
International Journal of Statistics and Probability; Vol. 7, No. 4; July 2018
ISSN 1927-7032 E-ISSN 1927-7040

Published by Canadian Center of Science and Education

Stress-Strength Reliability Model with The Exponentiated Weibull
Distribution: Inferences and Applications

Fathy H. Eissa1,2

1 College of Science and Arts- Rabigh, King Abdulaziz University, Saudi Arabia
2 Department of Mathematics, Faculty of Science, Damanhour University, Damanhour, Egypt

Correspondence: Fathy H. Eissa, Department of Mathematics, Faculty of Science, Damanhour University, Damanhour,
Egypt.

Received: May 2, 2018 Accepted: May 18, 2018 Online Published: June 26, 2018

doi:10.5539/ijsp.v7n4p78 URL: https://doi.org/10.5539/ijsp.v7n4p78

Abstract

In this paper, we deal with the estimation of the reliability R = P(Y < X) where X, a unit strength, and Y , a unit stress, are
independent exponentiated Weibull random variables. The maximum likelihood and Bayesian methods are used to make
inference about R. We obtain the Baysian estimator using Lindely’s procedure under squared error loss and LINEX loss
functions with gamma prior for the unknown model parameters. The asymptotic and bootstrap confidence intervals are
obtained as well as the credible interval for R is constructed in view of the empirical Bayesian procedure. For illustrative
purposes, analysis of real data sets is presented. Mont Carlo simulations are carried out to compare the performances of
the different estimators.

Keywords: maximum likelihood estimation, stress-strength model, Lindely’s approximation, asymptotic confidence in-
terval, bootstrap intervals, credible interval

1. Introduction

We consider the inference on the reliability R = P(Y < X) of a system where X, a unit strength, and Y , a unit stress, are
independent exponentiated Weibull random variables. This function means that R is the probability that a system is strong
enough to overcome the stress imposed on it. The reliability parameter R is a measure of a system performance. Birnbaum
(1956) who was introduced the main idea of this area of research. The stress-strength model has wide applications in
several fields. For example, in engineering, X can represent the strength of a system structure and Y represents the stress
due to environmental conditions imposed on it. Information about the mechanical reliability of system design can be
obtained prior the production through stress- strength model. This information can decrease the costs of production.
Other example, in biology, R can be a measure of the difference between two populations and has applications in many
areas. When X is a treatment group and Y represents a control group, R refers to a measure of the treatment effects. For
details, see Hauk et al. (2000), Reiser (2000) and Wellek (1993). Due to the practical importance, the estimation of R
has attracted the attention of several authors who considered several distributions such as exponential, normal, Weibull,
generalized exponential etc.. Among of other works deal with inferences about R: Mahdizadeh (2018), Sarhan et al.
(2015), Rao et al. (2016), Jovanovic and Rajic (2014), Raqab et al. (2008), Weerahndi and Johnson (1992), Constantine
et al. (1986), Rezaei et al. (2010). Our aim in this research is to focus on inferences for R = P(Y < X) when X and Y are
two independent but not identical distributed random variables with the exponentiated Weibull (EW) distribution. We use
several estimation methods: classical and Bayesian for point estimation and asymptotic confidence, bootstrap confidence
intervals and credible interval for interval estimation. The performances of Bayes and non-Bayes methods are compared
by analysis of real data sets and Mont Carlo simulations through computed the mean square error of different estimators
and average lengths and coverage probability of different estimating intervals. The exponentiated Weibull random variable
has a cumulative distribution function

F(x) = (1 − e−xα )θ (1)

and the corresponding probability density function (pdf)

f (x) = αθxα−1e−xα (1 − e−xα )θ−1, x > 0, α and θ > 0. (2)

Here α and θ are shape parameters. We use the abbreviation EW(α, θ) to denote the exponentiated Weibull distribution
with density cited above. This distribution has been introduced by Mudholkar and Srivastava (1993). The EW family
includes many important distributions. For examples, for θ = 1, it represents Weibull distribution, for α = 1 , it represents
the exponentiated exponential distribution. For α = 2, it represents the one-parameter Burr type-X distribution as well
as a generalized Rayleigh distribution. Furthermore, The EW distribution has a convenient structure of its distribution
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function that can be used quite adequately and effectively in analyzing several lifetime data. The article is organized
as follows: In Section 2, we consider the maximum likelihood estimation. In Section 3, we derive different confidence
intervals estimation for R. Section 4 proposes Bayesian approximation technique to get the Bayesian estimation for R.
Section 5, adopts empirical Bayesian procedure to obtain a credible interval estimation for R. Analysis of real data sets is
given in Section 6. In Section 7 simulation study is carried out, and Section 8 concludes the paper.

Now, we assume that X follows EW(α1, θ1) and Y follows EW(α2, θ2). Our interesting value is the reliability param-
eter R defined by

R = P(Y < X) = EX(FY (x)).

Using this form with equation (2), we get

R = α1θ1

∫ ∞
0

xα1−1e−xα1 (1 − e−xα1 )(θ1−1)(1 − e−xα2 )θ2−1)dx.

Applying the series expansion (1 − z)a =
∑∞

i=0
(−1)iΓ(a+1)zi

Γ(a+1−i)i! ,on the last two terms of the integrand with some mathematical
manipulations, we get, finally, the form of R as

R = θ1Γ(θ1)Γ(θ2 + 1)
∞∑

i=0

∞∑
j=0

∞∑
k=0

(−1)i+ j+k(i + 1)−α1(k α2
α1
+1)

i! j!k!Γ(θ1 − i)Γ(θ2 + 1 − j)
Γ(k

α2

α1
+ 1). (3)

Alternatively, we assume that α1 = α2 = α and then the reliability parameter R can be obtained as

R =
θ1

(θ1 + θ2)
. (4)

The assumption of this form may be associated with many practical situations. If θ1 = θ2, R = 0.5, that is X and Y are
independent and identically distributed and there is an equal chance that the strength is greater than stress. When θ1 and
θ2 are estimated the value of R is simply estimated using equation (4). We remark that equation (4) does not contain α but
θ1 and θ2 are functions of α and hence R depends on α. However, if α is (estimated) already known, the estimators of θ1
and θ2 are obtained and hence so does the estimator of R.

