
Journal of Agricultural Science; Vol. 10, No. 10; 2018 
ISSN 1916-9752 E-ISSN 1916-9760 

Published by Canadian Center of Science and Education 

388 

Antioxidant Protection of Photosynthesis in Two Cashew Progenies 
Under Salt Stress 

Anselmo F. da Silva1, Valéria F. de O. Sousa2, Gisele L. dos Santos2, Eugênio S. Araújo Júnior3,  
Sérgio L. F. da Silva3, Cristiane E. C. de Macedo4, Alberto S. de Melo5 & Josemir M. Maia6 

1 Academic Unit of Agronomy, Federal University of Paraiba, Areia, PB, Brazil 
2 Academic Unit of Tropical Horticulture, Federal University of Campina Grande, Pombal, PB, Brazil 
3 Academic Unit of Production Vegetable, Rural Federal University of Pernambuco, Serra Talhada, PE, Brazil 
4 Academic Unit of Fitotecnia, Rural Federal University of the Semi-Arid, Mossoró, RN, Brazil 
5 Academic Unit of Agrarian Sciences, State University of Paraiba, Campina Grande, PB, Brazil 
6 State University of Paraíba, Center for Human and Agrarian Sciences, Catolé do Rocha, Paraíba, Brazil 

Correspondence: Josemir M. Maia, State University of Paraíba, Center for Human and Agrarian Sciences, Catolé 
do Rocha, Paraíba, Brazil. E-mail: jmouram@gmail.com 

 

Received: June 28, 2018      Accepted: August 7, 2018      Online Published: September 15, 2018 

doi:10.5539/jas.v10n10p388          URL: https://doi.org/10.5539/jas.v10n10p388 

 

Abstract 
The present work evaluated the indicators of photosynthetic efficiency and antioxidative protection in cashew 
tree seedlings subjected to salinity stress. The study was conducted with seedlings of two advanced dwarf cashew 
clones (CCP09 and CCP76) subjected to salt stress with increasing doses of NaCl (0, control; 25; 50; 75; 100 mM) 
in the nutrient solution for 30 days under greenhouse conditions. The variables of gas exchange, CO2 assimilation 
(PN), stomatal conductance (gS), transpiration (E), intercellular CO2 concentration (CI), photochemical activity, 
potential quantum efficiency (Fv/Fm), effective quantum efficiency (ΔF/Fm’) of photosystem II (PSII), 
photochemical quenching (qP), non-photochemical quenching (NPQ) electron transport rate (ETR) as well as the 
indicators of damage and oxidative protection were measured. Under these conditions, there was an intense 
accumulation Na+ associated with a reduction in the K+/Na+ ratio in the leaves of both clones in response to salt, 
with higher values for this ratio in clone CCP09 than in CCP76 the highest concentration of NaCl (100 mM). 
Salinity reduced PN, gS and E in the two clones evaluated, with lower reductions in CCP09 than in CCP76 at the 
highest salt dose. Instantaneous carboxylation (PN/CI) and water use (PN/E) efficiencies were strongly restricted by 
salinity but were less affected in CCP09 than in CCP76. Salinity stress also increased hydrogen peroxide (H2O2) 
levels in CCP09, whereas lipid peroxidation decreased in both progenies. The clones presented specific 
antioxidant responses due to greater enzymatic and non-enzymatic activity in CCP76, in addition to the activity of 
phenol peroxidase (POX) in CCP09. 
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1. Introduction 
Excess of salt in the soil solution causes metabolic disturbances in plants due to the osmotic and ionic effects of 
salinity, leading to reduced crop growth and productivity (Khan & Panda, 2008; Lima, Nobre, Gheyi, Soares, & 
Silva, 2014). The osmotic effect is immediate due to the difference in osmotic potential between the external and 
internal environments of the cell, whereas the ionic effect occurs later when the concentration of Na+ and/or Cl- 
reaches toxic levels in the cytosol (Shavrukov, 2013). At the time of exposure to salinity, these osmotic/ionic 
effects act simultaneously, affecting essential metabolic processes such as nutritional balance, water relations and 
photosynthesis (Shaheen, Naseer, Ashraf, & Akram, 2013; Chen, Hawighorst, Sun, & Polle, 2014). 

