
International Journal of Statistics and Probability; Vol. 7, No. 5; September 2018
ISSN 1927-7032 E-ISSN 1927-7040

Published by Canadian Center of Science and Education

A New Flexible Version of the Lomax Distribution with Applications
T. H. M. Abouelmagd1,2

1 Management Information System Department, Taibah, University, Saudi Arabia.
2 Department of Statistics, Mathematics & Insurance, Benha University, Egypt.

Correspondence: T. H. M. Abouelmagd. E-mail: tabouelmagd@taibahu.edu.sa

Received: June 26, 2018 Accepted: July 10, 2018 Online Published: August 27, 2018

doi:10.5539/ijsp.v7n5p120 URL: https://doi.org/10.5539/ijsp.v7n5p120

Abstract

A new version of the Lomax model is introduced and studied. The major justification for the practicality of the new model
is based on the wider use of the Lomax model. We are also motivated to introduce the new model since the density of
the new distribution exhibits various important shapes such as the unimodal, the right skewed and the left skewed. The
new model can be viewed as a mixture of the exponentiated Lomax distribution. It can also be considered as a suitable
model for fitting the symmetric, left skewed, right skewed, and unimodal data sets. The maximum likelihood estimation
method is used to estimate the model parameters. We prove empirically the importance and flexibility of the new model
in modeling two types of aircraft windshield lifetime data sets. The proposed lifetime model is much better than gamma
Lomax, exponentiated Lomax, Lomax and beta Lomax models so the new distribution is a good alternative to these
models in modeling aircraft windshield data.

Keywords: Lomax model, Order Statistics, Maximum Likelihood Estimation, Quantile function, Generating Function,
Moments

1. Introduction

A random variable (rv) W has the Lomax (Lx) distribution with two parameters λ and β if it has cumulative distribution
function (CDF) (for w > 0) given by

Gλ,β (w) = 1 −
(
1 + wβ−1

)−λ
, (1)

where λ > 0 and β > 0 are the shape and scale parameters, respectively. Then the corresponding PDF of (1) is

gλ,β (w) = λβ−1
(
1 + wβ−1

)−(λ+1)
. (2)

In the literature, the Lomax (Lx) or Pareto type II (PaII) model (see Lomax (1954)) was originally pioneered for modeling
business failure data. The Lx distribution has found a wide application in many fields such as biological sciences, ctuarial
science, engineering, size of cities, income and wealth inequality, amedical and reliability modeling. It has been applied
to model data obtained from income and wealth (Harris (1968) and Atkinson and Harrison (1978)), firm size (Corbellini et
al., (2007)), reliability and life testing (Hassan Al-Ghamdi (2009)), Hirschrelated statistics (Glanzel (2008)), for modeling
gauge lengths data (Afify et al., (2015)), for modeling bladder cancer patients data and remission times data (Yousof et
al., (2016) and Yousof et al., (2018)). According to Yousof et al. (2016) the CDF of the Burr X generator (BrX-G) is

Fθ,ξ(x) = 2θ
∫ G(x;ξ)

G(x;ξ)

0
t
[
1 − exp(−t2)

]θ−1
exp

(
−t

2)
dt=

−exp

− (
G(x; ξ)

G(x; ξ)

)2 + 1


θ

. (3)

The PDF of the BrX-G is given by

fθ,ξ(x) = 2θg(x; ξ)G(x; ξ)−3G(x; ξ)exp

− (
G(x; ξ)

G(x; ξ)

)2
−exp

− (
G(x; ξ)

G(x; ξ)

)2 + 1


θ−1

, (4)

where θ is the shape parameter, g(x; ξ) and G(x; ξ) denote the PDF and CDF of the baseline model with parameter vector
ξ and 1 −G(x; ξ) = G(x; ξ). Inserting (1) in to (3) we get the the CDF of the Burr X Lomax (BrXLx) as

Fθ,λ,β(x)=

1 − exp

−
1 −

(
1 + xβ−1

)−λ(
1 + xβ−1)−λ


2


θ

. (5)

The PDF of the BrXLx is given by
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fθ,λ,β(x) = 2θλβ−1
(
1 + xβ−1

)2λ−1
[
1 −

(
1 + xβ−1

)−λ]

×exp

−
1 −

(
1 + xβ−1

)−λ(
1 + xβ−1)−λ


2

1 − exp

−
1 −

(
1 + xβ−1

)−λ(
1 + xβ−1)−λ


2


θ−1

.