2. Maximum Likelihood Estimation

Suppose x = {x1, x2, . . . , xn1 } and y = {y1, y2, . . . , yn2 } be two random samples taken from EW(α, θ1) and EW(α, θ2),
respectively. The observed value xi represents the strength of i− th component and observed value yi represents the stress
acting on it. Based on these observed samples, the likelihood function of α, θ1 and θ2 is

L(x, y|α, θ1, θ2) ∝ αn1+n2θn1
1 θ

n2
2 e−(T1+T2) (5)

The log-likelihood function, l, is
l ∝ nlnα + n1lnθ1 + n2lnθ2 − T1 − T2 (6)

where

T1 =

n1∑
i=1

[xαi − (α − 1)lnxi − (θ1 − 1)lnui],

T2 =

n2∑
i=1

[yαi − (α − 1)lnyi − (θ1 − 1)lnvi],

ui = 1 − e−xαi , vi = 1 − e−yαi and n = n1 + n2

and the estimating equations can be obtained as

n
α
− 1
α

(p1 − q1) + θ1 p2 + θ2q2 − (p2 + q2) = 0, (7)

n1

θ1
+

n1∑
i=1

lnui = 0, (8)
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n2

θ2
+

n1∑
i=1

lnvi = 0 (9)

where

p1 = p1(α) =
n1∑
i=1

(xαi − 1)lnxαi , p2 = p2(α) =
n1∑
i=1

u−1
i xαi e−xαi lnxi,

q1 = q1(α) =
n2∑
i=1

(yαi − 1)lnyαi , q2 = q2(α) =
n2∑
i=1

v−1
i yαi e−yαi lnyi.

From equations (8) and (9), we obtain the ML estimators:

θ̂1(α̂) = n1/

n1∑
i=1

lnu−1
i , θ̂2(α̂) = n2/

n2∑
i=1

lnv−1
i (10)

where α̂ can be obtained as the solution of the nonlinear equation

1
α

(n − p1 − q1) = n1 p2(
n1∑
i=1

lnui)−1 + n2q2(
n2∑
i=1

lnvi)−1 + (p2 + q2)

that can be rewritten in the form
g(α) = α (11)

where g(α) = n−p1−q1

p2[1+n1(
∑n1

i=1 lnui)−1]+q2[1+n2(
∑n2

i=1 lnvi)−1]
.

The ML estimator, α̂, of α can be obtained from equation (11) by using a simple iterative technique as g(α(i)) = α(i+1),
where α(i) is the j− th iterate of α̂. The iterations should be finished when the absolute value of (α(i)−α(i+1)) is sufficiently
small. Once α̂ is obtained, we get θ1 and θ2 using equations (10) and hence the MLE of R is given by

R̂M = θ̂1/(θ̂1 + θ̂2) (12)

on the basis of the invariance property of the MLE.

3. Confidence Intervals

Although R̂M can be obtained in explicit form, it is difficult to obtain the exact distribution of it. Hence, we mainly depend
on the asymptotic distribution of R̂M to construct an asymptotic confidence interval (ACI) of R. We also consider two
different parametric bootstrap confidence intervals.

3.1 Asymptotic Confidence Interval

From the asymptotic distribution of γ̂ = (θ̂1, θ̂2, α̂)′ we derive the asymptotic distribution of R̂M and hence we obtain the
ACI of R. The MLE of γ = (θ1, θ2, α)′ is asymptotically normal with mean of true γ and variance-covariance matrix
I−1(γ) = (ai j(γ))−1 where I−1(γ) is the inverse of the Fisher information matrix I(γ) = −E( ∂2l

∂γi∂γ j
), i, j = 1, 2, 3. I(γ) is

consistently estimated by I(γ̂) where γ̂ is the MLE of γ. The variance-covariance matrix can be written in terms of its
elements as the inverse of the matrix

(ai j) =

a11 a12 a13
a21 a22 a23
a31 a32 a33


where the elements ai j for i, j = 1, 2, 3 are the negative of second derivatives of the log-likelihood function given by
equation (6); That is,

a11 =
n1

θ2
1

, a22 =
n2

θ2
2

,

a33 =
1
α

(g1 + g2) − 1
α2 (p1 + q1 − n) − (θ1 − 1)h1 − (θ2 − 1)h2,

a12 = a21 = 0, a13 = a31 = −p2, a23 = a32 = −q2. (13)

where p1, q1, p2, q2 are defined in equation (7),

g1 = g1(α) =
n1∑
i=i

(xαi lnxi + xαi − 1)lnxi,
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g2 = g2(α) =
n2∑
i=i

(yαi lnyi + xαi − 1)lnyi,

h1 = h1(α) =
n1∑
i=i

(1 − φi − xαi )φi(lnxi)2,

h2 = h2(α) =
n2∑
i=i

(1 − ψi − yαi )ψi(lnyi)2,

φi = u−1
i xαi e−xαi and ψi = v−1

i yαi e−yαi .