Ionic toxicity caused by salinity stress results from increased Na+/K+, Na+/Ca+2, Na+/Mg+2 and Cl-/NO3
- ratios in 

plant tissue, causing cellular disorders related to the physiological function of these essential nutrients 
(Abbaspour, Kaiser, & Tyeman, 2014; Bessa, Lacerda, Amorim, Bezerra, & Lima 2016). K+ is a macronutrient 
that participates in several cellular functions, acting on osmotic potential (osmosolute function) and the 
functioning of metabolic pathways due to its role as an enzymatic cofactor (Wang & Wu, 2013). Thus, the 
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K+/Na+ ratio in plant tissue is considered a physiological marker of K+ selectivity and the resulting resistance to 
salinity stress in some species and/or agricultural crops (Rodrigues et al., 2013; Bessa et al., 2016). 

Salinity affects the absorption process by restricting K+ accumulation in different parts of plants, a response that 
has been previously shown to occur in cashew trees (Ferreira-Silva, Voigt, Viégas, Paiva, & Silveira, 2009). A 
lower K+/Na+ ratio in response to salt is associated with other metabolic disturbances, such as photosynthetic 
limitation and photooxidative damage (Rodrigues et al., 2013). Photosynthetic limitation is among the first 
physiological responses exhibited by plants subjected to salinity (Shaheen et al., 2013). A reduction of this 
process may be associated with both stomatal limitation (Hussain, Luro, Costantino, Ollitrault, & Morillon, 2012) 
and non-stomatal factors (Rodrigues et al., 2013). 

In addition to stomatal limitation, salinity can affect the structural components of photosystem II (PSII) and can 
compromise photochemical efficiency, limiting the capture and use of light energy (Silveira & Carvalho 2016). 
Damage to PSII can occur due to the photooxidation of structures such as pigments (chlorophylls) and proteins, 
particularly the D1 protein, caused by the generation of excess reactive oxygen species (ROS) at PSII (Goh, Ko, 
Koh, Kim, & Bae, 2012). This damage affects PSII repair systems and can lead to chronic photoinhibition, 
causing non-stomatal photosynthetic limitation (Hussain et al., 2012). In chloroplasts, in addition to the 
photochemical disturbances caused by salinity, the limitation of carbon reduction in the Calvin cycle can lead to 
an increase in the NADPH/NADP+ ratio, stimulating the generation of ROS due to oxygen (O2) photoreduction 
at photosystem I (Goh et al., 2012). 

This imbalance of the photosynthetic process causes changes in the redox state that increase the content of ROS 
and oxidative damage (Mittler, 2002). For protection, plant cells evolved a complex system that involves 
enzymatic mechanisms consisting of enzymes such as superoxide dismutase (SOD), ascorbate peroxidase (APX) 
and phenol peroxidase (POX) and non-enzymatic mechanisms consisting of chemical components such as 
ascorbate (ASC) and glutathione (GSH), which act together in cellular protection (Dinakar, Djilianov, & Bartels, 
2012; Šimková, Fialová, Vaculíková & Luxová, 2016). SOD is present in different compartments of the cell and 
dismutates the superoxide radical (O2

●-) to hydrogen peroxide (H2O2) and water (Bhattacharjee, 2010). 
Peroxidases (APX and POX) remove excess generated H2O2 using specific electron donors (Maia et al., 2012). 

