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Abstract 
Tolpyralate, an HPPD (4-hydroxyphenyl-pyruvate dioxygenase) inhibitor, is a relatively new herbicide for weed 
control in corn. Field studies were conducted in 2015 and 2016 to evaluate the effective dose of tolpyralate 
applied alone or mixed with atrazine for weed control in corn. The treatments included seven rates (0, 5, 20, 29, 
40, 50 and 100 g ai ha-1) of tolpyralate applied alone or mixed with a constant rate (560 g ai ha-1) of atrazine. The 
evaluated weed species were common waterhemp (Amaranthus rudis Sauer), common lambsquarters 
(Chenopodium album L.), velvetleaf (Abutilon theophrasti Medik), henbit (Lamium amplexicaule L.) and green 
foxtail (Setaria viridis L.). Overall, POST-application of tolpyralate resulted in 42-100% visual weed control, 
depending on the weed species and tolpyralate doses. Calculated dose of 19-31 g ai ha-1 (ED90) of tolpyralate 
applied alone provided 90% visual control of common waterhemp, common lambsquarters, henbit, and 
velvetleaf. However, addition of atrazine significantly reduced the required dose of tolpyralate to 11-17 g ai ha-1 
for the same level of control of these weed species; suggesting a synergy between the two herbicides.  
Keywords: corn, effective dose, HPPD, herbicide, tolpyralate, weeds 

1. Introduction 
There is an increase in minimum and no-till systems in United States, which in reality depends heavily on 
herbicides as the main tool for weed control in corn (Heap & Duke, 2018). Due to widespread and repeated use 
of herbicides, weed species have developed resistance to most commonly used herbicides. A more recent 
example is the increase weed resistance to glyphosate. Glyphosate alone accounts for at least 35% of 86 million 
liters of herbicides used for pre- and post-emergence weed control in corn due to commercialization of 
glyphosate-tolerant (GT) corn in United States (Livingston et al., 2016). As of 2017, 17 weed species have been 
confirmed resistant to glyphosate across United States, of which at least 6 are present in Nebraska alone (Heap, 
2017).  

Diversifying the use of herbicides by incorporating alternative modes of action for weed control in general and 
for managing herbicide resistant weeds in particular have been widely recommended (Owen, 2016; Lamichhane 
et al., 2017; Osipitan & Dille, 2017). Tolpyralate, an HPPD (4-hydroxyphenyl-pyruvate dioxygenase) inhibitor is 
a relatively new post-emergence herbicide for weed control in corn (Kikugawa et al., 2015; Morris et al., 2018). 
This new active ingredient blocks biosynthesis of carotenoids in plants through inhibition of HPPD enzyme 
resulting in the disruption of photosynthesis followed by death of sensitive plants (Kikugawa et al., 2015). 
Tolpyralate can be used as part of a diverse weed control program with herbicides of other modes of action. For 
example, a tank mix of tolpyralate with commonly used herbicides such as chloro-acetamides, dicamba, 
glyphosate and glufosinate provided excellent weed control (Tonks et al., 2015). In comparison to other 
HPPD-inhibitors, POST-application of tolpyralate provided weed control equal to or better than mesotrione, 
topramazone and tembotrione (Tonks, 2016). Currently, information is lacking on the effectiveness of tolpyralate 
applied alone or in mixture with atrazine for weed control in corn. 

Atrazine has been the cornerstone of chemical weed control in corn for over 40 years. Atrazine has been known 
to improve efficacy of several HPPD-inhibiting herbicides (Abendroth et al., 2006; Kohrt & Sprague, 2017). 
Therefore, the objective of this study was to determine the effective dose of one of the newest HPPD herbicide, 
tolpyralate, applied alone or mixed with atrazine for control of selected weed species in corn. 
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2. Materials and Methods 
2.1 Site Description 

The experiments were conducted in 2015 and 2016 at the Haskell Agricultural Laboratory of the University of 
Nebraska-Lincoln in Concord, NE (42.37o N, 96.68o W). The soil type of the experimental sites was Kennebec 
series silty clay loam (fine-silty, mixed, mesic Cumulic Hapludolls) with 0 to 2% slopes, 2.8% and 4.5% organic 
matter in 2015 and 2016, respectively. The soil pH was 6.3 and 5.8, respectively in 2015 and 2016. The GT corn, 
Pioneer 35F40 was seeded within the first week of June at moderate rate of 61,700 seeds ha-1 with row spacing 
of 76 cm apart in both years. The field tillage practice was no-till in 2015 and conventional-till in 2016. Soybean 
was previously cultivated on the experimental fields, with weed control mainly glyphosate-based. Total rainfall 
from April 1 to October 30 was 67.3 cm in 2015 and 61.0 cm in 2016. Average daily temperature was 23 and 25 
oC in 2015 and 2016, respectively.  

