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Abstract

For square contingency tables with the same ordinal row and column classifications, McCullagh (1977) gave the marginal
cumulative logistic model, which is an extension of the marginal homogeneity (MH) model using the logit transform. The
present paper proposes a different extension of the MH model using the complementary log-log transform. In addition,
the present paper gives the theorem that the MH model is equivalent to the proposed model and the equality of row and
column marginal means holding simultaneously. In data analysis, if the MH model fits the data poorly, the theorem may
be useful for seeing the reason for the poor fit. As example, the occupational status data for British father-son pairs are
analyzed.
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1. Introduction

Consider a square contingency table with the same ordinal row and column classifications. In the data in Table 1 taken
from Bishop, Fienberg & Holland (1975, p.100), each observation is a pair of father’s occupational status with his son’s
occupational status. For such data, statistical independence between the row and column classification generally does not
hold due to concentration of observations on main diagonal cells. Instead of independence, we are interested in whether
there is a structure of symmetry in the table. For example, Stuart (1955) gave the marginal homogeneity (MH) model
which states the row marginal distribution is identical to the column marginal distribution. It is known that the MH model
is expressed as the equality of marginal cumulative probabilities of row and column. For the data in Table 1, the MH model
indicates the probability that a father’s status is i equals the probability that his son’s status is also i for any category i.

In data analysis, when the MH model fits the data poorly, many statisticians may be interested in a comparison of the
two marginal distributions of row and column variables, say X and Y . One of such analyses is inferring whether X tends
to be stochastically less than Y or vice versa. We are especially interested in applying the extension of the MH model,
for example, the marginal cumulative logistic (ML) model (McCullagh, 1977; Agresti, 1984, p.205) based on the logit
transform. The ML model states that one marginal distribution is a location shift of the other marginal distribution on a
logistic scale. If the ML model fits the data poorly, we are then interested in other extension of the MH model based on
the complementary log-log transform rather than logit transform.

Miyamoto, Niibe & Tomizawa (2005) gave the theorem that the MH model holds if and only if the ML model and the
equality of row and column marginal means hold simultaneously. We refer to such relation as a decomposition of model
(i.e., the MH model is decomposed into the ML model and the equality of row and column marginal means). Also, see
Tahata & Tomizawa (2008) and Kurakami, Tahata & Tomizawa (2013) for the decompositions of the MH model. We are
interested in whether the decomposition with the ML model replaced by the proposed model holds or not. When the MH
model fits the data poorly, it may be useful for seeing the reason for the poor fit of it.

In this paper, Section 2 proposes a new model which is an extension of the MH model based on the complementary
log-log transform. Section 3 gives the decomposition of the MH model using the proposed model. Section 4 refers to the
goodness-of-fit test. Section 5 analyzes the father’s and his son’s occupational mobility data in Britain. We show that the
new model and decomposition are useful for inferring relationships between marginal distributions with the example.

27



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 7, No. 4; 2018

2. Models

For an r × r square contingency table with ordered categories, let pi j denote the probability that an observation will fall in
the ith row and jth column of the table for i = 1, . . . , r; j = 1, . . . , r. The MH model is defined by

pi· = p·i (i = 1, . . . , r),

where pi· =
∑r

t=1 pit and p·i =
∑r

s=1 psi (Stuart, 1955; Tahata & Tomizawa, 2014). This model indicates the structure
that satisfies the identity of marginal distributions of row and column. Let FX

i and FY
i denote the marginal cumulative

probability of X and Y , respectively; namely FX
i =

∑i
s=1 ps· and FY

i =
∑i

t=1 p·t for i = 1, . . . , r − 1. The MH model may
also be expressed as

FX
i = FY

i (i = 1, . . . , r − 1).

Let LX
i and LY

i denote the marginal cumulative logit transforms of X and Y , respectively; namely

LX
i = log

(
FX

i

1 − FX
i

)
, LY

i = log
(

FY
i

1 − FY
i

)
(i = 1, . . . , r − 1) .

The MH model may further be expressed as

LX
i = LY

i (i = 1, . . . , r − 1).

The ML model (McCullagh, 1977) is defined by

LX
i = LY

i + δ (i = 1, . . . , r − 1),

where the parameter δ is unspecified. The ML model is one of the extensions of the MH model. This model indicates that
the odds that X is i or below instead of i + 1 or above, is exp(δ) times higher than the odds that Y is i or below instead of
i + 1 or above, for i = 1, . . . , r − 1. Therefore this model states one marginal distribution is a location shift of the other
marginal distribution on a logistic scale.