Cashew (Anacardium occidentale L.) trees are economically important in Brazil. Cashew nut production reached 
228,796 t in 2016 (IBGE, 2016). This species is cultivated under dry conditions in the Brazilian semiarid region 
under adverse environmental conditions. Salinity affects cashew growth, but the species is moderately salt 
tolerant; some clones can exclude Na+, which is a favorable attribute for salt resistance (Ferreira-Silva et al., 
2010). Genetic variability in relation to characters involved in salt resistance, such as ionic partitioning (Ponte et 
al., 2011) and oxidative protection (Ferreira-Silva et al., 2011), also exists. 

Despite these few reports in the literature, metabolic disturbances related to photosynthetic limitation in cashew 
plants cultivated under salinity conditions are not characterized. In the present study, the characterization of both 
photosynthetic damage and metabolic disorders related to the generation of oxidative damage was carried out in 
two cashew tree progenies subjected to salinity stress. The effects of salinity on stomatal modulation and 
photochemical activity associated with the K+/Na+ ratio in leaf tissue are also discussed. 

2. Material and Methods 
2.1 Plant Material and Application of Treatments 

Seeds (cashew nuts) of advanced dwarf cashew (Anacardium occidentale L.) trees were obtained from a 
commercial nursery in Pacajus city, Ceará, Brazil. The experiment was carried from June to October 2015 out at 
the Unidade Acadêmica de Serra Talhada of the Universidade Federal Rural de Pernambuco. Nuts were 
subjected to superficial disinfestation with 5% (v/v) sodium hypochlorite and sown into 4.0 L pots containing a 
mixture of vermiculite and sand as a substrate at a ratio of 1:1 (v/v). During the germination and initial growth 
stages, substrate moisture was maintained near field capacity by frequent irrigation with distilled water for 20 
days. Afterward, seedlings (stage of four expanded leaves) received nutrient solution described by Hoagland and 
Arnon (1950).  

Thirty days after planting, seedlings were subjected to different salinity treatments in increasing concentrations 
of NaCl (0, control; 25; 50; 75; and 100 mM) dissolved in diluted nutrient solution (one-quarter strength). 
Treatment solutions were applied every three days for 30 days, and the photosynthetic parameters were measured 
at the end of the experiment. Seedlings were then collected, and leaves and stems were separated to determine 
their fresh mass. Part of the leaves was frozen in liquid nitrogen and stored at -80 °C to later analyze the 
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indicators of oxidative damage, non-enzymatic antioxidants and enzymatic activity and measure the Na+ and K+ 
contents. 

The experiment was carried out in a completely randomized design in a 2 × 5 factorial arrangement: two cashew 
clones (CCP76 and CCP09) and five doses of NaCl (0, control; 25; 50; 75; and 100 mM). There were three 
replicates per treatment for a total of 30 plots, with each one represented by one pot containing one seedling. 
Data were subjected to the F test at 0.05% significance, and means were compared by the Tukey test at the same 
probability level. For the analysis, the ASSISTAT software (Statistical Assistance) was used 7.7 beta, copy 
updated on 10/4/2015 (Silva & Azevedo, 2016).  

2.2 Fresh Mass Content, Na+ and K+ Contents and K+/Na+ 

The fresh mass of the above ground portion was obtained by measuring fresh leaf and stem tissue using a 
semi-analytical electronic balance. The extraction for the measurements of Na+ and K+ content from leaf tissues 
was performed using 50 mg of vegetable tissue and 10 mL of deionized water in a 100% water bath for 1 hour in 
closed thread tubes. The clear extract was obtained by filtration with cotton, and the Na+ and K+ contents were 
measured by flame photometry readings (Malavolta, Vitti, & Oliveira, 1989). 