(6)

We are motivated to introduce the new model since the PDF of the new distribution exhibits various important shapes such
as the unimodal, the right skewed and the left skewed (see figurue 1). The new model can be viewed as a mixture of the
exponentiated Lx distribution (see Subsection 2.1). It can also be considered as a suitable model for fitting the symmetric,
left skewed, right skewed, and unimodal data sets (see aplications Section). The maximum likelihood estimation method is
used to estimate the model parameters. We prove empirically the importance and flexibility of the new model in modeling
two types of aircraft windshield lifetime data sets. The proposed lifetime model is much better than gamma Lx, beta Lx,
exponentiated Lx and Lx models so the new model is a good alternative to these models in modeling aircraft windshield
data.

Figure 1. Plots of the BrXLx PDF
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Figure 2. Plots of the BrXLx HRF

The reliability function (RF) (Rθ,λ,β(x)), hazard rate function (HRF) (hθ,λ,β(x)), reversed hazard rate function (RHRF)
(rθ,λ,β (x)) and cumulative hazard rate function (CHRF) (Hθ,λ,β(x)) of X are given, respectively, by

Rθ,λ,β(x) = 1 −

1 − exp

−
1 −

(
1 + xβ−1

)−λ(
1 + xβ−1)−λ


2


θ

,

hθ,λ,β(x) = 2θλβ−1
(
1 + xβ−1

)2λ−1
[
1 −

(
1 + xβ−1

)−λ]

×

1 −
1 − exp

−
1 −

(
1 + xβ−1

)−λ(
1 + xβ−1)−λ


2


θ
−1

×exp

−
1 −

(
1 + xβ−1

)−λ(
1 + xβ−1)−λ


2

1 − exp

−
1 −

(
1 + xβ−1

)−λ(
1 + xβ−1)−λ


2


θ−1

,

rθ,λ,β (x) = 2θλβ−1
(
1 + xβ−1

)2λ−1
[
1 −

(
1 + xβ−1

)−λ]

×exp

−
1 −

(
1 + xβ−1

)−λ(
1 + xβ−1)−λ


2

1 − exp

−
1 −

(
1 + xβ−1

)−λ(
1 + xβ−1)−λ


2


−1

and

Hθ,λ,β(x) = −

log

1 −
1 − exp

−
1 −

(
1 + xβ−1

)−λ(
1 + xβ−1)−λ


2


θ
 .
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2. Mathematical and Statistical Properties

2.1 Linear Representation

In this section, we provide a very useful linear representation for the BX-G density function. If |s| < 1 and b > 0 is a real
non-integer, the power series holds

(1 − s)a−1 =

∞∑
h=0

{
(−1)h Γ (a) sh/ [h! Γ (a − h)]

}
. (7)

Applying (7) to (6) we have

f (x) = 2θλβ−1

[
1 −

(
1 + xβ−1

)−λ]
(
1 + xβ−1)1−2λ

∞∑
i=0

(−1)i Γ (θ)
i! Γ (θ − i)

exp

− (1 + i)

1 −
(
1 + xβ−1

)−λ(
1 + xβ−1)−λ


2 . (8)

Applying the power series to the term

exp

− (1 + i)

1 −
(
1 + xβ−1

)−λ(
1 + xβ−1)−λ


2 .

Equation (8) becomes

f (x) = 2θλβ−1
(
1 + xβ−1

)−(λ+1)
∞∑

i, j=0

(−1)i+ j (i + 1) j Γ (θ)
i! j!Γ (θ − i)

[
1 −

(
1 + xβ−1

)−λ]2 j+1

[(
1 + xβ−1)−λ]2 j+3 . (9)

Consider the series expansion

(1 − s)−a =

∞∑
w=0

{swΓ (a + w) / [w!Γ (a)]} |(|s|<1, a>0). (10)

Applying (10) to (9) for the term
[(

1 + xβ−1
)−λ]2 j+3

we get

f (x) = 2θ
∞∑

i, j,k=0

(−1)i+ j (i + 1) j Γ (θ)Γ (2 j + k + 3)
[
2 j + k + 2

]
i! j!k!Γ (θ − i) Γ (2 j + 3)

[
2 j + k + 2

]
× λβ−1

(
1 + xβ−1

)−(λ+1)︸                    ︷︷                    ︸
gλ,β(x)

[
1 −

(
1 + xβ−1

)−λ]2 j+k+1

︸                         ︷︷                         ︸
Gλ,β(x)2 j+k+1

.

