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Abstract 

Impede nonstationarity is vigorous to study performance of time series data and removes long-term components to expose 

any regular short-term regularity. So, we find miscellaneous unit root tests for instance Dickey-Fuller test, Augmented 

Dickey-Fuller plus DF-GLS Tests and identify that almost all unit root tests with the estimated model suffer from sign and 

boundary problems of the parameters to smooth the progress of the non-stationarity problem. In this paper, we usage 

Dickey-Fuller test and impose some limits on the parameter. Our proposed optimized DF test based on error sum of square 

(ESS). Monto Carlo simulation method is used to generate simulated critical values for different sample size. Our 

proposed optimized DF test gives better result than the ordinary DF test with effectiveness, uniformity and power 

properties. Also, optimized DF improves the sign and boundary problems through imposing some limit on error sum of 

squares and capture more nonstationarity of time related data. 

Keywords: Optimized Dickey-Fuller test, Non-stationarity, ESS, Sign and boundary problems 

1. Introduction 

Socio-economic, statistical, time series, econometrics or econometric era are pedestal on a few exact postulations. 

Infringement of theories greatly influences the guess of the parameter over and above test of hypothesis (Akter, 2014). 

Nonstationary test is necessary for analyzing the activities of advance time series research. Usually non-stationarity can 

be tested by different unit root tests for example Dickey-Fuller (DF) test, Augmented Dickey-Fuller (ADF) test, DF-GLS 

Tests, Phillips-Perron (PP) test and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test discussed by Dickey and Fuller,1979; 

Kwiatkowski et al.,1992; Kodde and Palm, 1986). But all the unit root tests as well as the estimated model suffer from 

sign and boundary tribulations of the parameters (Akter and Majumder, 2013). So, appropriate testing procedure plays key 

role at the preliminary arena of any inquiries. In keeping with the assumption of the Dickey-Fuller test, |𝜌| < 1 or 

−2 < 𝛿 < 0 of the time series models, such as  𝑤𝑖 = 𝜌𝑤𝑖−1 + 𝑢𝑖. Any estimated value of 𝛿 < −2 or 𝛿 > 0 may fallout 

in invalid model for making decision regarding nonstationarity (Naznin et al., 2014). To triumph over this condition, it is 

required to impose appropriate limits on the parameters, which is larger than zero. Very diminutive quantity of literatures 

is on this concern such as Majumder and King (1999) proposed one sided tests. Basak et al. (2005) and Rois et al. (2008) 

worked on distance based approach. Aktar and Majumder (2013) developed one sided DF testing procedure. Naznin et al 

(2014) showed the sign and boundary problems and solution by Augmented Dickey-Fuller (ADF) test. Hence the usual 

DF test for testing unit root is not always fit and we need to enlarge constrained parameter estimation on restricted DF test. 

So, we are provoked to expand a suitable testing technique. The principle of this paper is, firstly test the stationarity of 

some observed time series. Secondly, propose the testing approach due to arising some unit root problems. Finally, 

compare the proposed test with the usual test. 
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2. Method 

2.1 Unit Root Tests 

2.1.1 Dickey Fuller Test 

Dickey and Fuller suggested that under the null hypothesis the estimated coefficient of 𝑤𝑡−1 in the model (1) follows the 

𝜏 statistic is known as Dickey-Fuller test. Here, errors are serially uncorrelated. In principle, three specifications can be 

tried, depending on whether the series show a trend or not. Allowing the various possibilities, DF test is estimated in three 

different forms under different null hypothesis for the following models, 

Δ𝑤𝑡 = 𝛿𝑤𝑡−1 + 𝜀𝑡 , Δ𝑤𝑡 = 𝛽1 + 𝛿𝑤𝑡−1 + 𝜀𝑡 , Δ𝑤𝑡 = 𝛽1 + 𝛽2𝑡 + 𝛿𝑤𝑡−1 + 𝜀𝑡                    (1) 

where 𝑡 is the time or trend variable. In each case, 𝐻0: 𝛿 = 0 means the time series is non-stationary and 𝐻1: 𝛿 < 0  

means the time series is stationary. If 𝐻0 is rejected, is 𝑤𝑡 stationary with nonzero mean [
𝛽1

(1−𝜌)
] for the second model 

and 𝑤𝑡 is stationary around a deterministic trend for third model. If the critical absolute value of the 𝜏 statistic 

exceeds the DF or Mackinnon DF absolute critical 𝜏  values, then we don’t reject the hypothesis that the given time 

series is stationary. If it is less than the critical value, the time series is non-stationary (Gujarati, 2003). 