2.3 Gaseous Exchange Analysis and Chlorophyll Fluorescence 

The rate of CO2 assimilation (PN), transpiration (E) and stomatal conductance (gS) were measured with a portable 
photosynthesis system (LI-6400XT, LI-COR, USA) with saturating irradiance (1000 µmol photons m-2 s-1) 
provided by an external halogen lamp to saturate PSII without damage. From these data, water use efficiency, by 
the PN/E ratio (Souza, Soares, & Regina, 2001), and instantaneous carboxylation efficiency, by the PN/CI ratio 
(Ribeiro, Machado, Santos, & Oliveira, 2009), were calculated. Fluorescence measurements were subsequently 
performed on mature, fully expanded leaves using the saturation pulse method (Van Kooten & Snel, 1990; 
Schreiber, Bilger, & Neubauer et al., 1994) with a fluorometer coupled to a portable photosynthesis system 
(LI-6400XT, LI-COR). 

From the fluorescence data, the maximum quantum efficiency of PSII based on the Fv/Fm ratio and the 
following parameters were calculated: PSII quantum efficiency [ΔF/F’m = (F’m – Fs)/F’m]; excitation energy 
capture efficiency or antenna efficiency [Fv’/Fm’ = (F’m – F’o)/F’m]; apparent rate of electron transport (ETR = 
ΔF’ - F’m × photosynthetic photon flux density × 0.5 × 0.84); non-photochemical quenching [NPQ = (Fm – 
F’m)/F’m]; and photochemical quenching (qP) (Rohácek, 2002). In addition, the ETR/PN ratio was calculated to 
estimate excess electrons in the chloroplastic electron transport chain used in other processes not related to the 
rate of PN (Ribeiro, Santos, Machado, & Oliveira, 2008).  

2.4 Indicators of Oxidative Damage, Non-enzymatic and Enzymatic Antioxidants 

The H2O2 content was determined by the method described by Cheeseman et al. (2006). Leaf samples (0.2 g of 
fresh tissue) were macerated in a liquid N2 mortar, followed by extraction in 50 mM potassium phosphate buffer 
pH 6.0 containing 1 mM KCN. The extract was centrifuged at 12.000 × g for 30 min the 4 °C and aliquots (200 
μl) of the supernatant were transferred to test tubes containing 900 μL of in reaction medium, 0,25 mM FeSO4, 
0.25 mM (NH4)2SO4; 0.25 mM H2SO4, 124 μM xylenol orange and 99 mM sorbitol. The mixture was incubated 
per 30 min at 25 °C and then absorbance readings were carried out at 560 nm. The contents of H2O2 were 
obtained from standard curve and the results expressed in μmol H2O2 g

-1 MF.  

For the thiobarbituric acid (TBARS), ascorbate (ASC) and glutathione (GSH) reactive substance measurements 
reduced, leaf samples (0.1 g) were macerated in a mortar in the presence of liquid N2, followed by extraction in 
solution of TCA (5%) and centrifugation at 10,000 × g per 30 min at 4 °C. Lipid peroxidation was estimated by 
the thiobarbituric acid reactive substance content (TBARS) according to Heath and Packer (1968). For the 
reaction, aliquots (0.5 mL) of the supernatant were added to 2.0 mL of 20 % TCA solution and 0.5% (m/v) TBA 
and heated in a 95 °C water bath in sealed tubes For 1 hour. After the reaction was stopped in an ice bath, 
readings were carried out at 532 and 660 nm and after subtraction of the readings, the TBARS content was 
estimated using the 155 mM-1 cm-1 molar extinction coefficient.  

The ASC content was determined according to Kampfenkel et al. (1995). Aliquots (0,1 mL) of the supernatant 
were added to the reaction medium with 0.3 mL of 200 mM potassium phosphate buffer, pH 7.4; 0.1 mL of 
distilled water; 0.5 mL of 1% TCA; 0.4 mL of 42 % H3PO4; 0,4 mL of 4% bipyridyl; 0.2 mL of FeCl3. The tubes 
were brought to the water bath at 42 ºC per 30 min and after readings were carried out at 525 nm. The content of 
GSH was determined according to Griffth (1980). Aliquots (0.2 mL) of the supernatant were added to the 
reaction medium containing 2.6 mL of 150 mM sodium phosphate buffer pH 7.4; 1 ml of 100 mM sodium 
phosphate buffer pH 6.8 and 0.2 ml of DTNB (5,5 ‘dithiobis-nitrobenzoic acid) 30 mM in 100 mM phosphate 
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buffer, pH 7.0. The tubes were kept in a water bath at 30 ºC for 10 min and then readings were carried out at 412 
nm. The contents of ACS and GSH were estimated based on standard curve and expressed in μmol g-1 MF. 