This can be written as

f (x) =
∞∑

j,k=0

ζ j,k π(2+2 j+k),λ,β (x), (11)

where

ζ j,k =
2θ (−1) j Γ (θ) Γ (2 j + k + 3)
j!k!Γ (2 j + 3) (2 + 2 j + k)

∞∑
i=0

(−1)i (i + 1) j

i! Γ (θ − i)

and

π(2+2 j+k),λ,β(x) = (2 + 2 j + k)
[
1 −

(
1 + xβ−1

)−λ]2 j+k+1

︸                         ︷︷                         ︸
Gλ,β(x)2 j+k+1

λβ−1
(
1 + xβ−1

)−(λ+1)︸                    ︷︷                    ︸
gλ,β(x)

.

The CDF of the BrXLx , similarly, can also be expressed as a mixture of exp-Lx CDFs as

F(x) =
∞∑

j,k=0

ζ j,k Π(2+2 j+k),λ,β(x), (12)

where

Π(2+2 j+k),λ,β (x) =
[
1 −

(
1 + xβ−1

)−λ]2 j+k+2

is the CDF of the exp-Lx model with power parameter 2 j + k + 2.
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3. Moments and Generating Function

The r−th ordinary moment of X is given by

µ′r = E(Xr) =
∫ ∞

−∞
xr f (x) dx.

Then we obtain

where B(·, ·) is the complete beta function, setting r = 1 in (13), we have the mean of X

E (X) = µ′1 =
∞∑

j,k=0

r∑
w=0

ζ j,k (2 + 2 j + k) β (−1)w
(
1
w

)
B

(
(2 + 2 j + k) , 1 +

w − 1
λ

)
|(λ>1).

Setting r = 2.3 and 4 in (13), we have the 2-nd, 3-rd and the 4-th moments about the origin which can be used to obtain
the central moments.

Table 1. Mean, variance, skewness and kurtosis of the BrXLx distribution with λ = β = 0.5 and different values of θ

θ Mean (X) Variance (X) Skew(X) Kur(X)
0.001 0.0031329 0.00401742 35.22613 1685.786
0.01 0.03090983 0.03913622 11.13911 171.0975
0.1 0.27350260 0.3092640 3.534371 19.81156
1 1.3862270 0.9077153 1.310273 5.486999
5 2.6036300 0.9669048 1.004489 4.735616
10 3.1402080 0.9367001 0.9842919 4.730640
20 3.6686360 0.9007004 0.9865868 4.770655
50 4.3510240 0.8554498 1.002323 4.843780
100 4.8552040 0.8256333 1.016365 4.899162
200 5.3500750 0.7998305 1.029670 4.949684
400 5.8367520 0.7776043 1.041495 4.994194
800 6.3162710 0.7583990 1.051718 5.032806
1000 6.4692710 0.7527710 1.054685 5.044076

We proved, numerically, that the BrXLx model provides better fits than other four competitive extensions of the Lx models
(see Section 6) so the BrXLx model is a exemplary alternative to these mosels. The skewness (Skew(X)) of the BrXLx
distribution can range in the interval (35.23, 0.17), whereas the kurtosis (Kur(X)) of the BrXLx distribution varies only in
the interval (1685.7, 2.61) also the mean of X (Mean (X)) increases as θ increases, the skewness is always positive (see
Table 1 and 2).