2.1.2 Augmented Dickey-Fuller Test 

Said and Dickey (1984) advised the autoregressive unit root test to accommodate general ARMA(𝑝, 𝑞) models with 

unknown orders and their test is referred to as the Augmented Dickey-Fuller (ADF) test (Said and Dickey, 1984). For 

ADF, tests the null hypothesis, a time series Δ𝑤𝑡 is 𝐼(1) against the alternative is 𝐼(1), assume the dynamics in the data 

have an ARMA structure. The ADF is based on estimating the test regression 

Δ𝑤𝑡 =  0 +  1 + 𝛿𝑤𝑡−1 +∑𝛽𝑖Δ𝑤𝑡−𝑖

 

𝑖 1

+ 𝜀𝑡 

where, 𝑡  is the time or trend and 𝜌 − 1 = 𝛿 , 𝜀𝑡  is a white noise,  0  is an intercept and  1, 𝛿, 𝛽𝑖 are 

coefficients(Gujarati, 2003). 

2.1.3 DF-GLS Tests 

DF-GLS tests perform the customized Dickey–Fuller 𝑡 test proposed by Elliott et al. (1996). Basically, the assessment 

is similar to augmented Dickey–Fuller test and performed by Stata’s dfuller command, except that the time series is 

transformed via GLS regression before carrying out the analysis. Elliott et al. later studies have revealed the unknown 

parameters 𝛽 of the trend function are efficiently estimated under the alternative model with 𝜙̅ = 1 + 𝑐̅/𝑇 i.e., 

𝛽̂𝜙̅ = (𝐷𝜙
′ 𝐷𝜙̅)

−1𝐷𝜙
′ 𝑦𝜙̅   (Dickey and Fuller, 1979). ERS use this insight to derive ADF t-statistic, which they call the 

DF-GLS test. They construct this 𝑡-statistic as follows. Firstly, using the trend parameters 𝛽̂𝜙̅ estimated under the 

alternative, define the detruded data 𝑤𝑡
𝑑 = 𝑤𝑡 − 𝛽̂𝜙̅

′ 𝐷𝑡. Next, using GLS, estimate ADF test regression which omits the 

deterministic terms Δ𝑤𝑡
𝑑 = 𝜋𝑤𝑡−1

𝑑 + ∑ 𝜓𝑗Δ𝑤𝑡−𝑗
𝑑𝑝

𝑗 1 + 𝜀𝑡  and compute the 𝑡-statistic for testing 𝜋 = 0 (Chatfield, 

2003). 

2.2 Modified Dickey-Fuller Test       

Dickey-Fuller test is the most commonly used unit root test for testing stationarity. The Dickey-Fuller test can be related 

to the three models as follows: 

𝑤𝑡 = 𝜌𝑤𝑡−1 + 𝜀𝑡 or Δ𝑤𝑡 = δ𝑤𝑡−1 + 𝜀𝑡                              (2) 

𝑤𝑡 =  + 𝜌𝑤𝑡−1 + 𝜀𝑡 or Δ𝑤𝑡 =  + δ𝑤𝑡−1 + 𝜀𝑡                        (3) 

𝑤𝑡 =  + 𝛽𝑡 + 𝜌𝑤𝑡−1 + 𝜀𝑡 or Δ𝑤𝑡 =  + 𝛽𝑡 + δ𝑤𝑡−1 + 𝜀𝑡                     (4) 

where, 𝑡 is the time or trend variable. For (4), when a time series is trend stationary, then the coefficient of time 𝛽 may be 

either positive (𝛽 > 0 for upward trend) or negative (𝛽 < 0 for downward trend). Hence, the parameter 𝛽 is also 

restricted. We observed that the ignoring of the two restrictions may result in three different problems, (i) estimated 

parameters values will be overestimated, (ii) test statistic based on this estimate may produce loss in power, (iii) estimated 

models may be invalid. So, if 𝛽 is strictly affirmative or pessimistic the subsequent model will be more appropriate. In 
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matrix notation (4) may written as, 