Protein extraction was performed as described by Zimmermann et al. (2006). The activity of the enzyme 
superoxide dismutase (SOD; EC: 1.15.1.1) was determined according to the methodology described by 
Giannopolitis and Ries (1977). 0.1 ml aliquots of the protein extract were transferred to light-protected test, tubes 
containing 50 mM potassium phosphate buffer, pH 7.8; Containing 0.1 mM EDTA; 13 mM L-methionine and 
750 μM nitroblue tetrazolium (NBT). The reaction was initiated by the addition of 2 mM riboflavin and rapid 
transfer of the tubes, without light protection, to a 30-watt lamp-illuminated chamber (30 μmol of photons m-2 s-1) 
for 7 minutes. The reaction was interrupted by the shutdown of light and readings were carried out at 560 nm. 
The activity of the enzyme was estimated on the basis of inhibition of NBT and one unit of activity was 
considered as the amount of enzyme required to inhibit 50% of its reduction by Beauchamp and Fridovich (1971) 
and expressed in UA g-1 MF min-1.  

The activity of ascorbate peroxidase (APX; EC: 1.11.1.1) was determined according to the method described by 
Nakano and Asada (1981). Aliquots of 0.1 mL of protein extract were added to the reaction medium composed of 
2.7 mL of 50 mM potassium phosphate buffer pH 6.0 containing 0.5 mM ascorbic acid. The reaction was started 
by adding 0.2 mL H2O2 30 mM and accompanied by the decline in absorbance at 290 nm in a spectrophotometer 
for 120 seconds, with readings at intervals of 30 sec. APX activity was estimated using the molar extinction 
coefficient of 2.8 mM-1 cm-1 for ascorbate at 290 nm and expressed as μmol ASC g-1 MF min-1. 

The activity of phenol peroxidase (POX; EC 1.11.1.7) was determined according to the reaction principle of the 
method described by Kar and Mishra (1976). 100 μL aliquots of the protein extract were transferred to assay 
tubes, then added 4.9 mL of 25 mM potassium phosphate buffer, pH 6.8; Containing 20 mM of pyrogallic acid 
and 20 mM of H2O2. The mixture was incubated at room temperature (25 ºC) for 1 min and the reaction 
Interrupted by the addition of 0.5 mL of 0.5% (v/v) H2SO4. Absorbance readings were taken at 40 nm. The POX 
activity was expressed in nmol purpurogalin g-1 MS min-1.  