Table 2. Mean, variance, skewness and kurtosis of the BrXLx distribution with λ = β = 3.5 and different values of θ

θ Mean (X) Variance (X) Skew(X) Kur(X)
0.001 0.0019254 0.000972489 23.04304 633.3245
0.01 0.0189181 0.009325541 7.190108 63.41473
0.1 0.1612188 0.06369933 1.989041 6.713972
1 0.6706015 0.08385418 0.2087107 2.618290
5 1.016599 0.03950313 0.1743238 3.001886
10 1.128713 0.02890308 0.2642751 3.103622
20 1.224394 0.02192567 0.3539608 3.207029
50 1.332142 0.01602527 0.4566714 3.347865
100 1.403011 0.01306238 0.520966 3.452703
200 1.466852 0.01089229 0.5750721 3.552538
400 1.525029 0.009253848 0.6207442 3.64536
800 1.578552 0.007983825 0.6595533 3.730876
1000 1.594923 0.007634884 0.6708122 3.756873
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The moment generating function (MGF) MX (t) = E
(
et X

)
of X. Clearly, the first one can be derived from equation (10) as

MX (t) =
∞∑

j,k=0

r∑
w=0

ζ j,k
[
tr/r!

]
(2 + 2 j + k) βr (−1)w

(
r
w

)
B

(
(2 + 2 j + k) , 1 +

w − r
λ

)
|(λ>r),

4. Incomplete Moments and Mean Deviations

The s−th incomplete moment, say Is (t), of X can be expressed from (10) as Is (t) =
∫ t
−∞ xs f (x) dx, we have

Is (t) =
∞∑

j,k=0

s∑
w=0

ζ j,k (2 + 2 j + k) βs (−1)w
(

s
w

)
Bt

(
(2 + 2 j + k) , 1 +

w − s
λ

)
|(λ>s). (14)

The mean deviations about the mean

E(|X − E (X) |) = MD(mean) = −2I1(E (X)) + 2E (X) F(E (X))

and about the median
E (|X − Median(X)|) = MD(median) = −2I1 (Median(X)) + E (X)

of X , F(E (X)) is easily calculated from (5) and I1 (t) is the first incomplete moment given by (14) with s = 1. Now, we
provide two ways to determine MD(mean) and MD(median). The I1 (t) can be derived from (14) as

I1 (t) =
∞∑

j,k=0

s∑
w=0

ζ j,k (2 + 2 j + k) β (−1)w
(
1
w

)
Bt

(
(2 + 2 j + k) , 1 +

w − 1
λ

)
|(λ>1).

4.1 Probability Weighted Moments (PWM)

The (s, r)−th PWM of X following the BrXLx model, say ρs,r, is formally defined by

ρs,r = E
{
Xs Fθ,λ,β(x)r

}
=

∫ ∞

−∞
xs Fθ,λ,β(x)r fθ,λ,β(x) dx.

Using (5), (6) we can write

Fθ,λ,β(x)r fθ,λ,β(x) =
∞∑

j,k=0

v j,kπ2 j+k+2 (x) ,

where

v j,k =
2θ (−1) j

(2 + 2 j + k) j!k!
[
Γ (2 j + k + 3) /Γ (2 j + 3)

] ∞∑
i=0

(−1)i (i + 1) j
(
θ (r + 1) − 1

i

)
.

Then, the (s, r)−th PWM of X can be expressed as

ρs,r =

∞∑
j,k=0

s∑
w=0

v j,k (2 + 2 j + k) βs (−1)w
(

s
w

)
B

(
(2 + 2 j + k) , 1 +

w − s
λ

)
|(λ>s).

4.2 Moments of the Reversed Residual Life

The n−th moment of the reversed residual life, say

Υn(t) = E
[
(t − X)n |(X≤t, t>0, n=1,2,...)

]
,

uniquely determines Fθ,λ,β(x). We obtain

Υn(t) =

∫ t
0 (t − x)ndFθ,λ,β(x)

Fθ,λ,β(x)
.

Then, the n−th moment of the reversed residual life of X becomes

Υn(t) = Fθ,λ,β(x)−1
∞∑

j,k=0

n∑
r=0

n∑
w=0

ζ j,k,r,wβ
n
(
n
r

)(
n
w

)
Bt

(
(2 + 2 j + k) , 1 +

w − n
λ

)
|(λ>n).
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where
ζ j,k,r,w = ζ j,k (−1)r tn−r (−1)w (2 + 2 j + k) ,

and

Ba3 (a1; a2) =

a3∫
0

za1−1 (1 − z)a2−1 dz =

is the incomplete beta function.

