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Abstract

In this paper, we use the Stein-Chen method to obtain new bounds on Poisson approximation for random sums of inde-
pendent binomial random variables. Some results related to sums of independent binomial distributed random variables
are also investigated. The received results in the present study are more general and sharper than some known results.
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1. Introduction

In recent times, Poisson approximation problem for random sums of discrete random variables has attracted the attention
of mathematicians. Readers who are interested in this problem can refer to (Hung & Giang, 2016b), (Kongudomthrap &
Chaidee, 2012), (Teerapabolarn, 2013), (Teerapabolarn, 2014b), (Vellaisamy & Upadhye, 2009) and (Yannaros, 1991) for
more details. We need to recall some results concerning the bounds in Poisson approximation for random sums of discrete
random variables.

Let Z1,Z2, . . . be a sequence of independent Bernoulli random variables, each with probability of success P(Zi = 1) =
pi = 1 − P(Zi = 0), i = 1, 2, . . ., and let N be a positive integer-valued random variable and independent of Zi’s. Let Uλ∗

be a Poisson random variable with mean λ∗, VN =
N∑

i=1
Zi, λ∗ = E

(
λ∗N

)
and λ∗N =

N∑
i=1

pi. In 1991, Yannaros gave a uniform

bound for the total variation distance between the distributions of VN and Uλ∗ as follows, see (Yannaros, 1991):

dTV (VN ,Uλ∗) ≤ E
∣∣∣λ∗N − λ∗∣∣∣ + E

1 − e−λ
∗
N

λ∗N

N∑
i=1

p2
i

 . (1)

Let X1, X2, . . . , Xn be n independently distributed binomial random variables, each with probabilities

P (Xi = k) = Ck
ri

pk
i (1 − pi)ri−k,

where pi ∈ (0, 1); ri = 1, 2, . . . ; i = 1, 2, . . . n; k = 0, 1, . . . ri; Ck
ri
=

ri!
k! (ri − k)!

.

Suppose that N is a positive integer-valued random variable and independent of Xi’s. Let Uλ be a Poisson random variable

with mean λ, WN =
N∑

i=1
Xi , λN =

N∑
i=1

ri pi and λ = E (λN). In 2014, Teerapabolarn used the Stein-Chen method to

obtain a uniform bound for the total variation distance between the distribution functions of WN and Uλ as follows, see
(Teerapabolarn, 2014a):

dTV (WN ,Uλ) ≤ E

1 − e−λN

λN

N∑
i=1

ri p2
i

 +min

1,

√
2
λe

 E |λN − λ| . (2)

This paper is organized as follows. The second section is a brief introduction to Stein-Chen method. In section 3, we give
main results of this paper, and conclusions of this study are presented in the last section.

In addition, throughout this paper, dTV is denoted the total variation distance, defined by

dTV (X,Y) = sup
A
|P (X ∈ A) − P (Y ∈ A)| ,

where A ⊆ Z+ := {0, 1, 2, . . .}.
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2. Preliminaries

The Stein-Chen method has been dealt with in detail in many articles (the reader is referred to (Chen, 1975) and (Barbour,
Holst & Janson, 1992) for fuller development). The Stein-Chen method can be summarized as follows.

Let us denote by FWn (A) the probability distribution function of a discrete random variable Wn ∈ A and we will be denoted

by Pλn (A) =
∑
k∈A

e−λn
λn

k

k!
the Poisson distribution function (λn > 0), defined on the set A ⊆ Z+. The best known method

for estimating
∆ = sup

x

∣∣∣FWn (A) − Pλn (A)
∣∣∣

is basing on the following arguments (see (Chen, 1975) for more details).

Assume that h is a bounded real-valued function defined on Z+ and

Pλn (h) = e−λn

∞∑
k=0

h (k)
λn

k

k!
.

Consider the function f (.) which is a solution of the Stein’s equation

λn f (w + 1) − w f (w) = h(w) − Pλn (h). (3)

Setting

h(w) = hA(w) =

1, if w ∈ A,
0, if w < A.