3. Results and Discussion 
3.1 Growth and Partition of Ions in Cashew Tree Seedlings Subjected to Salinity Stress 

For all parameters evaluated, the clones presented similar responses, with the exception of K+, in which CCP76 
maintained a stable K+ content but CCP09 tended to increase proportionally with increasing in salinity. From the 
50 mM NaCl dose there was a tendency for fresh weight of shoot to decrease in response to increased salinity 
(Figure 1A). Torres et al. (2014) suggested that the absolute and relative growth rates of height, stem diameter, 
leaf number, leaf area and root length as well as fresh phytomass of cashew trees are negatively influenced by 
the salinity of irrigation water. These authors affirmed that salinity stress decreases plant growth due to the 
energy consumption required for synthesis of osmotically active organic compounds, which are associated with 
osmotic adjustment processes and maintenance of water relations in plants.  
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There was also a significant effect on intercellular CO2 concentration (CI) due to salinity (Figure 2B). There was 
an increase in CI in the CCP76 clone of 45.26% from 100 mM NaCl but only 7.14% in CCP09 at the same 
concentration, when compared to control. The results are in agreement with those reported in other studies 
(Warren, 2008; Sousa et al., 2012) in several plant species, such as Cocos nucifera, Swietenia macrophylla, Zea 
mays and Arachis hypogaea subjected to salinity stress and/or different water regimes. As reported in these 
studies, the increase in CI may be caused by the direct interference of salinity stress in absorption of water and 
nutrients; therefore, the amount of water available influences stomatal opening and closure. High concentrations 
of Na+ reduce the turgidity potential of foliar tissues, interfering in the absorption of water. At the same time, 
stomatal closure and reduction in CI occur. The reduction in gS shown in Figure 2C likely impaired the stability 
of gas exchange, reducing the PN rate of cashew clones and becoming correlated with the lower influx of CO2 in 
the sub-stomatal cavity for photosynthesis (Romero-Aranda et al., 1998; Chaves, Flexas, & Pinheiro, 2009). 

In cashew seedlings subjected to salinity stress, drastic reductions in the instantaneous carboxylation efficiency 
(PN/CI) of approximately 92.85% for CCP76 and 67% for CCP09 were observed compared with those of plants in 
the absence of NaCl (Figure 2D). The PN/CI ratio decreased with increasing NaCl content in leaf tissue. This 
decrease can be explained in part by the toxic effect of increasing concentrations of Na+ and Cl- in leaves, as 
reported in other species such as cowpea (Souza et al., 2011) and soybean (Shi, Meng-Zhaolai, Wang, Xu, & Xu, 
2015). It is probable that the reduction in the PN/CI ratio is associated with a decrease in PN (Figure 2A) and 
therefore lower availability of CO2 as a substrate for photosynthesis. 

Increased NaCl concentration significantly reduced the gS of clones CCP76 (60%) and CCP09 (45.45%) 
subjected to 100 mM salinity concentrations (Figure 2D). Among the clones, a significant difference was 
observed in response to doses of 75 and 100 mM, with the gS of CCP76 overlapping with that of CCP09 at 75 
mM and the gS of CCP09 with that CCP76 at 100 mM NaCl.  
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photosynthesis of cashew seedlings. According to Carneiro et al. (2012), an increase in salinity causes a reduction 
in the transpiration rate of cashew clone CCP76 plants due to the osmotic effect of salinity stress, affecting mass 
flow to root zone. 

A progressive reduction in PN/E in cashew leaves exposed to different concentrations of Na+ (Figure 2F) was also 
observed. Clones were stable through the 50 mM NaCl dose, but there was a 60.16% reduction in PN/E for the 
CCP76 clone and a 69% reduction for the CCP09 clone at concentrations of 100 mM NaCl. However, CCP09 
stood out more than CCP76 did in all salinity concentrations. This decrease in PN/E can be explained by the 
reduction in PN (Figure 2A), demonstrating the ability of plants to absorb and assimilate CO2 at the expense of 
water loss through evapotranspiration (Silva et al., 2014).  

The apparent ETR was also influenced by NaCl. In the CCP09 clone, the ETR remained constant through the dose 
of 50 mM but decreased by 21.42% with dose of 100 mM compared with to control (Figure 3A). In the CCP76 
clone, there was an increase with the 25 mM dose followed by a drastic reduction of 41.09% with the dose of 100 
mM NaCl compared to control. It is possible that the salinity directly affected PSII due to photoinhibitory 
processes, enabling the reduction in the electron flux necessary for the formation of ATP and NADPH (Ghannoum 
et al., 2003). Similar results have been reported in bean, corn, sorghum and Brachiaria (Dias & Brüggemann, 2010; 
Santos et al., 2014) under water and salinity stresses. 