The MLE is R̂M = θ̂1/(θ̂1+ θ̂2) as given by equation (12), is asymptotically normally distributed with mean R and variance
σ2

R =
∑2
=1
∑2

j=1
∂R
∂θi

∂R
∂θ j

I−1
i j (γ) (Rao 1973) which is consistently estimated to be

σ2
R =

1
J(θ1 + θ2)4 [(a11a33 − a2

13)θ2
1 − 2a13a23θ1θ2 + (a22a33 − a2

23)θ2
2] (14)

where J = a11a22a33 − a11a2
23 − a22a2

13.
Remembring that all the above values of var(R̂M) = σ2

R is computed at the MLE of the parameters θ1, θ2 and α. Therefore,
an asymptotic 100(1 − τ)% confidence interval, ACI, for R can be obtained as

[R̂M + zτ/2σR, R̂M − zτ/2σR]. (15)

where zk is the k− th quantile of the standard normal distribution. A better of such confidence interval may be obtained in
cases of large sample sizes. For small sample sizes, we adopt the bootstrap confidence interval in the following.

3.2 Bootstrap Confidence Intervals

In this section, we propose the use of the following method to generate parametric bootstrap samples, suggested by Efron
and Tibshirani (1998), of R, starting from the given independent random samples x and y obtained from EW(α, θ1) and
EW(α, θ2), respectively. We employ the percentile bootstrap and Student’s t bootstrap confidence intervals for R. The
steps of the method to construct the bootstrap confidence interval for R are summarized in the following steps:

Step 1. Given a random sample x = {x1, x2, . . . , xn1 } and y = {y1, y2, . . . , yn1 }, calculate α̂, θ̂1 and θ̂2.
Step 2. Sample with replacement from the original sample using α, θ1 and θ2 computed in step 1. Generate a bootstrap
sample x∗ = {x∗1, x∗2, . . . , x∗n1

} using α̂ and θ̂1 and similarly generate y∗ = {y∗1, y∗2, . . . , y∗n1
} using α̂ and θ̂2.

Step 3. Calculate the same statistics α̂∗, θ̂1
∗ and θ̂2

∗ as in step 1 using the sample found in step 2. Compute the bootstrap
estimate of R using equation (12), say R̂∗.
Step 4. Repeat steps 2-3, N times, where N ≥ 1000, and put the bootstrap values R̂∗ in ascending order.

(i) Percentile bootstrap (p − boot) confidence interval
Define R̂∗(p) such that ( 1

N )
∑N

j=1 I(R̂∗j ≤ R̂∗(p)) = p where R̂∗(p) is the p percentile of {R̂∗j , j = 1, . . . ,N}, 0 < p < 1 and I(..)
is the indicator function.
The (1 − τ)100% p − boot confidence interval for R is given by

[R̂∗(τ/2), R̂∗(1 − τ/2)]. (16)

(ii) Student’s t bootstrap (t − boot) confidence interval
Consider the sample mean, ¯̂R∗ = (1/N)

∑N
j=1 R̂∗j , and sample variance, Var(R̂∗) = (1/N)

∑N
j=1(R̂∗j −

¯̂R∗)2 of {R̂∗j , j =

1, . . . ,N}. Define statistic T̂ ∗(p) such that (1/N)
∑N

j=1 I(
R̂∗j−R̂M√
Var(R̂∗)

≤ T̂ ∗(p)) = p where T̂ ∗(p) is the p percentile of { R̂∗j−R̂M√
Var(R̂∗)

, j =

i, . . . ,N}. The (1 − τ)100% t − boot confidence interval for R is given by

[R̂M + T̂ ∗(τ/2)
√

Var(R̂∗), R̂M − T̂ ∗(τ/2)
√

Var(R̂∗)]. (17)
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4. Bayesian Estimation of R

In this section, the Bayes estimates of R are obtained. We assume that the parameters θ1, θ2 and α have independent
gamma distributions, priori, each with density function Π(γ) ∝ γa−1e−bγ, γ > 0, for fixed values of a, b > 0 and γ is the
vector space (θ1, θ2, α)′. The joint posterior density function of θ1, θ2 and α can be obtained as

p(θ1, θ2, α|x, y) = k−1αn+a0−1θn1+a1−1
1 θn2+a2−1

2 e−δ1θ1 e−δ2θ2 × e−(b0+z)αe−c+d+z (18)

where δ1 = δ1(α) = b1 + d1, δ2 = δ2(α) = b2 + d2,
z =
∑n1

i=1 ln(xi)−1 +
∑n2

i=1 ln(yi)−1, c = c(α) =
∑n1

i=1 xαi +
∑n2

i=1 yαi ,
d1 = d1(α) =

∑n1
i=1 lnu−1

i , d2 = d2(α) =
∑n2

i=1 lnv−1
i , d = d1 + d2, n = n1 + n2,

ui and vi are given in equation (6) and k−1 is the normalizing constant. The Byes estimator of R under squared error loss
function is given by

R̂B =

∫ ∞
0

∫ ∞
0

∫ ∞
0

R(θ1, θ2)p(θ1, θ2, α|x, y)dαdθ1dθ2. (19)

In view of difficulty to evaluate the posterior expectation in equation (19) analytically, we employed Lindely’s approxi-
mation method to approximate the ratio of integrals in equation (19) and so we can obtain the estimate of R. Depending
on the ML estimators for α, θ1, and θ2, we use lindely’s approximation form expanding about these estimators.
Lindely’s approximation:
Lindely (1980) developed an approximate procedure to evaluate the ratio of two integrals such as that of the posterior
mean of a function w(λ) where

E(W(λ)|t) =
∫

w(λ)eq(λ)dλ/
∫

eq(λ)dλ (20)

where q(λ) = l(λ) + ρ(λ), l(λ) is the logarithm of the likelihood function and ρ(λ) is the logarithm of the prior density
of λ where λ is a vector of parameters, say λ = (λ1, λ2, . . . , λr). According to Lndely’s approximation, E(W(λ)|t) is
approximately estimated by the form

E(W(λ)|t) = [w+ (1/2)
∑

i

∑
j

(wi j + 2wiρi)σi j + (1/2)
∑

i

∑
j

∑
k

∑
l

li jkσi jσklwl]λ=λ̂ + termso f ordern−2orsmaller (21)

where w = w(λ), i, j, k, l = 1, 2, 3, . . . , r, wi = ∂w/∂λi, wi j = ∂
2w/∂λi∂λ j, li jk = ∂