Give h = hA and take the expectation of both sides of the equation (3), we have

FWn (A) − Pλn (A) = E
[
λn f (Wn + 1) −Wn f (Wn)

]
. (4)

Thus, the problem of estimating ∆ can be reduced to that of estimating the difference of the expectations

|Eλn f (Wn + 1) − EWn f (Wn)| .

According to Barbour et al. (see (Barbour, Holst & Janson, 1992), for Cw−1 = {0, 1, ...,w − 1}, the solution fA of (3) is of
the form

fA(w) =
{

(w − 1)!λn
−weλn

[
Pλn

(
hA∩Cw−1

) − Pλn (hA) Pλn

(
hCw−1

)]
, ifw ≥ 1,

0, ifw = 0. (5)

Before starting the main results in next section, we also need the following lemmas, which is directly obtained from
(Barbour, Holst & Janson, 1992) and (Teerapabolarn & Wongkasem, 2007).

Lemma 1 Let V fA (w) = fA (w + 1) − fA (w) . Then, for A ⊆ Z+ and k ∈ Z+ \ {0},

sup
w≥k
|V fA (w)| ≤ min

{
λn
−1

(
1 − e−λn

)
,

1
k

}
.

Lemma 2 Let w0 ∈ Z+ and k ∈ Z+ \ {0}, we have

sup
w≥k

∣∣∣V fCw0
(w)

∣∣∣ ≤ λn
−1

(
eλn − 1

)
min

{
1

w0 + 1
,

1
k

}
.

Lemma 3 Let UλN and Uλ denote a Poisson random variable with mean λN and λ, respectively. Then, for A ⊆ Z+, the
total variation distance between the distributions of UλN and Uλ satisfies the following inequality:

dTV
(
UλN ,Uλ

) ≤ min

1,

√
2
eλ

 E |λN − λ| . (6)

3. Main Results

The following lemma is established for proving the main results.
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Lemma 4 Let X1, X2, . . . be a sequence of independent binomial distributed random variables. Setting Wn =
n∑

i=1
Xi and

λn = E(Wn). Then,

E
[
λn f (Wn + 1) −Wn f (Wn)

]
=

n∑
i=1

∑
k≥1

kCk
ri

pk+1
i (1 − pi)ri−kE

[
f (Wi + k + 1) − f (Wi + k)

]
,

where f is a bounded real-valued function defined on Z+.

Proof. We have

E
[
λn f (Wn + 1) −Wn f (Wn)

]
=

n∑
i=1

E
[
ri pi f (Wn + 1) − Xi f (Wn)

]
.

Setting Wi = Wn − Xi,

E
[
ri pi f (Wi + Xi + 1) − Xi f (Wi + Xi)

]
= E

[
E

[
(ri pi f (Wi + Xi + 1) − Xi f (Wi + Xi)) /Xi

]]
= E

[
ri pi f (Wi + 1)

]
P (Xi = 0)

+ E
[
ri pi f (Wi + 2) − f (Wi + 1)

]
P (Xi = 1)

+
∑
k≥2

E
[
ri pi f (Wi + k + 1) − k f (Wi + k)

]
P (Xi = k)

= E
[
(ri piP (Xi = 0) − P (Xi = 1)) f (Wi + 1)

]
+

∑
k≥2

E
[
(ri piP (Xi = k − 1) − kP (Xi = k)) f (Wi + k)

]
= E

[(
ri pi(1 − pi)ri − ri pi(1 − pi)ri−1

)
f (Wi + 1)

]
+

∑
k≥2

E
[(

ri piCk−1
ri

pk−1
i (1 − pi)ri−k+1 − kCk

ri
pk

i (1 − pi)ri−k
)

f (Wi + k)
]

= −E
[
ri p2

i (1 − pi)ri−1 f (Wi + 1)
]

+
∑
k≥2

E
[(

ri piCk−1
ri

pk−1
i (1 − pi)ri−k+1 − (ri − k + 1) Ck−1

ri
pk

i (1 − pi)ri−k
)

f (Wi + k)
]