2.2 Experimental Design 

The experiments were established as a randomized complete block design with 14 treatments (Table 1), in 4 
replicates. The treatments include seven rates (0, 5, 20, 29, 40, 50 and 100 g ai ha-1) of tolpyralate applied alone 
or mixed with a constant rate (560 g ai ha-1) of atrazine. A commercial formulation of tolpyralate, ShieldEx 
(tolpyralate 400SC, ISK Biosciences, Concord, OH, USA) has an estimated label rate of 34 g ai ha-1.  

The adjuvants used for all treatments were: High surfactant oil concentrate, HSOC (0.05% v/v, Destiny HC, 
WinField Solutions, Shoreview, MN, USA), and ammonium sulfate, AMS (20 g L-1, DSM Chemicals North 
America Inc., Augusta, GA, USA). Each of the experimental plots was 2 m width by 8 m length with five weed 
species seeded perpendicular to GT corn rows. The seeded weed species included common waterhemp 
(Amaranthus rudis L.), common lambsquarters (Chenopodium album), green foxtail (Setaria viridis), velvetleaf 
(Abutilon theophrasti), and henbit (Lamium amplexicaule) (Azlin Seed Service, Leland, MS, USA). The weed 
species were seeded with push planters 76 cm apart 4 days before planting the GT corn. Treatments were applied 
post-emergence of corn at V3 stage (~3 weeks after planting), while weeds were 9 to 13 cm tall. Herbicide 
applications were made using a CO2-pressurized backpack boom sprayer calibrated to deliver 140 L ha-1 at 276 
kPa through four 110015-VP flat spray nozzle tips (Turbo TeeJet, Spraying systems Co., P.O. Box 7900, 
Wheaton, IL 60187) with a boom length of 2 m.  

2.3 Data Collection 

Visually rated weed control on the scale of 0 (no injury) to 100% (dead plant) were collected at 7, 14, 21, 30 and 
60 days after treatment (DAT). The visual rating was based on symptoms such as bleaching, chlorosis, and 
necrosis compared to untreated control. Weed biomass was also collected within 0.25 m2 quadrant at 60 DAT. 
Corn was harvested from two middle rows of each plot in October each year, utilizing a combine (Almaco SP40, 
Nevada, IA, USA) with yield reported at 15% moisture.  

2.4 Data Analysis 

Analysis of variance was conducted to test for interaction between treatment and year of study using PROC 
GLM procedure in SAS 9.4 software (SAS Institute Inc, 100 SAS Campus Dr, Cary, NC 27513). A 
four-parameter log-logistic regression model was used to analyze the relationship between herbicide rates, and 
visual weed control, weed biomass or corn yield (Knezevic et al., 2007): 

Y	=	C	+ 
D	– C

1	+	 exp B logX	–	logE
	                               (1) 

where, Y was the visual weed control, weed biomass or corn yield, C was the lower limit, D was the upper limit, 
X was the rate of tolpyralate, E was the effective dose (ED50) of tolpyralate that provides a 50% visual control or 
weed reduction, and B is the slope around E.  

The ED90 values (dose that provided 90% weed control or biomass reduction) were calculated for both 
tolpyralate alone and tank-mixed with atrazine and corresponding weed species (Knezevic et al., 2018). The 
ED90 values between the two curves (tolpyralate alone versus mixed with atrazine) were compared for statistical 
differences utilizing standard errors (SE). The regression analyses were conducted using R statistical software, 
version 3.4.1 (R Core Team, 2017).  

3. Results and Discussion 
There was no significant interaction between years and treatments on weeds and corn yield responses, thus, data 
from both years were combined and regression curves fit to 30 and 60 DAT observation dates for each weed 
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