Salinity stress also provided excess electrons for photosynthesis, as indicated by the increase in ETR/PN. There was 
an increase in both clones, with increases of 81.81% in CCP76 at a dose of 100 mM and of 78% in clone CCP09 
through the dose of 75 mM NaCl compared with that of the controls (Figure 3B). The increase in the ETR/PN ratio 
indicated the occurrence of excess electrons for the carbon reduction process, a potential condition for the 
formation of excessive ROS. 

The increase in the ETR/PN ratio represents an imbalance between electron flux and PN during photosynthesis, 
which is often associated with an increase in the electron flux to other physiological processes rather than to 
reactions for PN (Baker, Harbinson, & Kramer, 2007; Ribeiro et al., 2009). The increase in the ETR/PN ratio is 
associated with a reduction in the PN/CI ratio, which may indicate a loss in photosynthetic efficiency in cashew 
seedlings caused by salinity stress. 

The maximum Fv/Fm was reduced by 3% (not significant) in both cashew clones (Figure 3C) from the treatment 
of 75 mM NaCl. Jamil, Lee, J. M. Kim, H. S. Kim, and Rha (2007), and Silveira, S. L. Silva, E. N. Silva, and 
Viégas (2010) reported that salinity stress causes stomatal closure, which reduces photosynthesis and disturbs PSII 
functioning, causing reductions in maximum Fv/Fm values in cashew tree seedlings, especially at high salinity 
concentrations (14.1 dS m-1). This reduction was also confirmed in studies of changes in photochemical reactions 
caused by salinity stress in glycophytes, reported by Cha-Um and Kirdmanee (2011), when comparing the results 
of potential Fv/Fm in yellow passion fruit plants irrigated with saline water (Freire, Dias, Cavalcante, Fernandes, 
& Lima-Neto, 2014). 

The quantum efficiency of PSII (ΔF/Fm’) decreased as salt levels increased, corresponding to a 37.5% reduction 
for the clone CCP76 and a 20% reduction for the clone CCP09 exposed to 100 mM NaCl compared with that of the 
controls. However, an increase in ΔF/Fm’ under the 25 mM treatment was noted, although a drastic reduction in 
Fv/Fm was observed under the higher salt regimes (Figure 3D). Similar results were observed in eucalyptus 
irrigated with saline water (Mendonça, Carneiro, Freitas, & Barroso, 2010) and in cowpea under conditions of 
salinity stress (Souza et al., 2011), in which reductions in ΔF/Fm’ were observed. 

Regarding qP, there was a 50% decrease in the CCP76 clone from the 100 mM dose compared with that of the 
control seedlings (Figure 3E). There was also a significant increase in qP in the CCP09 clone and a gradual 
reduction in qP under the 25 mM dose, mainly in CCP76. At higher concentrations, NaCl led to a reduction in qP 
due to the accumulation of Na+ and/or Cl- in the chloroplasts, negatively affecting the biochemical and 
photochemical processes involved in photosynthesis (Munns & Tester 2008). An analysis of qP indicates the 
percentage of energy directed to photosynthesis, demonstrating PSII capacity to use light energy to reduce NADP+ 
(Ribeiro et al., 2009). In this work, the reduction of qP indicated that PSII and ETR is reduced too (Dias & 
Brüggemann, 2010). The same effect has been observed in bean, corn, sorghum and Brachiaria under water stress 
and saline conditions (Souza et al., 2011; Santos et al., 2014). 
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ASC content in CCP76 was inversely proportional to the APX activity, supporting the hypothesis of the efficient 
interaction of the enzymatic and non-enzymatic antioxidant mechanisms in the oxidative protection of cashew 
plants under saline conditions.  

In the CCP09 clone, the high amounts of reduced ASC content associated with low APX activity indicated ASC 
consumption decreased, suggesting a role of ASC in the oxidative protection of this clone. Similar results were 
observed in cashew trees (Ferreira-Silva et al., 2012) and corn plants (Shan, Liu, Zhao, & Wang, 2014), in which 
the reduction of the ASC redox state, which is associated with a decrease in APX activity under high NaCl 
concentrations, may indicate the direct use of ASC in H2O2 oxidation. 