𝑊 = 𝑋𝛽 + 𝜀, 

[

𝑤1
𝑤2
⋮
𝑤𝑇

] = [

1 1 𝑤0
1 2 𝑤1
⋮ ⋮ ⋮
 1 𝑇 𝑤𝑇−1

] [

 
𝛽
𝜌
] + [

𝜀1
𝜀2
⋮
𝜀𝑇

], where 𝑊 = [

𝑤1
𝑤2
⋮
𝑤𝑇

] ,   𝑋 = [

1 1 𝑤0
1 2 𝑤1
⋮ ⋮ ⋮
1 𝑇 𝑤𝑇−1

] , 𝜀 = [

𝜀1
𝜀2
⋮
𝜀𝑇

] , 𝛽 = [

 
𝛽
𝜌
]

′

 

Or, 

Δ𝑊 = 𝑋Γ + 𝜀 

[

Δ𝑤1
Δ𝑤2
⋮
Δ𝑤𝑇

] = [

1 1 𝑤0
1 2 𝑤1
⋮ ⋮ ⋮
 1 𝑇 𝑤𝑇−1

] [

 
𝛽
𝜌
] + [

𝜀1
𝜀2
⋮
𝜀𝑇

], where Δ𝑊 = [

Δ𝑤1
Δ𝑤2
⋮
Δ𝑤𝑇

] , 𝑋 = [

1 1 𝑤0
1 2 𝑤1
⋮ ⋮ ⋮
1 𝑇 𝑤𝑇−1

] , 𝜀 = [

𝜀1
𝜀2
⋮
𝜀𝑇

] , Γ = [

 
𝛽
𝜌
] 

where, we impose some limits on parameters and guess the model using constraint optimization subroutine and 

appropriate modification. Thus, we minimize the ESS by subsequent approach to estimate the model appropriately. 

Minimizing, 𝐸𝑆𝑆 = (𝑊 − 𝑋𝛽)′Σ−1(𝑊 − 𝑋𝛽), |𝜌| < 1, 𝛽 > 0 𝑜𝑟 𝛽 < 0, or  

Minimizing, 𝐸𝑆𝑆 = (𝑊 − 𝑋Γ)′Σ−1(𝑊 − 𝑋Γ),   − 2 < 𝛿 < 0, 𝛽 > 0 𝑜𝑟 𝛽 < 0    

where, 𝛽 > 0 for upward trend or 𝛽 < 0 for downward trend. If we can provide the Hessian or Jacobian, the 

optimization process will be quicker. The Hessian matrix can be gained by differencing ESS successively two times 

relating to the parameters,  

𝜃 = (   𝛽  𝜌), 𝐻(𝜃) =
𝜕2𝐸𝑆𝑆

𝜕𝜃2
=

[
 
 
 
 
 
𝜕2𝐸𝑆𝑆

𝜕𝛼2
𝜕2𝐸𝑆𝑆

𝜕𝛼𝜕𝛽

𝜕2𝐸𝑆𝑆

𝜕𝛼𝜕𝜌

𝜕2𝐸𝑆𝑆

𝜕𝛼𝜕𝛽

𝜕2𝐸𝑆𝑆

𝜕𝛽2
𝜕2𝐸𝑆𝑆

𝜕𝛽𝜕𝜌

𝜕2𝐸𝑆𝑆

𝜕𝛼𝜕𝜌

𝜕2𝐸𝑆𝑆

𝜕𝛽𝜕𝜌

𝜕2𝐸𝑆𝑆

𝜕𝜌2 ]
 
 
 
 
 

,       𝐽(𝜃) =
𝜕𝐸𝑆𝑆

𝜕𝜃
=

[
 
 
 
 
𝜕𝐸𝑆𝑆

𝜕𝛼
𝜕𝐸𝑆𝑆

𝜕𝛽

𝜕𝐸𝑆𝑆

𝜕𝜌 ]
 
 
 
 

 

and the information matrix,  

𝐼(𝜃) = −𝐸[𝐻(𝜃)] = −𝐸

[
 
 
 
 
 
𝜕2𝐸𝑆𝑆

𝜕𝛼2
𝜕2𝐸𝑆𝑆

𝜕𝛼𝜕𝛽

𝜕2𝐸𝑆𝑆

𝜕𝛼𝜕𝜌

𝜕2𝐸𝑆𝑆

𝜕𝛼𝜕𝛽

𝜕2𝐸𝑆𝑆

𝜕𝛽2
𝜕2𝐸𝑆𝑆

𝜕𝛽𝜕𝜌

𝜕2𝐸𝑆𝑆

𝜕𝛼𝜕𝜌

𝜕2𝐸𝑆𝑆

𝜕𝛽𝜕𝜌

𝜕2𝐸𝑆𝑆

𝜕𝜌2 ]
 