4.3 Reliability Estimation

The most widely approach used for reliability estimation is the stress-strength model (SSM), this model is used in many
applications of physics and engineering such as strength failure and system collapse. In SSM, we have

R
(
T1,T2|(T2<T1)

)
= Pr(T2 < T1),

is a measure of reliability of the system when it is subjected to random stress T2 and has strength T1. The system fails
if and only if the applied stress is greater than its strength (T1 < T2). Other interpretation can be given as the reliability
R

(
T1,T2|(T2<T1)

)
of a system is the probability that the system is strong enough to overcome the stress imposed on it. Let

T1 and T2 be two independent rvs with BrXLx(θ1, λ, β) and BrXLx(θ2, λ, β) distributions, respectively. The PDF of T1 and
the CDF of T2 can be written from Equations (6) and (5), respectively as

f (1)
θ1,λ,β

(t) = 2θ1
∞∑

i, j,k=0

(−1)i+ j (i + 1) j Γ (2 j + k + 3) Γ (θ1)
i! j!k!Γ (2 j + 3) Γ (θ1 − i)

[
1 −

(
1 + tβ−1

)−λ]2 j+k+1

︸                        ︷︷                        ︸
Gλ,β(t)2J+K+1

λβ−1
(
1 + tβ−1

)−(λ+1)︸                    ︷︷                    ︸
gλ,β(t)

and

F(2)
θ2,λ,β

(t) = 2θ2
∞∑

h,w,m=0

(−1)h+w (h + 1)w Γ (2w + m + 3) Γ (θ2)
h! w!m! (2w + m + 2) Γ (2w + 3)Γ (θ2 − h)

[
1 −

(
1 + tβ−1

)−λ]2 j+k+2

︸                        ︷︷                        ︸
Gλ,β(t)2J+K+2

.

Then, the reliability is defined by

R
(
T1,T2|(T2<T1)

)
=

∫ ∞

0
f (1)
θ2,λ,β

(x) F(2)
θ2,λ,β

(x) dx.

We can write

R
(
T1,T2|(T2<T1)

)
=

∞∑
j,k,w,m=0

Ψ j,k,w,m

∫ ∞

0
π4+2 j+2w+k+m (t) dt,

where

r j,k,w,m = 4θ1θ2
∞∑

j,k,w,m=0

(−1) j+w Γ (2w + m + 3) Γ (2 j + k + 3)
j!k! w!m!Γ (θ2 − h) Γ (2w + 3)Γ (2 j + 3)

∞∑
i,h=0

(−1)i+h (h + 1)w (i + 1) j
(
θ1−1

i

)(
θ2−1

h

)
(2 j + k + 2w + m + 4) (2w + m + 2)

.

and

π4+2 j+2w+k+m (t) = (2 j + k + 2w + m + 4) λβ−1
(
1 + tβ−1

)−(λ+1)︸                    ︷︷                    ︸
gλ,β(x)

[
1 −

(
1 + tβ−1

)−λ]2 j+k+2w+m+3

︸                                ︷︷                                ︸
Gλ,β(x)2 j+k+2w+m+3

.

Thus, the reliability, R
(
T1,T2|(T2<T1)

)
, can be expressed as

R
(
T1,T2|(T2<T1)

)
=

∞∑
j,k,w,m=0

r j,k,w,m.
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4.4 Order Statistics

Let X1, . . . , Xn be a random sample (RS) from the BrXLx distribution and let X1:n, . . . , Xn:n be the corresponding order
statistics. The PDF of i−th order statistic, say Xi:n, can be expressed as

f (i:n)
θ,λ,β (x) = B−1 (i, n − i + 1) fθ,λ,β(x)

n−i∑
j=0

(−1) j
(
n − i

j

)
Fθ,λ,β(x) j+i−1, (15)

using (5), (6) and (15) we get

fθ,λ,β(x)Fθ,λ,β(x) j+i−1 =

∞∑
w,k=0

aw,kπ2w+k+2 (x) ,

where

aw,k =
2θ (−1)w Γ (2w + k + 3)

w!k!Γ (2w + 3) (2w + k + 2)

∞∑
m=0

(−1)m (m + 1)w
(
θ ( j + i) − 1

m

)
.