3l/∂λiλ jλk, ρ j = ∂ρ/∂λ j, σi j is the (i, j)th
element in the inverse of the matrix {−li j} and λ̂ = (λ̂1, λ̂2, . . . , λ̂r) is the MLE of λ, viz, all these quantities are evaluated at
the MLE of the parameters. Consider the case of three parameters; that is when λ = (λ1, λ2, λ3).The posterior mean from
equation (21)) is reduced to

ŵB = E(W(λ)|t) = w + (w1δ1 + w2δ2 + w3δ3 + δ4 + δ5) + (1/2)[A(w1σ11 + w2σ12 + w3σ13)+
B(w1σ21 + w2σ22 + w3σ23) +C(w1σ31 + w2σ32 + w3σ33)]

(22)

where

δi =
∑3

j=1 ρ jσi j, i = 1, 2, 3,
δ4 = w12σ12 + w13σ13 + w23σ23, δ5 = (1/2)(w11σ11 + w22σ22 + w33σ33),
A = σ11l111 + 2σ12l121 + 2σ13l131 + 2σ23l231 + σ22l221 + σ33l331,
B = σ11l112 + 2σ12l122 + 2σ13l132 + 2σ23l232 + σ22l222 + σ33l332,
C = σ11l113 + 2σ12l123 + 2σ13l133 + 2σ23l233 + σ22l223 + σ33l333.

In our case, we have λ = (θ1, θ2, α) and w = w(θ1, θ2, α) = R as given in equation (4). To apply Lidely’s form of equation
(22), we first obtain the σi j elements of the inverse of the matrix {−li j}, i, j = 1, 2, 3. From the log-likelihood function
given in equation (5), we can obtain σi j as follows:

σ11 = J−1(a22a33 − a2
23), σ22 = J−1(a11a33 − a2

13), σ12 = J−1(a13a32 − a12a33) = σ21, σ13 = J−1(a12a23 − a13a22) = σ31,
σ23 = J−1(a13a21 − a11a23) = σ32,

where ai j, i, j = 1, 2, 3 are given by equations (13) and J is given in equation (14).

The quantities ρ j and li jk, i = 1, 2, 3 are obtained as

ρ1 = (a1 − 1)θ−1
1 − b1, ρ2 = (a2 − 1)θ−1

2 − b2, ρ3 = (a0 − 1)α−1 − b0,
l111 = 2n1θ

−3
1 , l222 = 2n2θ

−3
2 ,
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l333 = α
−2( f1 + f2 + g1 + g2) − 2α−3(p1 + q1 − n) − 3α−1(k1 + k2) + (θ1 − 1)z1 + (θ2 − 1)z2,

l133 = l331 = h1, l233 = l332 = h2

where f1 =
∑n1

i=1(xαi lnxαi + xαi − 1)lnxi, f2 =
∑n2

i=1(yαi lnyαi + yαi − 1)lnyi,
z1 =
∑n1

1 [2φ3
i + 3(xαi − 1)φ2

i + (x2α
i − 3xαi + 1)φi](lnxi)3,

z2 =
∑n2

1 [2ψ3
i + 3(yαi − 1)ψ2

i + (y2α
i − 3yαi + 1)ψi](lnyi)3,

k1 =
∑n1

1 xαi (lnxi)2, k2 =
∑n2

1 yαi (lnyi)2,
h1, h2, g1, g2, φi, ψi, p1 and q1 are given in equation (13).

Then,

A = σ11l111 + σ33l331, B = σ22l222 + σ33l332, C = 2σ13l133 + 2σ23l233 + σ33l333, δ1 = J−1A1, δ2 = J−1A2, δ3 = J−1A3

where

A1 = (a22a33 − a2
23)[(a1 − 1)θ−1

1 − b1] + a13a32[(a2 − 1)θ−1
2 − b2] + a13a22[(a0 − 1)α−1 − b0],

A2 = a13a32[(a1 − 1)θ−1
1 − b1] + a11a33[(a2 − 1)θ−1

2 − b2] + a11a23[(a0 − 1)α−1 − b0],

A3 = −a13a22[(a1 − 1)θ−1
1 − b1] − a11a23[(a2 − 1)θ−1

2 − b2] + a11a22[(a0 − 1)α−1 − b0].

Moreover, w1 = t1, w1 = t2, w11 = t3, w22 = t4, w12 = t5, where

t1 = θ2(θ1 + θ2)−2, t2 = −θ1(θ1 + θ2)−2, t3 = −2θ2(θ1 + θ2)−3, t4 = 2θ1(θ1 + θ2)−3, t5 = 2θ1(θ1 + θ2)−3 − (θ1 + θ2)−2;
w3 = w33 = w13 = w23 = 0.
Also, δ4 = J−1a13a32t5, δ5 = 2J−1[(a22a33 − a2

23)t3 + (a11a33 − a2
13)t4].

Therefore, The Bayes estimator for R, under squared error loss function and LINEX loss function, using Lindely’s ap-
proximation can be obtained in what follows.

- Under squared error loss function
The Bayes estimator for R, denoted by R̂BS L, under squared error loss function can be evaluated by the form

R̂BS L = R + Φ + Ψ1t1 + Ψ2t2 (23)

where Φ = (1/2)t3σ11 + (1/2)t4σ22 + t5σ12, Ψ1 = δ1 + (1/2)(Aσ11 + Bσ21 +Cσ31),
Ψ2 = δ2 + (1/2)(Aσ12 + Bσ22 +Cσ32), A = σ11l111 + σ33l331, B = σ22l222 + σ33l332,
C = 2σ13l133 + 2σ23l233 + σ33l333.