= −E
[
ri p2

i (1 − pi)ri−1 f (Wi + 1)
]

+
∑
k≥2

E
[(

ri − k + 1
ri

ri piCk−1
ri

pk−1
i (1 − pi)ri−k+1 − (ri − k + 1) Ck−1

ri
pk

i (1 − pi)ri−k
)

f (Wi + k)
]

−
∑
k≥2

E
[(

ri − k + 1
ri

− 1
)

ri piCk−1
ri

pk−1
i (1 − pi)ri−k+1 f (Wi + k)

]
= −E

[
ri p2

i (1 − pi)ri−1 f (Wi + 1)
]

−
∑
k≥2

E
[
(ri − k + 1) Ck−1

ri
pk+1

i (1 − pi)ri−k f (Wi + k)
]

−
∑
k≥2

E
[(

ri − k
ri
− 1

)
riCk

ri
pk+1

i (1 − pi)ri−k f (Wi + k + 1)
]

+ E
[
ri p2

i (1 − pi)ri−1 f (Wi + 2)
]

= ri p2
i (1 − pi)ri−1E

[
f (Wi + 2) − f (Wi + 1)

]
+

∑
k≥2

kCk
ri

pk+1
i (1 − pi)ri−kE

[
f (Wi + k + 1) − f (Wi + k)

]
=

∑
k≥1

kCk
ri

pk+1
i (1 − pi)ri−kE

[
f (Wi + k + 1) − f (Wi + k)

]
.

This finishes the proof. �
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The following theorems present non-uniform and uniform bounds for the distance between the distribution functions of
WN and Uλ, which are the expected results.

3.1 A Uniform Bound on Poisson Approximation for Random Sums of Independent Binomial Random Variables

Theorem 1 For A ⊆ Z+, we have

dTV (WN ,Uλ) ≤ E

 N∑
i=1

min
{
λ−1

N

(
1 − e−λN

)
ri,

1 − (1 − pi)ri

pi

}
p2

i


+min

1,

√
2
λe

 E |λN − λ| .
(7)

Proof. Let f = fA be defined as in (5) and applying (4), we have∣∣∣∣∣∣∣P(Wn ∈ A) −
∑
k∈A

λk
ne−λn

k!

∣∣∣∣∣∣∣ = |E[λn f (Wn + 1) −Wn f (Wn)]| . (8)

Taking account of Lemma 4 and Lemma 1, it follows that∣∣∣E [
ri pi f (Wn + 1) − Xi f (Wn)

]∣∣∣
≤

∑
k≥1

kCk
ri

pk+1
i (1 − pi)ri−kE | f (Wi + k + 1) − f (Wi + k)|

≤
∑
k≥1

kCk
ri

pk+1
i (1 − pi)ri−k sup

w≥k
|V f (w)|

≤
∑
k≥1

kCk
ri

pk+1
i (1 − pi)ri−k min

{
1 − e−λn

λn
,

1
k

}

= min

1 − e−λn

λn
pi

∑
k≥1

kCk
ri

pk
i (1 − pi)ri−k, pi

∑
k≥1

Ck
ri

pk
i (1 − pi)ri−k


= min

1 − e−λn

λn
pi

∑
k≥1

kP (Xi = k), pi

∑
k≥0

P (Xi = k) − (1 − pi)ri




= min
{

1 − e−λn

λn
piE (Xi) , pi (1 − (1 − pi)ri )

}
.