The PDF of Xi:n can be written as

f (i:n)
θ,λ,β (x) =

∞∑
w,k=0

n−i∑
j=0

(−1) j
(
n − i

j

)
aw,kπ2w+k+2 (x) .

Then, the density function of the BrXLx order statistics is a mixture of eponentiated Lomax (ELx). The q−th moments of
Xi:n can be expressed as

E
(
Xq

i:n

)
=

∞∑
w,k=0

n−i∑
j=0

q∑
m=0

aw,k, j,mβ
q
(
q
m

)
B

(
(2w + k + 2) , 1 +

m − q
λ

)
|(λ>q). (12)

where

aw,k (−1) j+m (2 + 2w + k) B−1 (i, n − i + 1)
(
n − i

j

)(
q
m

)
= aw,k, j,m

4.5 Quantile Spread (QS) Ordering

The QS of the rv U ∼BrXLx(θ, λ, β) having CDF (5) is given by

QS U (ξ) |(ξ∈(0.5,1)) = −F−1(1 − ξ) + F−1(ξ),

which implies
QS U (ξ) = −

[
S −1(ξ)

]
+

[
S −1(1 − ξ)

]
,

where
S (u) = 1 − F(u) and F−1(ξ) = S −1(1 − ξ)

is the survival function. The QS of a any distribution describes how the probability mass is placed symmetrically about
its median and hence it can be used to formalize concepts such as peakedness and tail weight traditionally associated with
the kurtosis. So, it allows use to separate concepts of the kurtosis and peakedness for asymmetric models. Let U1 and U2
be two rvs following the BrXLx model with QS U1 and QS U2 . Then U1 is called smaller than U2 in quantile spread order,
denoted as U1 ≤{QS } U2, if

QS U1 (ξ) |(ξ∈(0.5,1)) ≤ QS U2 (ξ) .

Following are some properties of the QS order which can be obtained.

The order ≤{QS } is a location-free
U1 ≤{QS } U2 if (U1 + a) ≤{QS } U2 |(a∈R).

The order ≤{QS }is dilative
U1 ≤{QS } aU1 whenever a ≥ 1 and U2 ≤{QS } aU2 |(C≥1).

Let FU1 and FU2 be symmetric, then

U1 ≤{QS } U2 if, and only if F−1
U1

(ξ) ≤ F−1
U2

(ξ) |(ξ∈(0.5,1)).
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The order ≤{QS } implies ordering of the mean absolute deviation around the median, say π(Ui)|(i=1,2),

E [|U1 − Median(U1)|] = π(U1)

and
E [|U2 − Median(U2)|] = π(U2),

where
π(U1) ≤{QS } π(U2)⇐ U1 ≤{QS } U2,

finally
U1 ≤{QS } U2 if, and only if − U1 ≤{QS } −U2.

4.6 Entropies

The Rényi entropy is defined by

Iδ (X) |(δ>0 and δ,1) =
log

∫ ∞
−∞ fθ,λ,β(x)δdx

1 − δ .

Using PDF (4), we can write

f (x)δ |(δ>0 and δ,1) =

∞∑
j,k=0

τ j,k Gλ,β(x)δ+2 j+kgλ,β(x)δ,

where

τ j,k =

∞∑
i=0

2δθδ
[
(θδ − δ)i

]
(−1)i+ j Γ (3δ + 2 j + k)

i! j!k!Γ (3δ + 2 j) (δ + i)− j .

Then, the Rényi entropy of the BrXLx is given by

Iδ (X) =
1

1 − δ log


∞∑

j,k=0

τ j,k

∫ ∞

0
Gλ,β(x)δ+2 j+kgλ,β(x)δdx

 ,
The δ-entropy, say Eδ (X), can be obtained as

Eδ (X) =
1
δ − 1

log

1 −
 ∞∑

j,k=0

τ j,k

∫ ∞

−∞
Gλ,β(x)q+2 j+kgλ,β(x)qdx


 .

The Shannon entropy of a rv X, say S E, is defined by

S E = E
{− [

log f (X)
]}
,

follows by taking the limit of Iδ (X) as δ tends to 1.