All these values are evaluated at the MLEs of θ1, θ2 and α.

- Under LINEX loss function

Under LINEX loss function, the Bayes estimator of w = w(θ1, θ2, α) is given by

ŵB = −(1/s)lnE(e−sw|x, y), s , 0.

where
E(e−sw|x, y) =

∫ ∫ ∫
θ1,θ2,α

e−sw p(θ1, θ2, α|x, y)dθ1dθ2dα/
∫ ∫ ∫

θ1,θ2,α
p(θ1, θ2, α|x, y)dθ1dθ2dα.

We apply Lindely’s approximation on this integral form as were used to evaluate equation (20), to obtain

E(e−sw|x, y) = e−sw + Φ + Ψ1w1 + Ψ2w2 (24)

where Φ = (1/2)w11σ11 + (1/2)w22σ22 + w12σ12.

The values of w1, w2, w11, w22 and w12 can be obtained as follows:

w1 = −se−sRt1, w2 = −se−sRt2, w11 = se−sRQ1, w22 = se−sRQ2 and w12 = se−sRQ3 where Q1 = −(0.5)(sθ2θ
−1
1 R + 2)t3,

Q2 = (0.5)(sR − 2)t4 and Q3 = θ
−1
2 t1 + (0.5)sRt3 − t4

The Bayes estimator for R, denoted by R̂BLL, under LINEX loss function can be evaluated by the form

R̂BLL = R − (1/s)ln(1 + sH). (25)

where H = H(θ1, θ2, α) = (0.5)Q1σ11 + (0.5)Q2σ22 + Q3σ12 − Ψ1t1 − Ψ2t2,

Keeping in mind that these values are evaluated at the MLEs of θ1, θ2 and α.

83



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 7, No. 4; 2018

5. Credible Interval

We know that the inference about R depends only on θ1 and θ2. However, the estimators of θ1 and θ2 depend on α, the
estimation of R can be accomplshed as soon as α is estimated and become known. Depending on the ML estimate of
α from the observed samples, we employed the empirical Bayesian procedure suggested by Lindely (1969) and used by
Awad and Gharaf (1986). They had estimated the prior parameters of θ1 and θ2 empirically. From the likelihood function
given in equation (5), one can see that U =

∑n1
1 ln(1 − e−xαi )−1 and V =

∑n2
1 ln(1 − e−yαi )−1 are sufficient statistics for

θ1 and θ2, respectively. We have the assumption that θ1 and θ2 have independent gamma priors as θ1 ∼ G(a1, b1) and
θ2 ∼ G(a2, b2). The empirical Bayes procedure suggests to take a1 = n1 + 1, b1 = U, a2 = n2 + 1, b2 = V as estimated
from the observed samples. When we adopt these empirical priors we get the posterior distributions θ1|x ∼ G(a1, b1) and
θ2|y ∼ G(a2, b2) where a1 = 2n1 + 1, b1 = 2U and a2 = 2n2 + 1, b2 = 2V . Therefore, we can get two independent chi-
squared random variables Q1 and Q2 as Q1 = 4θ1U ∼ χ2(2N1) and Q2 = 4θ2V ∼ χ2(2N2), N1 = 2n1 + 1 and N2 = 2n2 + 1.
The random variable Q = (N2Uθ1/N1Vθ2) ∼ F(2N1, 2N2), i.e. Q is F distributed random variable with 2N1 and 2N2
degrees of freedom. Hence, Q = (N2U/N1V)(R/1 − R) can be used as a pivotal quantity to obtain a 100(1 − τ)% CrI for
R. The lower and upper bounds of this interval can be obtained, respectively, as

L = F(2N1, 2N2; τ/2)
[N2u

N1v
+ F(2N1, 2N2; τ/2)

]−1
,U = F(2N1, 2N2; 1 − τ/2)

[N2u
N1v
+ F(2N1, 2N2; 1 − τ/2)

]−1
. (26)

It is worth to mention that this interval performs very well in terms of its length compared with the confidence intervals
in Section 3, as it is expected, when we apply to the real data as we will see in Section 6.

6. Data Analysis

For illustration purposes, we present a real data analysis of the strength of two types of data: (1) Single carbon fiber data
and (2) Jute fiber data. We apply the estimation methods, presented here, for R.

(1) Single carbon fibers data

We present a real data analysis of the strength data reported by Badar and Priest (1982). The data represent the strength
data measured in GPA (GigaPascal, GPA = KN/mm2, Kilonewten/squared millimeter, that it is used to measure tensile
strength of materials such as nylon, fiber, . . .,etc.). We consider the data of single carbon fibers that were tested under
tension at gauge lengths of 20 mm and 50 mm. The data sets are given as follows:

Data set 1 of length 20 mm: X (n1 = 69)
1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 2.027, 2.055, 2.063,
2.098, 2.140, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.359, 2.382, 2.426, 2.435, 2.478, 2.490, 2.514,
2.535, 2.554, 2.566, 2.570, 2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.773, 2.800, 2.809, 2.818, 2.821,
2.848, 2.880, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 3.433, 3.585.
Data set 2 of length 50 mm: Y (n2 = 65)
1.339, 1.434, 1.549, 1.574, 1.589, 1.613, 1.746, 1.753, 1.764, 1.807, 1.812, 1.840, 1.852, 1.852, 1.862, 1.864, 1.931,
1.952, 1.974, 2.019, 2.051, 2.055, 2.058, 2.088, 2.125, 2.162, 2.171, 2.172, 2.180, 2.194, 2.212, 2.270, 2.272, 2.280,
2.299, 2.308, 2.335, 2.349, 2.356, 2.386, 2.390, 2.410, 2.430, 2.431, 2.458, 2.471, 2.497, 2.514, 2.558, 2.577, 2.593,
2.601, 2.604, 2.620, 2.633, 2.670, 2.682, 2.699, 2.705, 2.735, 2.785, 3.020, 3.042, 3.116, 3.174.