Let CX
i and CY

i denote the marginal cumulative complementary log-log transforms of X and Y , respectively; namely

CX
i = log

(
− log

(
1 − FX

i

))
, CY

i = log
(
− log

(
1 − FY

i

))
(i = 1, . . . , r − 1) .

The MH model may be expressed as
CX

i = CY
i (i = 1, . . . , r − 1).

We shall consider now the marginal cumulative complementary log-log (MCL) model which is defined by

CX
i = CY

i + log∆ (i = 1, . . . , r − 1) ,

where ∆ is unspecified. This model indicates that the probability that X is i + 1 or above, is equal to the probability that Y
is i + 1 or above to the power of ∆, for i = 1, . . . , r − 1. Thus this model states one marginal distribution is a location shift
of the other marginal distribution on a complementary log-log scale. Note that if ∆ = 1, then we have the MH model. We
see, under the MCL model, ∆ > 1 is equivalent to FX

i > FY
i and ∆ < 1 is equivalent to FX

i < FY
i . Therefore the parameter

∆ in the MCL model reflects the degree of inhomogeneity between {FX
i } and {FY

i }.
3. Decomposition

Consider the specified scores {uk} may be assigned to both rows and columns satisfying u1 ≤ u2 ≤ · · · ≤ ur or u1 ≥ u2 ≥
· · · ≥ ur, where at least one strict inequality holds. Using the function g(k) which is g(k) = uk for k = 1, . . . , r, consider
the marginal mean equality (ME) model defined by

E(g(X)) = E(g(Y)),

where E(g(X)) =
∑r

i=1 g(i)pi· and E(g(Y)) =
∑r

i=1 g(i)p·i.

We now obtain the following theorem.

Theorem 1. The MH model holds if and only if both the MCL and ME models hold.

proof. If the MH model holds, then the MCL and ME models hold. We assume that both the MCL and ME models hold,
and then we show that the MH model holds. For u1 ≤ u2 ≤ · · · ≤ ur (or u1 ≥ u2 ≥ · · · ≥ ur), we have

E(g(X)) =
r∑

i=1

g(i)pi· = g(1) +
r−1∑
k=1

dk

(
1 − FX

k

)
,
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where
dk = g(k + 1) − g(k).

Similarly, we have

E(g(Y)) = g(1) +
r−1∑
k=1

dk

(
1 − FY

k

)
.

Since the ME and MCL models hold, we have

r−1∑
k=1

dk

(
1 − FX

k

)
=

r−1∑
k=1

dk

(
1 − FY

k

)
, (1)

and

r−1∑
k=1

dk

(
1 − FX

k

)
=

r−1∑
k=1

dk

(
1 − FY

k

)∆
. (2)

Equations (1) and (2) lead to
r−1∑
k=1

dk

(
1 − FY

k

)
=

r−1∑
k=1

dk

(
1 − FY

k

)∆
.

Thus we obtain ∆ = 1, i.e., the MH model holds because dk ≥ 0 (or dk ≤ 0) for all k = 1, . . . , r − 1, with at least one of the
{dk} being not equal to zero. The proof is completed.

4. Goodness-of-fit Test

Let ni j denote the observed frequency in the ith row and jth column of the r × r table with n =
∑∑

ni j, and let mi j denote
the corresponding expected frequency for i = 1, . . . , r; j = 1, . . . , r. We assume that a multinomial distribution applies to
the table. The maximum likelihood estimates (MLEs) of expected frequencies under each model can be obtained using the
Newton-Raphson method in the log-likelihood equation (see Appendix for the log-likelihood equation). The likelihood
ratio chi-squared statistic for testing the goodness-of-fit of model M is given by

G2(M) = 2
r∑

i=1

r∑
j=1

ni j log
(

ni j

m̂i j

)
,

where m̂i j is the MLE of mi j under the model. The numbers of degrees of freedom (df) of statistics for testing the
goodness-of-fit of the MH, ML, MCL, and ME models are r − 1, r − 2, r − 2, and 1, respectively. Consider two nested
models, say M1 and M2, such that if model M1 holds, then model M2 holds. For testing the goodness-of-fit of model M1
assuming that model M2 holds, the conditional likelihood ratio statistic is given by G2(M1|M2) = G2(M1) −G2(M2). The
number of df for the conditional test is the difference between the numbers of df for the models M1 and M2.

5. Example

Consider the data in Table 1, relating the father’s and his son’s occupational status categories for a British sample again.
The smaller category number means the higher status. We analyze the data using the new model and decomposition of
the MH model.