 
 
 
 

 where, where, 𝜃 = (   𝛽  𝜌), 

Here, we relate the constraint distance-based approach using information matrix. Shiparo (1988), Kodde and Palm’s 

(1986), Majumder and King (1999) suggests that we should determine the closest point in the maintained hypothesis 

from the unconstrained point. The closest point is the solution of the following distance or optimal function of the 

parameter vector 𝜃̂. ‖𝜃̃ − 𝜃̂‖ = (𝜃̃ − 𝜃̂)
′
𝐼(𝜃)(𝜃̃ − 𝜃̂), 𝜃̃𝜀𝛽. Our proposed 𝜏- statistic is based on the optimized 

estimates as follows, 𝜏̃ =
𝛿̃

𝑆𝐸(𝛿̃)
 where, 𝜏̃ is the optimized 𝜏 statistic and 𝛿, 𝛽 are the optimized estimate of the 

parameters. The 𝜏- statistic follow the weighted mixture 𝜏- distribution (Majumder, and King, 1999). 

3. Results 

To assess non-stationary, we used (1) diverse unit root tests, generating artificial data by Monto-Carlo simulation for early 

investigation, (Gujarati, 2003)  
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Fig 1.Time series plot for random walk model without drift, with drift and with drift and trend (Gujarati, 2003) 

 

The above two figures facilitate there is no trend and more random movement in series 𝑤𝑡. Also, the series depends on 

time, so  𝑤𝑡 is non-stationary. The last one shows a well-built upward trend component which is important for initial 

analysis. While the series is non-stationary because it enlarges with time. Now we consider unit root test of pretend series 

 𝑤𝑡 and found that virtual random walk model with drift, without drift and with drift and trend shows nonstationary 

(Table-1). Since the complete assessment of the calculated 𝜏 is smaller than absolute DF critical values ( = 5%). Once 

more, we take some time series of sell overseas of Bangladesh such as pelt, clothing, Jute etc. and graphically observe the 

time series data and unit root test. 

 

 
Fig 2. Plot for pelt, clothing, jute and additional rudiments from 2002 to 2015 

 

Table 1. Unit root test of pelt, clothing, jute and additional rudiments 

 Model 𝜏 values (5%) DF 

critical values  

Decision 

Pelt 

 

Δ𝑝 𝑖 = 𝛿𝑝 𝑖−1 + 𝑢𝑖 11.67* -1.59 Stationary* 

Δ𝑝 𝑖 = 𝛽1 + 𝛿𝑝 𝑖−1 + 𝑢𝑖 -7.03* -2.90 Stationary* 

Δ𝑝 𝑖 = 𝛽1 + 𝛽2𝑡 + 𝛿𝑝 𝑖−1 + 𝑢𝑖 -4.23* -3.55 Stationary* 

Clothing Δ𝑐 𝑖 = 𝛿𝑐 𝑖−1 + 𝑢𝑖 -8.65* -1.97 Stationary* 

Δ𝑐 𝑖 = 𝛽1 + 𝛿𝑐 𝑖−1 + 𝑢𝑖 11.68* -2.84 Stationary* 

ttt ucltcl  121   -21.67* -3.55 Stationary* 

Jute Δ𝐽 𝑖 = 𝛿𝐽 𝑖−1 + 𝑢𝑖 -1.77* -1.95 Nonstationary* 

Δ𝐽 𝑖 = 𝛽1 + 𝛿𝐽 𝑖−1 + 𝑢𝑖 -10.66* -2.90 Stationary* 

Δ𝐽 𝑖 = 𝛽1 + 𝛽2𝑡 + 𝛿𝐽 𝑖−1 + 𝑢𝑖 -8.45* -3.44 Stationary* 

 Additional 

 rudiments    

Δ 𝑟𝑖 = 𝛿 𝑟𝑖−1 + 𝑢𝑖 19.32* -1.95 Stationary* 

Δ 𝑟𝑖 = 𝛽1 + 𝛿 𝑟𝑖−1 + 𝑢𝑖 -1.26* -2.90 Nonstationary* 

Δ 𝑟𝑖 = 𝛽1 + 𝛽2𝑡 + 𝛿 𝑟𝑖−1 + 𝑢𝑖 -9.20* -3.23 Stationary* 

 