Now we want to see whether the EW distribution can be used to fit these data sets or not. For this purpose we use the
graphical approach called Q-Q plot for each data set. Q-Q plots are commonly used to compare a data set to a theoretical
model. We construct the Q-Q plot by obtaining the points (Q(i), xi), i = 1, 2, ...,m where Q(i) = F−1(i/(m + 1), α̂, θ̂) and
xi is i − th order statistic of the given data, α̂ and θ̂ are the MLE of α and θ. For the given data set 1 and 2, we get the
MLEs α̂1 = 1.4543, θ̂1 = 23.5641 and α̂2 = 1.6242, θ̂2 = 24.5255, respectively. Hence, the shape parameters α̂1 and α̂2
of the distributions of the data sets are not very different. Therefore, the MLE, α̂, of common α is estimated to be 1.5224
and θ̂1 = 27.0128, θ̂2 = 20.2886. To support this claim, we also compute the log-likelhood values, lnL1(x, α̂1, θ̂1) and
lnL2(y, α̂2, θ̂2) (in case of α is not common, α1 , α2), for the distribution of the two data sets, to find lnL1 = −52.3765
and lnL2 = −36.4957. In case of α is common (α1 = α2 = α), we found that lnL1 = −53.0107 and lnL2 = −37.4773.
These support that we cannot reject the null hypothesis that α1 = α2 and hence the claim that the two shape parameters
for the distributions of thses data sets are equal, is justified. Figures 1 and 2 depict the Q-Q plots for both the data set
1 and 2. It is clear that the EW model fits quite well for both given data sets. This conclusion is also supported by the
Kolmogrov-Smirnov (K-S) tests where the K-S statistic values are 0.0843 and 0.0929 with associated p values are 0.6784
and 0.5959, respectively.

Based on the estimates θ̂1 and θ̂2, the ML estimate of R is R̂M = 0.5711 and the bootstrap estimate is R̂Boot = 0.5721.
The ACI, p-boot CI and t-boot CI, with 95% confidence level, for R and their lengths are reported in Table 1. To evaluate
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the Bayes estimates and credible interval, small values (0.001) for the hyper parameters of gamma prior densities were
considered to the vague prior information allow to get meaningful comparison with MLE of R. From the Bayes estimators
formulas in equations (23) and (25), the Bayes estimates of R is R̂BS L = 0.5704 and R̂BLL = 0.5736. We note that the
estimated value of R is greater than 0.5, implying that the carbon fibers with length 20 mm is stronger than carbon fibers
with length 50 mm. The 95% credible interval, CrI, for R, computed by the form given in the equation (26), and its length
are reported in Table 1. Note that the CrI region is highly shorter in length than the corresponding confidence intervals.
For bootstrap methods, the results are based on 5000 repeated samples.

Table 1. Confidence and credible intervals for R (single carbon fiber data)

ACI p-boot CI t-boot CI CrI
(0.4880, 0.6541) (0.4886, 0.6536) (0.4885, 0.6536) (0.4967,0.6142)

0.1661 0.1706 0.1663 0.1167

(2) Jute fibers data

These data sets are presented and studied by Xie et al. (2009). The data represent the breaking strength of Jute fiber at
two different gauge lengths. The data sets are given as follows:

Data set 1 of length 10 mm: X (n1 = 30):

693.73, 704.66, 323.83, 778.17, 123.06, 637.66, 383.43, 151.48, 108.94, 50.16, 671.49, 183.16, 257.44, 727.23, 291.27,
101.15, 376.42, 163.40, 141.38, 700.74, 262.90, 353.24, 422.11, 43.93, 590.48, 212.13, 303.90, 506.60, 530.55, 177.25.

Data set 2 of length 20 mm: Y (n1 = 30):

71.46, 419.02, 284.64, 585.57, 456.60, 113.85, 187.85, 688.16, 662.66, 45.58, 578.62, 756.70, 594.29, 166.49, 99.72,
707.36, 765.14, 187.13, 145.96, 350.70, 547.44, 116.99, 375.81, 581.60, 119.86, 48.01, 200.16, 36.75, 244.53, 83.55.

To check whether the EW distribution can be used or not to fit these data sets, we use the Q-Q plot and K-S tests. The
ML estimators for data sets 1 and 2 are α̂1 = 0.2703 and α̂2 = 0.2703, respectively, and hence the distributions of the
two data sets have the same shape parameters α1 = α2 = α. The ML estimate of the common shape parameter α is
α̂ = 0.2681 and hence θ̂1 = 62.1842, θ̂2 = 48.8899. The K-S statistic values are 0.1420 and 0.1376 with associated p
values are 0.5341 and 0.5737, respectively. Therefore, one cannot reject the hypothesis that the data sets follow the EW
distribution. Figures 3 and 4 show that the EW distribution fits well the tow data sets. For jute fiber data and under the
same considerations for Bayes estimates (cited in case of single carbon fiber data), we get the following estimators of R:
R̂M = 0.5598, R̂Boot = 0.5693, R̂BS L = 0.5582 and R̂BLL = 0.5725. We note that the estimated value of R is greater than
0.5, implying that the Jute fiber with length 10 mm is stronger than Jute fiber with length 20 mm. The ACI, p-boot CI and
t-boot CI as well as CrI and their lengths are reported in Table 2. The results using the bootstrap methods are obtained
over 5000 repeated samples.