Table 2 gives the values of likelihood ratio statistic G2 for testing the goodness-of-fit of models. We set uk = k for
k = 1, . . . , 5. The MH, ML and ME models fit the data poorly (G2(MH) = 32.80 with 4 df; G2(ML) = 9.75 with 3 df;
G2(ME) = 20.28 with 1 df). The MCL model fits the data well (G2(MCL) = 4.26 with 3 df). Using Theorem 1 which is
the decomposition of the MH model into the MCL and ME models, we shall consider the reason why the MH model fits
the data poorly. According to Theorem 1 and Table 2, the poor fit of the MH model is caused by the influence of the lack
of structure of the ME model rather than the MCL model. Note that, using the decomposition of the MH model into the
ML and ME models, it is difficult to consider the reason for the poor fit of the MH model because both the ML and ME
models fit the data poorly.

Since the MCL model which is implied by the MH model fits well, we can test the goodness-of-fit of the MH model under
the assumption that the MCL model holds, i.e., the hypothesis that ∆ = 1 under the assumption. The difference between
the G2 values for the MH and MCL models is G2(MH|MCL) = G2(MH) −G2(MCL) = 28.54 with 4 − 3 = 1 df, and thus
the hypothesis that ∆ = 1 is rejected at the 0.05 significance level. It shows strong evidence of ∆ , 1 in the MCL model.
Therefore the MCL model is preferable to the MH model for the data. Under the MCL model, the MLE of ∆ is ∆̂ = 1.13.
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Namely, under the MCL model, the probability that the status category for father in a pair is i+ 1 or above, is estimated to
be equal to the probability that the status category for son in the pair is i+1 or above to the power of 1.13, for i = 1, . . . , 4.
Since ∆̂ > 1, under the MCL model, F̂X

i > F̂Y
i , where F̂X

i and F̂Y
i are MLEs of the marginal cumulative probabilities of X

and Y for i = 1, . . . , 4. Therefore the distribution of the status category for the son tends to be stochastically higher than
that for his father.
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Table 1. Occupational status for British father-son pairs (Bishop et al., 1975, p.100)

Son’s status
Father’s status 1 2 3 4 5 Total

1 50 45 8 18 8 129
(50.25) (40.88) (7.83) (17.62) (7.65) (124.24)

2 28 174 84 154 55 495
(31.07) (172.82) (90.59) (166.05) (57.80) (518.33)

3 11 78 110 223 96 518
(11.30) (72.29) (110.07) (223.10) (93.79) (510.56)

4 14 150 185 714 447 1510
(14.39) (139.05) (185.16) (714.46) (436.78) (1489.84)

5 3 42 72 320 411 848
(3.16) (39.86) (73.91) (328.43) (411.67) (857.03)

Total 106 489 459 1429 1017 3500
(110.17) (464.90) (467.57) (1449.66) (1007.70) (3500.00)

Note: The parenthesized values are the MLEs of expected frequencies under the MCL model.

Table 2. Likelihood ratio chi-square values G2 for models applied to the data in Table 1

Models df G2

MH 4 32.80∗

ML 3 9.75∗

MCL 3 4.26
ME 1 20.28∗

Note: uk for the ME model is integer score. ∗ means significant at the 0.05 level.

Appendix

We consider the MLEs of the expected frequencies {mi j} under the MCL model. Those under the MH, ML and ME models
can be obtained in the similar manner, although those are omitted here.

To obtain MLEs under the MCL model, we must maximize the Lagrangian

L =
r∑

i=1

r∑
j=1

ni j log pi j − λ
 r∑

i=1

r∑
j=1

pi j − 1

 − r−1∑
i=1

µi

(
log

(
1 − FX

i

)
− ∆ log

(
1 − FY

i

))
with respect to {pi j}, λ, {µi}, and ∆. Setting the partial derivatives of L equal to zero, we obtain the equations

pi j = ni j

n +
r−1∑
k=1

µk

FX
k − I(i ≤ k)

1 − FX
k

−
∆

(
FY

k − I( j ≤ k)
)

1 − FY
k



−1

(i = 1, . . . , r; j = 1, . . . , r) ,

as well as
1 − FX

i =
(
1 − FY

i

)∆
(i = 1, . . . , r − 1) ,

and
r−1∑
i=1

µi log
(
1 − FY

i

)
= 0,

where I(·) is the indicator function. Using the Newton-Raphson method, we can solve the equations with respect to {pi j},
{µi} and ∆. Then we can obtain the MLEs of {mi j} and ∆ under the MCL model.
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