Analyzing the above graphs and tables we perceive that standard testing approach is not suitable for all cases. In several 

cases, calculated 𝜏 is positive which describes the invalidity of the respective model. We also consider co-integration test 

between pelt and clothing as well as jute and additional rudiments. Surprising found that pelt and clothing are not 

co-integrated whereas jute and additional rudiments are co-integrated but some cases the 𝜏 statistic confirm positive 
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value that mislead the model (Table-2). In these models, we then test the hypothesis  𝐻0: 𝛽 = 0, against 𝐻𝑎: 𝛽 > 0, 𝛽 <
0  , and set  = 0.02  and 𝛽 = 0.01. We find that, as sample sizes increases, the generated critical values for any 

sample size, which are approximately same as the critical values in the Dickey-Fuller table (Table-3). Thus, standard unit 

root test shows some of the series stationary and cannot capture the non-stationary problem in the approved manner. The 

incorrect identification may occur due to ignoring the restrictions on the parameters of models. So, estimation procedure 

need restricted estimation taking error term of two non-stationary series based on minimizing the ESS. For restricted 

parameter under alternative, the constraint optimization requires sophisticated optimization subroutine. Hence, we 

introduce Modified Dickey-Fuller Test and estimate the parameters by using newly proposed restricted test based on ESS 

and compares power of the existing Dickey-Fuller tests and the newly proposed restricted test. 

 
Fig 3. Power curve of standard Dickey-Fuller test and Optimized test 

 

We observed from table-5 and figure-3 that the simulated power of the newly proposed test is always higher than the usual 

Dickey-Fuller test and the power of proposed optimized test converges to 1 more rapidly in compare with the usual test.   

4. Conclusion 

Usual Dickey-Fuller test suffer from sign and boundary problems of the parameters. This paper deals with optimized Dickey-Fuller 

test. So, we are wrapping up optimized method based on  𝜏̃ = (𝛿/𝑆𝐸(𝛿)) restricted ESS of Dickey-Fuller test and observe that 

optimized Dickey-Fuller test gives better result than traditional Dickey-Fuller test with effectiveness, uniformity and power 

properties. 
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Appendix  

Table 2. Co-integration test of pelt, clothing, jute and additional rudiments    

Co-integration Model   values DFcritical values (5%) Decision 

Pelt and  

Clothing 

Δ𝑢𝑡 = 𝑢𝑡−1 + 𝜀𝑡                        40.5482               -1.948 Not cointegrated 

Δ𝑢𝑡 =  + 𝑢𝑡−1 + 𝜀𝑡                        1.578 -2.891 Not cointegrated 

Δ𝑢𝑡 =  + 𝛽𝑡 + 𝑢𝑡−1 + 𝜀𝑡                           15.236 -3.455 Not cointegrated 

Jute and Others Δ𝑢𝑡 = 𝑢𝑡−1 + 𝜀𝑡 -1.284 -1.948 Cointegrated 

Δ𝑢𝑡 =  + 𝑢𝑡−1 + 𝜀𝑡   1.578 -2.891 Cointegrated 

Δ𝑢𝑡 =  + 𝛽𝑡 + 𝑢𝑡−1 + 𝜀𝑡 -2.623 -3.455 Cointegrated 

 
Table 3. Simulated 1% and 5% critical Dickey-Fuller 𝜏 values for unit root tests  

Sample 

Size 

                                                            

1% 5 % 1% 5 % 1% 5 % 

       

25 -2.63 -1.95 -3.86 -3.09 -4.55 -3.79 

50 -2.62 -1.97 -3.63 -2.97 -4.14 -3.54 

100 -2.60 -1.97 -3.55 -2.92 -3.59 -2.91 

250 -2.60 -1.96 -3.47 -2.88 -2.69 -2.00 

500 -2.57 -1.94 -3.44 -2.86 -2.48 -1.79 

 -2.55 -1.94 -3.45 -2.52 -2.48 -1.77 

 

Table 4.Generated critical value of Dickey-Fuller table for Sample size 𝑛 = 20,21,… , 1000   