5. Parameter Estimation

Let x1, . . . , xn be a RS from the BrXLx model with parameters θ and ξ. Let Θ =(θ, λ, β)ᵀ be the 3 × 1 parameter vector.
For determining the maximum likelihood estimation (MLE) of Θ, we have the log-likelihood (Log L) function

ℓ = ℓ(Θ) = n log 2 + n log θ + n log λ − n log β + (2λ − 1)
n∑

i=1

log
(
1 + xiβ

−1
)

−
n∑

i=1

1 −
(
1 + xiβ

−1
)−λ(

1 + xiβ−1)−λ


2

+ (θ − 1)
n∑

i=1

log

1 − exp

−
1 −

(
1 + xiβ

−1
)−λ(

1 + xiβ−1)−λ


2


The components of the score vector, U (Θ) =
(
∂
∂θ
ℓ(Θ), ∂

∂λ
ℓ(Θ), ∂

∂β
ℓ(Θ)

)ᵀ
, are availble if needed, Via setting the nonlinear

system of equations Uθ = 0,Uγ = 0 and Uβ = 0 and solving them simultaneously yields the MLE Θ̂ = (̂θ, λ̂, β̂, )ᵀ. To
solve those equations, it is usually more convenient to use the nonlinear optimization methods such as the quasi-Newton
algorithm to numerically maximize ℓ(Θ).
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6. Applications

In this section, we provide two applications to two real data sets to prove the importance and flexibility of the BrXLx
distribution. We compare the fit of the BrXLx with competitve models namely: ELx model (Gupta et al., 1998), gamma
Lomax (GLx) model (Cordeiro et al., 2015), beta Lomax (BLX) model (Lemonte and Cordeiro, 2013) and Lx model. The
CDFs of these distributions are, respectively, given by (for x > 0 and α, β, λ, a > 0):

Fα,β,λ (x) =

[
1 −

(
1 + xβ−1

)−λ]α
,

Fα,β,λ (x) = Γ
(
α; λ log

[
1 + xβ−1

])
Γ−1 (α) , and

Fα,β,θ,λ (x) =

B[
1−(1+xβ−1)−λ

] (α, θ)

B(α, θ)
,

where Γ ( ·; ·) is the incomplete gamma function.

The first real data set represents the data on failure times of 84 aircraft windshield given in Murthy et al. (2004). The data
are:

4.1671.281,3, 4.035, 2.3000, 3.344, 4.602, 1.7570, 2.324, 2.625, 3.5780, 0.943, 4.121, 1.3030, 2.089, 2.632, 2.135, 2.962,
2.688,2.902, 0.557, 1.9110, 1.568, 3.5950, 1.0700, 4.2550, 1.8990, 2.610, 3.4780, ,1.248, 2.0100, 1.914, 1.505, 2.154,
2.9640, 4.278, 1.506,0.309, 1.2810, 1.9120, 3.9240, 2.190, 3.000, 4.3050, 3.3760, 2.6460, 3.699, 1.4320, 2.097, 2.934,
4.2400, 1.480, 2.1940, 3.103, 4.376, 1.615, 2.2230, 0.0400, 1.866, 2.3850, 3.443, 0.3010, 1.876, 2.4810, 3.467, 4.663,
2.0850, 2.890, 2.038, 2.820, 1.1240, 1.981, 2.661, 3.7790 3.114, 4.449, 1.6190, 2.224, 3.1170, 4.485, 1.652, 2.2290,
3.166, 4.570, 1.652.

The second real data set (recently studied by Tahir et al. (2015)) represents the data on service times of 63 aircraft
windshield given in Murthy et al. (2004). The data are:

0.046, 1.436, 1.0030, 2.137, 3.500, 1.0100, 2.141, 3.6220, 1.085, 2.163, 2.592, 0.140, 1.492, 2.600, 0.150, 1.580, 2.670,
0.248, 1.7190, 2.717, 2.820, 0.389, 1.9200, 0.3130, 1.915, 1.1520, 2.2400, 4.015, 1.183, 2.878, 0.487, 1.9630, 2.950,
0.622, 1.978, 3.0030, 0.2800, 1.794, 2.819, 2.053, 3.1020, 0.952, 2.065, 3.3040, 0.9960, 0.9000, 1.092, 2.183, 3.695,
2.117, 3.483, 3.6650, 2.3410, 4.628, 1.2440, 2.435, 4.806, 1.249, 2.4640, 4.881, 1.262, 2.5430, 5.140.