Figure 1. Q-Q plot of the fitted EW distribution for data set 1(single carbon fiber data)

Table 2. Confidence and credible intervals for R (jute fiber data)

ACI p-boot CI t-boot CI CrI
(0.4448, 0.6944) (0.4379, 0.6958) (0.4434, 0.6958) (0.4755,0.6491)

0.2496 0.2579 0.2524 0.1736
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Figure 2. Q-Q plot of the fitted EW distribution for data set 2(single carbon fiber data)

Figure 3. Q-Q plot of the fitted EW distribution for data set 1 (jute fiber data)

Figure 4. Q-Q plot of the fitted EW distribution for data set 2 (jute fiber data)

For the two data sets, the MLE and Bayes estimator (under non informative priors) perform quite similarly, while the
length of the credible interval is the shortest compared with the corresponding confidence intervals obtained by other
methods.
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7. Simulation Study

A simulation study is carried out through some simulation experiments to see how the different estimation methods work
for different values of R = P(Y < X) using different sample sizes. We generate a set of 2000 X-samples from the EW(α, θ1)
and another set of 2000 independent Y-samples from the EW(α, θ2). We choose the sample sizes n1= 10, 20, 35 and 50
with combinations of the same values of n2. The parameter values of α is 0.75 (1.5) with different several values of θ1
and θ2 to represent different values of the reliability parameter R to be 0.25, 0.40, 0.50, 0.70, 0.90. From the sample, we
estimate α from equation (11) using a simple iterative algorithm. We employ the estimate of α to evaluate θ1 and θ2 using
equations (10). Consequently, we get the MLE, R̂M of R. For Bayesian estimation under squared error loss and LINEX
loss functions, small values (0.001) for the hyper-parameters of gamma prior densities are considered to get meaningful
comparison with MLE of R. We report the average mean squared errors (MSEs) of different estimators in Tables 3 and
4. We compute the 95% confidence interval based on asymptotic distribution of R̂M and the bootstrap, p-boot and t-boot,
confidence intervals as well as the credible interval. The average lengths and coverage probabilities (CPs) are reported for
95% confidence level in Tables 5 and 6.

From the results in Tables 3 and 4, some of points are observed from this simulation.

- All estimators perform quite well in terms of the MSEs for all sample sizes.

- The ML estimator works well even with small sample size. This show that the coincidence and consistency properties
of all estimators.

- The MSE of R̂BS L is the smallest comparing with that of the other estimators, especially for small sample sizes.

- The MSEs decrease as the sample size increases for all methods and for different values of R.

- For the same size of the samples (say, for samples in sizes (10,10) or in sizes (35,20) at different values of R), the MSEs
increase when 0 < R ≤ 0.5 and decrease when 0.5 < R ≤ 1 as R value increases through these two ranges.

- For small sample sizes, the MSEs of the different estimators in case of n1 , n2 is smaller than the MSEs in case of
n1 = n2.

Examining Tables 5 and 6, it is clear that:

- The average lengths of all intervals decrease as the sample size increases.

- The average lengths of the credible interval are smaller than that of the asymptotic and bootstrap confidence intervals
for all different values of R and different sample sizes.

- For the same size of the samples, at the values of R, 0 < R ≤ 0.5, the increasing values of R the increasing the average
lengths of different intervals and conversely when 0.5 < R ≤ 1.

- For small sample sizes, the average lengths of the different intervals in case of n1 , n2 is smaller than the lengths in case
of n1 = n2.

- The coverage probabilities of the bootstrap confidence intervals are able to preserve the nominal level even for small
sample sizes.

- The coverage probabilities of the asymptotic confidence intervals are slightly lower than the nominal level.

- The coverage probabilities of the credible intervals based on lack information a priori, are lower than the nominal level.

- In brief, the performances of the bootstrap confidence intervals are the best among the intervals taken into account here.
Also, the credible interval is the best in terms of the lengths of the intervals.

Other simulation results were also considered at α = 1.5 for the same sample sizes cited above. The results are not
reported here since they have a similar pattern to the results in Tables 3, 4, 5 and 6.

8. Conclusion

In this article, we studied the Bayesian and non Bayesian Inferences of the stress-strength parameter R = P(X > Y) when
X and Y both follow the exponentiated Weibull distribution. We employed the ML method to estimate the MLE of R.
The exact distribution of R is difficult to obtain and then we resorted to use the asymptotic distribution to compute the
asymptotic confidence interval. Parametric bootstrap procedure is conducted and evaluate the estimate of R as well as
different bootstrap confidence intervals are computed. We derived two Bayes estimates of R based on the independent
gamma priors, using the approximate Lindely’s procedure under squared error loss and LINX loss functions. Also, we
derived the credible interval using the empirical method of Lindely (1969) and Awad and Gharaf (1986). The simulation
results indicate that the Bayesian estimator under squared error loss function works the best even for small sample sizes.
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The credible intervals perform the best in terms of the average lengths of the intervals in both cases of n1 , n2 and n1 = n2
of the samples. The bootstrap confidence intervals are the best in terms of the nominal level taken into account in the
simulation. Using real data, we examine the different estimations over two actual data sets.

Table 3. MSEs for different estimates of R, n1 = n2

R (n1, n2) R̂M R̂Boot R̂BS L R̂BLL

(10,10) 0.0072 0.0074 0.0070 0.0069
0.25 (20,20) 0.0036 0.0038 0.0036 0.0034

(35,35) 0.0019 0.0020 0.0019 0.0019
(10,10) 0.0108 0.0120 0.0095 0.0107

0.40 (20,20) 0.0064 0.0059 0.0060 0.0063
(35,35) 0.0030 0.0033 0.0029 0.0029
(10,10) 0.0125 0.0130 0.0109 0.0129

0.50 (20,20) 0.0061 0.0062 0.0057 0.0062
(35,35) 0.0034 0.0036 0.0033 0.0035
(10,10) 0.0095 0.0096 0.0089 0.0097

0.70 (20,20) 0.0045 0.0046 0.0043 0.0045
(35,35) 0.0025 0.0025 0.0025 0.0025
(10,10) 0.0020 0.0020 0.0021 0.0020

