On Estimating Non-standard Discrete Distributions Using Adaptive MCMC Methods


  •  Hatem Baffoun    
  •  Mekki Hajlaoui    
  •  Abdeljelil Farhat    

Abstract

In this paper, we compare empirically the performance of some adaptive MCMC methods, that is, Adaptive Metropolis (AM) algorithm, Single Component Adaptive Metropolis (SCAM) algorithm and Delayed Rejection Adaptive Metropolis (DRAM) algorithm. The context is the simulation of non-standard discrete distributions. The performance criterion used is the precision of the frequency estimator. An application to a Bayesian hypothesis testing problem shows the superiority of the DRAM algorithm over the other considered sampling schemes.


This work is licensed under a Creative Commons Attribution 4.0 License.
  • Issn(Print): 1927-7032
  • Issn(Onlne): 1927-7040
  • Started: 2012
  • Frequency: bimonthly

Journal Metrics

Google-based Impact Factor (2018): 2.7

  • h-index (August 2018): 11
  • i10-index (August 2018): 15
  • h5-index (August 2018): 9
  • h5-median(August 2018): 16

( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )

Contact