In order to make a real comparison among the distributions, the estimated Log L values (̂ℓ), Akaike Information Criteria
(AIC), Cramer von Mises (W∗) and Anderson-Darling (A∗) goodness of-fit statistics were calculated for all competitive
models. The statistics W∗ and A∗ were defined in Chen and Balakrishnan (1995) with details. In general, it can be chosen
as the best model which has the smaller values of the W∗, A∗ and AIC statistics and the larger values of (̂ℓ). The below
computations are obtained via the ”maxLik” and ”goftest” sub-routines using the R-software. The analysis results are
listed in Tables 3, 4, 5 and 6. These results show obviously that the new distribution has the lowest W∗ , AIC and A∗

values and has the biggest estimated −ℓ̂ among all the fitted models. Hence, it could be chosen as the best model under
these criteria. From tables 3 and 5, the new model is much better than all competitive (BLx, ELx, GLx and Lx) models so
the new model is a adequate alternative to these models in modeling aircraft windshield data.

Table 3. MLEs, standard erros of the estimates (in parentheses) for the first data set

Model α̂ β̂ θ̂ λ̂

BrXLx 5.237231×e5 8.229086×e−1 1.159193×e5

(0.000) (0.1051083) (5446.8)
BLx 3.6036 118.8374 33.6387 4.8307

(0.6187) (63.7145) (9.2382) (429.0000)
ELx 3.6261 26257.6808 20074.5097

(0.6236) (99.7417) (2041.8263)
GLx 3.5876 37029 52001

(0.5133) (81.1644) (7955)
Lx 131789 51425

(296.1200) (5933.49)
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Table 4. −ℓ̂ and goodness-of-fits statistics for the first data set

Model −ℓ̂ AIC W∗ A∗

BrXLx 127.665 261.3294 0.0764164 0.584438

BLx 138.7177 285.4354 1.4084 0.1680

ELx 141.3997 288.7994 1.7435 0.2194

GLx 138.4042 282.8093 1.3667 0.1619

Lx 164.9900 333.9767 1.3976 0.1665

Figure 3. The fitted PDF and PP plot for the first data set

Table 5. MLEs, standard erros of the estimates (in parentheses) for the second data set

Model α̂ β̂ θ̂ λ̂

BrXLx 0.6467194 0.5987192 1.6211236
(0.0474756) (0.3901375) (0.9591999)

BLx 1.9218 169.5800 31.2595 4.9685
(0.3185) (339.2068) (316.8413) (50.5279)

ELx 1.9145 32881.9 22971.2
(0.3483) (162.2230) (3209.5)

GLx 1.9073 39197.6 35842.4
(0.3214) (151.6530) (6945)

Lx 207019 99269
(301.2370) (11863.5222)
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Figure 4. The fitted PDF and PP plot for the second data set

Table 6. −ℓ̂ and goodness-of-fits statistics for the second data set

Model −ℓ̂ AIC W∗ A∗

BrXLx 98.10294 202.206 0.08763 0.527784

BLx 102.9611 213.9223 1.1336 0.1872

ELx 103.5468 213.9223 1.2331 0.2037

GLx 102.8333 211.6664 1.1121 0.2038

Lx 109.2988 222.5976 1.1265 0.1861

7. Conclusions

In this work, a new lifetime model called the Burr X Lomax (BrXLx) is introduced and studied. The major justification
for introducing and studying the BrXLx model is based on the wider use of the Lx model in applied fields. We are
also motivated to introduce and study the BrXLx model since the density of the BrXLx distribution displays various
important shapes such as the unimodal, the right skewed and the left skewed. The new model can be viewed as a mixture
of the exponentiated Lx distribution. It can also be considered as a convenient model for fitting the symmetric, the left
skewed, the right skewed, and the unimodal data sets. The maximum likelihood estimation method is used to estimate
the BrXLx parameters. We prove empirically the importance and flexibility of the BrXLx in modeling two types of
aircraft windshield lifetime data. The proposed BrXLx lifetime model is much better than gamma Lomax, beta Lomax,
exponentiated Lomax and Lomax models so the exponentiated Lomax, model is a good alternative to these models in
modeling aircraft windshield data.
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