0.90 (20,20) 0.0008 0.0010 0.0009 0.0008
(35,35) 0.0005 0.0006 0.0005 0.0005

Table 4. MSEs for different estimates of R, n1 , n2

R (n1, n2) R̂M R̂Boot R̂BS L R̂BLL

(10,20) 0.0072 0.0066 0.0070 0.0059
0.25 (35,20) 0.0023 0.0027 0.0030 0.0028

(35,50) 0.0018 0.0018 0.0018 0.0018
(10,20) 0.0092 0.0093 0.0083 0.0091

0.40 (35,20) 0.0047 0.0042 0.0045 0.0046
(35,50) 0.0028 0.0029 0.0027 0.0028
(10,20) 0.0081 0.0096 0.0073 0.0083

0.50 (35,20) 0.0049 0.0052 0.0046 0.0050
(35,50) 0.0030 0.0028 0.0029 0.0030
(10,20) 0.0067 0.0071 0.0043 0.0068

0.70 (35,20) 0.0038 0.0034 0.0036 0.0038
(35,50) 0.0018 0.0023 0.0018 0.0019
(10,20) 0.0015 0.0014 0.0018 0.0015

0.90 (35,20) 0.0008 0.0008 0.0008 0.0008
(35,50) 0.0005 0.0005 0.0005 0.0005
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Table 5. Average lengths for different intervals (CPs in brackets), n1 = n2

R (n1, n2) ACI CP p-boot CP t-boot CP CrI CP
(10,10) 0.3221 (0.9045) 0.3363 (0.9571) 0.3599 (0.9695) 0.2526 (0.8780)

0.25 (20,20) 0.2317 (0.9235) 0.2413 (0.9505) 0.2596 (0.9680) 0.1813 (0.9120)
(35,35) 0.1770 (0.9420) 0.1732 (0.9492) 0.1771 (0.9505) 0.1367 (0.9000)
(10,10) 0.4041 (0.9180) 0.4234 (0.9485) 0.4364 (0.9555) 0.3086 (0.9120)

0.40 (20,20) 0.2916 (0.9280) 0.2974 (0.9507) 0.3000 (0.9520) 0.2319 (0.9040)
(35,35) 0.2226 (0.9390) 0.2212 (0.9506) 0.2249 (0.9560) 0.1733 (0.9160)
(10,10) 0.4163 (0.9070) 0.4511 (0.9535) 0.4437 (0.9495) 0.3231 (0.9060)

0.50 (20,20) 0.3025 (0.9340) 0.3044 (0.9512) 0.2966 (0.9400) 0.2344 (0.9161)
(35,35) 0.2311 (0.9380) 0.2319 (0.9532) 0.2323 (0.9505) 0.1790 (0.9240)
(10,10) 0.3588 (0.9051) 0.3761 (0.9537) 0.3632 (0.9395) 0.2816 (0.9000)

0.70 (20,20) 0.2600 (0.9230) 0.2635 (0.9515) 0.2542 (0.9405) 0.2027 (0.8940)
(35,35) 0.1981 (0.9235) 0.1910 (0.9505) 0.1911 (0.9505) 0.1532 (0.9180)
(10,10) 0.1663 (0.9000) 0.1605 (0.9405) 0.1318 (0.9100) 0.1325 (0.8660)

0.90 (20,20) 0.1195 (0.9220) 0.1213 (0.9507) 0.1084 (0.9255) 0.0903 (0.8911)
(35,35) 0.0903 (0.9330) 0.0934 (0.9490) 0.0857 (0.9365) 0.0676 (0.9021)

Table 6. Average lengths for different intervals (CPs in brackets), n1 , n2

R (n1, n2) ACI CP p-boot CP t-boot CP CrI CP
(10,20) 0.2877 (0.9265) 0.3082 (0.9505) 0.3671 (0.9745) 0.2288 (0.8800)

0.25 (35,20) 0.2062 (0.9245) 0.1980 (0.9481) 0.1984 (0.9515) 0.1628 (0.8900)
(35,50) 0.1632 (0.9355) 0.1615 (0.9511) 0.1790 (0.9690) 0.1312 (0.9000)
(10,20) 0.3539 (0.9190) 0.3658 (0.9478) 0.4004 (0.9680) 0.2800 (0.8740)

0.40 (35,20) 0.2595 (0.9320) 0.2566 (0.9496) 0.2459 (0.9375) 0.2055 (0.8820)
(35,50) 0.2056 (0.9360) 0.2129 (0.9506) 0.2225 (0.9600) 0.1623 (0.9040)
(10,20) 0.3652 (0.9120) 0.3721 (0.9477) 0.4103 (0.9700) 0.2813 (0.8920)

0.50 (35,20) 0.2697 (0.9375) 0.2788 (0.9502) 0.2680 (0.9370) 0.2117 (0.8920)
(35,50) 0.2134 (0.9370) 0.2078 (0.9501) 0.2119 (0.9545) 0.1681 (0.9100)
(10,20) 0.3124 (0.8970) 0.3169 (0.9488) 0.3379 (0.9620) 0.2421 (0.8480)

0.70 (35,20) 0.2314 (0.9371) 0.2273 (0.9510) 0.2084 (0.9340) 0.1815 (0.9100)
(35,50) 0.1832 (0.9375) 0.1841 (0.9503) 0.1899 (0.9560) 0.1380 (0.9200)
(10,20) 0.1424 (0.8835) 0.1372 (0.9455) 0.1350 (0.9480) 0.1110 (0.8220)

0.90 (35,20) 0.1050 (0.9385) 0.1072 (0.9485) 0.0879 (0.9000) 0.0832 (0.9000)
(35,50) 0.1462 (0.9230) 0.1534 (0.9490) 0.1148 (0.8840) 0.0647 (0.8540)
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