Sample size 𝑡𝑛𝑐 𝑡𝑐 𝑡𝑐𝑡 

 1 % 5 % 1 % 5 % 1 % 5 % 

20 -2.6955 -1.9591 -3.8084 -3.0207 -4.4991 -3.6584 

21 -2.6796 -1.9581 -3.7879 -3.0123 -4.4685 -3.6449 

22 -2.6742 -1.9572 -3.7695 -3.0048 -4.4407 -3.6328 

23 -2.6693 -1.9564 -3.7528 -2.9981 -4.4162 -3.6219 

24 -2.6648 -1.9557 -3.7381 -2.9918 -4.3942 -3.6121 

25 -2.6607 -1.9550 -3.7242 -2.9862 -4.3741 -3.6032 

26 -2.6569 -1.9544 -3.7116 -2.9810 -4.3559 -3.5950 

27 -2.6534 -1.9538 -3.7000 -2.9762 -4.3392 -3.5875 

28 -2.6501 -1.9533 -3.6893 -2.9718 -4.3238 -3.5806 

29 -2.6471 -1.9528 -3.6794 -2.9677 -4.3097 -3.5742 

30 -2.6443 -1.9524 -3.6702 -2.9639 -4.2966 -3.5683 

31 -2.6417 -1.9520 -3.6617 -2.9604 -4.2844 -3.5628 

32 -2.6392 -1.9516 -3.6537 -2.9571 -4.2731 -3.5577 

nct ct ctt


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33 -2.6369 -1.9512 -3.6463 -2.9540 -4.2626 -3.5529 

34 -2.6348 -1.9509 -3.6393 -2.9511 -4.2528 -3.5484 

35 -2.6327 -1.9506 -3.6328 -2.9484 -4.2435 -3.5442 

36 -2.6308 -1.9503 -3.6267 -2.9458 -4.2349 -3.5402 

37 -2.6292 -1.9501 -3.6209 -2.943 -4.2267  -3.5365 

38 -2.6275  -1.9497 -3.6155 -2.9411 -4.2190  -3.5330 

39 -2.6258  -1.9495 -3.6103  -2.9389 -4.2118  -3.5297 

40 -2.6243  -1.9493 -3.6055  -2.9369 -4.2049  -3.5265 

41 -2.6228  -1.9490 -3.6009  -2.9350 -4.1984 -3.5236 

42 -2.6214  -1.9488 -3.5965  -2.9331 -4.1923  -3.5207 

43 -2.6201  -1.9486 -3.5923  -2.9314 -4.1864  -3.5180 

44 -2.6188  -1.9484 -3.5884  -2.9297 -4.1808  -3.5155 

45 -2.6176  -1.9483 -3.5846  -2.9281 -4.1758  -3.5130 

46 -2.6164  -1.9481 -3.5810  -2.9266 -4.1707  -3.5107 

47 -2.6153  -1.9479 -3.5776  -2.9251 -4.1659 -3.5084 

48 -2.6142  -1.9478 -3.5743  -2.9237 -4.1613  -3.5063 

49 -2.6132  -1.9476 -3.5712 -2.9224 -4.1569  -3.5043 

50 -2.6122  -1.9475 -3.5682  -2.9211 -4.1526  -3.5023 

55 -2.6079  -1.9468 -3.5549  -2.9155 -4.1339  -3.4936 

60 -2.6043  -1.9463 -3.5439  -2.9108 -4.1185  -3.4865 

65 -2.6012  -1.9458 -3.5347  -2.9069 -4.1056  -3.4804 

70 -2.5986  -1.9455 -3.5269  -2.9035 -4.0946  -3.4753 

75 -2.5963  -1.9451 -3.5202  -2.9006 -4.0851  -3.4708 

80 -2.5943  -1.9449 -3.5143  -2.8981 -4.0769  -3.4669 

85 -2.5926  -1.9446 -3.5092  -2.8959 -4.0697  -3.4635 

90 -2.5911  -1.9444 -3.5046  -2.8939 -4.0633  -3.4605 

95 -2.5897  -1.9442 -3.5006  -2.8921 -4.0575  -3.4578 

100 -2.5884  -1.9440 -3.4970  -2.8906 -4.0524  -3.4554 

150 -2.5806  -1.9429 -3.4742  -2.8807 -4.0203  -3.4400 

200 -2.5767  -1.9424 -3.4631  -2.8758 -4.0045  -3.4324 

250 -2.5743  -1.9421 -3.4564  -2.8729 -3.9951  -3.4279 

300 -2.5728  -1.9418 -3.4520  -2.8709 -3.9888  -3.4249 

400 -2.5708  -1.9416 -3.4465  -2.8685 -3.9810  -3.4211 

500 -2.5696  -1.9414 -3.4433  -2.8671 -3.9764  -3.4188 

1000 -2.5673  -1.9411 -3.4368  -2.8642 -3.9671  -3.4143 
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Table 5. Calculated power of usual DF test with trend and without trend and proposed optimized test. 

            𝛿 

 

𝛽 Usual DF DF with trend Optimized DF 
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