The content of GSH in the leaf tissue decreased with increasing salinity, mainly from 50 mM NaCl (Figure 4D). 
In both clones, there was a drastic reduction in GSH content (38.66% for CCP76 and 42.60% for CCP09) under 
100 mM NaCl stress compared to control. However, CCP09 was more responsive than was CCP76 and exhibited 
34.78% more GSH than did CCP76 compared to control and an average decrease of 30% in GSH concentration 
under treatments of 50, 75 and 100 mM NaCl (Figure 4D). GSH is considered the main thiol compound that 
promotes protection against ROS (Foyer & Noctor, 2003; Tausz, Šircelj, & Grill, 2004; Delaplace, Fauconnier, & 
DuJardin, 2011). In this study, the reduction in ASC and GSH was directly proportional to the reduction in 
TBARS, corroborating the hypothesis that these molecules are important for antioxidant protection in plants. 
This effect was also observed in Vigna radiata (Shan & Zhao, 2014) and Zea mays (Shan, Liu, Zhao, & Wang, 
2014). 

However, enzymatic responses were visually clone specific, with CCP76 presenting higher activities of SOD and 
APX but lower POX activity; for CCP09, there was a significant increase in POX activity (Figures 5A, 5B, and 
5C). Salt treatment caused changes in leaf SOD activity in both clones. SOD activity increased significantly only 
in the CCP76 clone, with a 24.39% increase at the dose of 75 mM NaCl compared to control (Figure 5A). In 
addition, regarding the stability of H2O2 and the decrease in TBARS, it is suggested that these plants did not 
undergo oxidative stress and that the maintenance of ROS content is due to the action of antioxidants other than 
SOD. Similar results have been reported in species such as Zea mays (Kholova, Sairam, & Meena, 2010) and 
Saccharum officinarum (Satbhai & Naik, 2014). 

APX activity was significantly distinct between clones. The APX content significantly decreased only in CCP76, 
with a decrease of 85.71% with the dose of 100 mm NaCl compared to control (Figure 5B). However, clones 
differed by 81% on average from the doses of 0; 25; 50 and 75 mm NaCl. The effects of salt on the decrease in 
APX activity in plants has been previously reported (Ferreira-Silva et al., 2012; Maia et al., 2012). Ferreira-Silva 
et al. (2012) suggested that this decrease in APX activity of cashew trees is caused by an association to eliminate 
ROS. 

POX activity gradually increased in both clones (Figure 5C). In particular, in the CCP76 clone, the POX activity 
increased by 32.14% from the 25 mM dose, and the CCP09 clone increased by 21% from the treatment of 75 
mM, both compared to control. However, the activity of this enzyme in the shoots was 35% higher on average in 
CCP09 than in CCP76 at all doses. POX has been associated with antioxidant protection against diverse abiotic 
stresses (Abdelgawad, Khalafaallah, & Abdallah, 2014; Laxman et al., 2014) and the control of growth under 
various conditions of stress (Maia et al., 2012). In the present work, the significant increase in POX activity may 
be related, at least in part, to the decrease in accumulation of biomass in cashew tree shoots, given the early 
maturation of tissues caused by increased POX activity. This effect has also been observed in Arabidopsis 
(Mhamdi, Noctor, & Baker, 2012) and cowpea (Maia et al., 2012).  

Taken together, the increased activity of these enzymes indicates antioxidant protective function against salinity 
stress (Harter, Harter, Deuner, Meneghello, & Villela, 2014). However, in the present work, POX apparently 
represents low relevance in the process of maintaining the ROS pool in cashew trees, due to its low 
responsiveness to increased salt dose and subtle relationship with the peroxidation of lipids. 
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