Thus, ∣∣∣E [
ri pi f (Wn + 1) − Xi f (Wn)

]∣∣∣ ≤ min
{
λ−1

n

(
1 − e−λn

)
ri,

1 − (1 − pi)ri

pi

}
p2

i . (9)

Combining (8) with (9), gives

dTV
(
Wn,Uλn

) ≤ n∑
i=1

min
{
λ−1

n

(
1 − e−λn

)
ri,

1 − (1 − pi)ri

pi

}
p2

i . (10)

From Lemma 3 and (10), it follows the fact that

dTV (WN ,Uλ) =
∞∑

n=1

P (N = n) dTV (Wn,Uλ)

≤
∞∑

n=1

P (N = n)
[
dTV

(
Wn,Uλn

)
+ dTV

(
Uλn ,Uλ

)]
=

∞∑
n=1

P (N = n) dTV
(
Wn,Uλn

)
+ dTV

(
UλN ,Uλ

)
≤
∞∑

n=1

P (N = n)
n∑

i=1

min
{
λ−1

n

(
1 − e−λn

)
ri,

1 − (1 − pi)ri

pi

}
p2

i

+min

1,

√
2
λe

 E |λN − λ|
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≤ E

 N∑
i=1

min
{
λ−1

N

(
1 − e−λN

)
ri,

1 − (1 − pi)ri

pi

}
p2

i


+min

1,

√
2
λe

 E |λN − λ| .

This finishes the proof. �

Remark 1 For r1 = r2 = ... = rn = 1, we have a uniform bound on Poisson approximation for the random sums of
independent Bernoulli random variables:

dTV (VN ,Uλ∗) ≤ E

λ∗−1
N

(
1 − e−λ

∗
N
) N∑

i=1

p2
i

 +min

1,

√
2
λ∗e

 E
∣∣∣λ∗N − λ∗∣∣∣ . (11)

Remark 2 Let us consider:

min

1,

√
2
λ∗e

 ≤ 1

and

min
{

1 − eλN

λN
ri,

1 − (1 − pi)ri

pi

}
p2

i ≤
1 − eλN

λN
ri p2

i .

Thus, the bounds in (7) and (11) are sharper than the bounds in (2) and (1), respectively.

Corollary 1 For N = n ∈ Z+ is fixed, then λ = λn =
n∑

i=1
ri pi and

dTV
(
Wn,Uλn

) ≤ n∑
i=1

min
{
λ−1

n

(
1 − e−λn

)
ri,

1 − (1 − pi)ri

pi

}
p2

i . (12)

Remark 3 The result (12) is a uniform bound on Poisson approximation for sums of independent binomial random
variables. This bound is sharper than those reported in (Teerapabolarn, 2014a).

3.2 A Non-uniform Bound on Poisson Approximation for Random Sums of Independent Binomial Random Variables

Theorem 2 For w0 ∈ Z+, we have

|P(WN ≤ w0) − P (Uλ ≤ w0)| ≤ min

 2λ
w0 + 1

,min

1,

√
2
eλ

 E |λN − λ|


+ E

 N∑
i=1

λN
−1

(
1 − e−λN

)
min

{
eλN ri

(w0 + 1)
,

(1 − (1 − pi)ri ) eλN

pi

}
p2

i

 .
(13)

Proof. For Cw = {0, ...,w} and w0 ∈ Z+, let hw0 : Z+ → R such that

hCw0
(w) =

{
1 if w ≤ w0,
0 if w > w0.

According to Barbour et al. (see (Barbour, Holst & Janson, 1992) on p.7), the solution fCw0
(w) of (3) is expressed in the

form of

fCw0
(w) =


(w − 1)!λn

−weλn
[
Pλn

(
hCw0

)
Pλn

(
1 − hCw−1

)]
, if w0 < w,

(w − 1)!λn
−weλn

[
Pλn

(
hCw−1

)
Pλn

(
1 − hCw0

)]
, if w0 ≥ w,

0 , if w = 0.

