and according to the 
formula: MDA (µmol L-1) = 6.45× (A 532- A600) – 0.56×A450. 

2.5 Statistical Analysis  

All experiments were repeated three times, with three replication each. Statistical calculations were performed 
using SPSS-20 (SPSS, Chicago, IL, USA). For disease severity assessment, a minimum of ten plants were 
evaluated for each replicate. Tests for significant difference among physiological parameters under different 
treatment were conducted using analysis of variance (ANOVA) with mean separation using Duncan’s multiple 
range tests (DMRT) at the 0.05 level of confidence. 

3. Results  
3.1 Phenotypic Expression of Soybean Seedlings to F. solani Infection 

In the current study, 18 soybean cultivars were evaluated for SDS resistance to F. solani infection. Inoculated 
seedlings were monitored and disease symptoms were recorded at 2dpi. Jiuyuehuang showed severe disease 
symptoms under F. solani infection whiles Nandou12 showed no disease symptoms (Figure 1; Figure 2: JT and 
NT). Once the symptoms of the disease appeared, fungal inoculated and non-fungal inoculated plants were 
collected at 2 dpi. The appearance of the symptoms provided a confirmation that the pathogen had penetrated the 
host tissues and infection was successful. Visual disease assessment (VDS) was used to evaluate the resistance 
level between the two soybean cultivars. See Materials and Methods section for details. 
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response to fungal infection (Luo et al., 2011). SA pathways is often induced by pathogen infection and is 
effective in mediating resistance against biotrophic pathogens (Thaler et al., 2012). SA signaling was shown to 
be important in defense against F. graminaruim infection in A. thaliana and in wheat (Makandar et al., 2006; 
Makandar et al., 2010; Makandar et al., 2012). From the current study, endogenous SA content (Total and 
conjugated SA) increased in Jiuyuehuang than in Nadou12 which suggests the accumulation of SA as a result of 
the fungal infection.  

The result from the gene expression analysis indicated that more defense genes were expressed in Nandou12 
than in Jiuyuehuang. The expression of NPR1 was also up-regulated in Nandou12 than in Jiuyuehuang indicating 
that the gene expression involved in SA signaling pathways was up-regulated in Nandou12 than in Jiuyuehuang. 
We suggest from the current result that in the event of fungal stress in soybean, SA mediated disease resistance 
plays an important role in Nandou12 resistance to F. solani. 

In addition, results from the current study also showed that there was an increase in Peroxidase (POD), 
superoxide dismutase (SOD) and malondialdehyde (MDA) as a result of the fungal stress (Figure 7). SOD is one 
important enzyme in ROS metabolism and catalyzes the dismutation of oxygen (O2)—and hydrogen peroxide 
(H2O2) (Gill & Tuteja, 2010). Increased and decrease in SOD activity have frequently been correlated with 
disease resistance and susceptibility (Yang et al., 2003). Vanacker et al. (1998) reported that an increase in SOD 
activity following pathogen attack might be required to catalyze the synthesis of H2O2 during the oxidative burst 
and to prevent the accumulation of superoxide. The current study recorded an increase in SOD activity in the 
fungal infected plants of Nandou12 more than the fungal infected plants of Jiuyuehuang. Similar result was 
recorded in the POD level with increased activity in the fungal infected plants of the resistant cultivar than in 
fungal infected plants of the susceptible cultivar. This suggests that antioxidant defense mechanism activated 
under stress remained operative throughout that challenging period, enabling plants to adopt to such conditions 
(Pérez-Clemente et al., 2012). MDA is one final decomposition product of lipid peroxidation and has been used 
as an index for the presence of lipid peroxidation (Esim et al., 2012). While more ROS was accumulated, more 
MDA was also accumulated in Nandou12 (Figures 3d and 7c) respectively. Which we conclude that the fungal 
stress had more damaging effect on Jiuyuehuang more than the Nandou12. MDA content increased in water 
stressed olive plants which has resemblance with our results (Sofo et al., 2004). The increased level of activated 
oxygen species could contribute to the symptoms development and pathogenesis in compatible plant-virus 
interactions. In the current study, the higher level in ROS is consistent with the increase in H2O2 activity (Xi et 
al., 2007).  

5. Conclusion  
In conclusion, F. solani infection revealed disease symptoms in Jiuyuehuang with no disease symptoms in 
Nandou12. The plant cells stained by DAB and Trypan blue produced a high amount of ROS and cell death in 
the area of infection respectively. Enzymatic and non-enzymatic antioxidative pathways which are involved in 
the production of signaling molecules were increased in Jiuyuehuang. More PR genes were induced in 
Nandou12. The current findings suggest that these differences are associated with resistance. SA treatment of 
both cultivars rendered them more resistant to F. solani. The current results can provide novel insights for better 
recognition of the responsible mechanisms needed to regulate SDS resistance in soybean. The direct effect of SA 
should further be examined on the above-mentioned enzyme activities and their gene expression in conferring 
resistance to pathogens. Exogenous SA application was able to induce SAR against F. solani of which we 
propose that SA played this role through regulation of the plant antioxidative system or through the genes 
involve in the SA signaling pathways.  
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