Given f = fCw0
and h = hCw0

, the Stein’s equation

hCw0
(w) −

∑
k≤w0

e−λn
λk

n

k!
= λn f (w + 1) − w f (w) .
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Taking expectations of both sides, and applying Lemma 2 and Lemma 4, we have∣∣∣P(Wn ≤ w0) − P
(
Uλn ≤ w0

)∣∣∣
≤

n∑
i=1

∑
k≥1

kCk
r pk+1

i (1 − pi)ri−kE | f (Wi + k + 1) − f (Wi + k)|


≤
n∑

i=1

∑
k≥1

kCk
r pk+1

i (1 − pi)ri−kλ−1
n

(
eλn − 1

)
min

{
1

w0 + 1
,

1
k

}
=

n∑
i=1

λ−1
n

(
eλn − 1

)
min


pi

∑
k≥1

kP (Xi = k)

w0 + 1
, pi

∑
k≥1

P (Xi = k)


= λ−1

n

(
eλn − 1

) n∑
i=1

min
{

ri

w0 + 1
,

1 − (1 − pi)ri

pi

}
p2

i .

Thus, ∣∣∣P(Wn ≤ w0) − P
(
Uλn ≤ w0

)∣∣∣ ≤ λ−1
n

(
eλn − 1

) n∑
i=1

min
{

ri

w0 + 1
,

1 − (1 − pi)ri

pi

}
p2

i . (14)

In addition, by using Lemma 3, Teerapabolarn showed that (see (Teerapabolarn, 2013) for more details):

∣∣∣P (
UλN ≤ w0

) − P (Uλ ≤ w0)
∣∣∣ ≤ min

 2λ
w0 + 1

,min

1,

√
2
eλ

 E |λN − λ|
 . (15)

Combining (14) and (15) gives

|P (WN ≤ w0) − P (Uλ ≤ w0)|

≤
∞∑

n=0

P (N = n) |P (Wn ≤ w0) − P (Uλ ≤ w0)|

≤
∞∑

n=0

P (N = n)
∣∣∣P (Wn ≤ w0) − P

(
Uλn ≤ w0

)∣∣∣
+

∣∣∣P (
UλN ≤ w0

) − P (Uλ ≤ w0)
∣∣∣

≤
∞∑

n=0

P (N = n)
1 − e−λn

λn

n∑
i=1

min
{

rieλn

w0 + 1
,

(1 − (1 − pi)ri ) eλn

pi

}
p2

i

+min

 2λ
w0 + 1

,min

1,

√
2
eλ

 E |λN − λ|


≤ E

1 − e−λN

λN

N∑
i=1

min
{

rieλN

w0 + 1
,

(1 − (1 − pi)ri ) eλN

pi

}
p2

i


+min

 2λ
w0 + 1

,min

1,

√
2
eλ

 E |λN − λ|
 .

This finishes the proof. �

Remark 4 For r1 = r2 = ... = rn = 1, we have a non-uniform bound on Poisson approximation for the random sums of
independent Bernoulli random variables:

|P(VN ≤ w0) − P (Uλ∗ ≤ w0)| ≤ min

 2λ∗

w0 + 1
,min

1,

√
2

eλ∗

 E
∣∣∣λ∗N − λ∗∣∣∣


+ E


(
eλ
∗
N − 1

)
(w0 + 1) λ∗N

N∑
i=1

p2
i

 .
(16)
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Corollary 2 For N = n ∈ Z+ is fixed, then λ = λn =
n∑

i=1
ri pi and

∣∣∣P(Wn ≤ w0) − P
(
Uλn ≤ w0

)∣∣∣ ≤ λ−1
n

(
eλn − 1

) n∑
i=1

min
{

ri

w0 + 1
,

1 − (1 − pi)ri

pi

}
p2

i . (17)

Remark 5 The result (17) is a non-uniform bound on Poisson approximation for sums of independent binomial random
variables.

4. Conclusions

We conclude this paper with the following comments. Bounds for the distance between the distribution function of ran-
dom sums of independent binomial random variables and an appropriate Poisson distribution function were obtained.
The received results in this paper are sharper than those reported in (Teerapabolarn, 2014a), (Teerapabolarn, 2014b), and
(Yannaros, 1991). Moreover, non-uniform bounds on Poisson approximation for sums (and random sums) of independent
binomial random variables are given. The results will be more interesting and valuable if we discuss Poisson approxi-
mation for random sums of dependent binomial random variables. We shall continue studying this matter in our future
research.
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