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Abstract

For two-way contingency tables with ordered categories, Tomizawa (1992) considered the parsimonious Linear-by-Linear
association model. This model can be described in terms of fewer parameters than the Linear-by-Linear association
model (Agresti, 1983). The purpose of this paper is (i) to define the parsimonious independence model, (ii) to show the
parsimonious independence model holds if and only if the parsimonious Linear-by-Linear association model holds and
the each one of various correlation coefficients is equal to zero, and (iii) show the statistic for testing the parsimonious
independence model is asymptotically equivalent to the sum of test statistics for the decomposed models.

Keywords: Kendall’s tau-b, Linear-by-Linear association, orthogonal decomposition, Pearson correlation coefficient,
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1. Introduction

For a r×c contingency table with ordered categories, let X and Y denote the row and column variables, respectively. Also,
let Pr(X = i,Y = j) = pi j for i = 1, . . . , r; j = 1, . . . , c. The independence (I) model (Goodman, 1979) is defined by

pi j = µαiβ j (i = 1, . . . , r; j = 1, . . . , c),

where, without loss of generality,
∏r

i=1 αi =
∏c

j=1 β j = 1. Suppose that the known scores {ui}, {v j} can be assigned to the
rows and columns, respectively, where u1 < · · · < ur and v1 < · · · < vc. The linear-by-linear (LL) association model
(Agresti, 1983) is defined by

pi j = µαiβ jθ
uiv j (i = 1, . . . , r; j = 1, . . . , c).

When the scores {ui} and {v j} are equal-interval scores (or the integer scores {ui = i} and {v j = j}), the LL association
model is identical to the uniform association model (see Goodman, 1979 and Agresti, 1984, p. 78). The odds ratio for
rows i and j (> i), and columns s and t (> s) are denoted by θ(i< j;s<t); thus,

θ(i< j;s<t) =
pis p jt

pit p js
.

Using the log odds ratio, the LL association model can be expressed as

log θ(i< j;s<t) = (u j − ui)(vt − vs) log θ (1 ≤ i < j ≤ r, 1 ≤ s < t ≤ c).

A special case of the LL association model obtained by letting θ = 1 is the I model.

Let g1(i) = ui (i = 1, . . . , r) and g2( j) = v j ( j = 1, . . . , c). Define the variables U and V by U = g1(X) and V = g2(Y).
When the I model holds, Pearson correlation coefficient ρ for U and V (denoted by ρ(U,V)) is equal to zero, however, the
converse does not hold. We are interested in what structure between X and Y is necessary for obtaining the independence,
in addition to the structure of the correlation being equal to zero. Instead of the structure that ρ(U,V) is equal to zero, we
are also interested in the structure that Kendall’s tau-b measure (Kendall, 1945) or Spearman’s ρs measure (Stuart, 1963)
is equal to zero. Let PC and PD denote the probability of concordance for a randomly selected pair of observations and
the probability of discordance for the pair, respectively, i.e.,

PC = 2
r−1∑
i=1

r∑
j=i+1

c−1∑
s=1

c∑
t=s+1

pis p jt and PD = 2
r−1∑
i=1

r∑
j=i+1

c−1∑
s=1

c∑
t=s+1

pit p js;
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see Kendall and Gibbons (1990, p. 6). Kendall’s τb is defined by

τb =
PC − PD[(

1 −∑r
i=1 p2

i·
) (

1 −∑c
j=1 p2

· j
)]1/2 ,

where pi· =
∑c

t=1 pit, p· j =
∑r

s=1 ps j. Also, let

rX
i =

i−1∑
k=1

pk· +
pi·
2

(i = 1, . . . , r), rY
j =

j−1∑
l=1

p·l +
p· j
2

( j = 1, . . . , c),

where {rX
i } and {rY

j } are the marginal rigits; see Bross (1958) and Fleiss et al. (2003, pp. 198-205). Let h1(i) = rX
i (i =

1, . . . , r) and h2( j) = rY
j ( j = 1, . . . , c). Define the variables Z1 and Z2 by Z1 = h1(X) and Z2 = h2(Y). Spearman’s ρs is the

correlation coefficient of Z1 and Z2, defined by

ρs =

∑r
i=1

∑c
j=1

(
rX

i − 0.5
) (

rY
j − 0.5

)
pi j[(∑r

i=1

(
rX

i − 0.5
)2

pi·

) (∑c
j=1

(
rY

j − 0.5
)2

p· j
)]1/2 .

Note that E(Z1) = E(Z2) = 0.5 although the proof is omitted. Tomizawa et al. (2008) showed the following theorems;

Theorem 1 The I model holds if and only if Pearson correlation coefficient ρ(U,V) = 0 and the LL association model
holds.

Theorem 2 The I model holds if and only if Kendall’s τb = 0 and the LL association model holds.

Theorem 3 The I model holds if and only if Spearman’s ρs = 0 and the LL association model holds.

These theorems showed that the structure of the LL association model is necessary for obtaining the independence, in
addition to the structure of correlations being equal to zero.

Tomizawa (1992) considered the parsimonious Linear-by-Linear association (PLL) model, defined by

pi j = µα
uiβv jθuiv j (i = 1, . . . , r; j = 1, . . . , c).

Let ωX
i j denotes the local odds of classification in column j + 1 instead of j for a fixed row i, i.e., ωX

i j = pi, j+1/pi j

(i = 1, . . . , r; j = 1, . . . , c− 1) and ωY
i j denotes the local odds of classification in row i+ 1 instead of i for a fixed column j,

i.e., ωY
i j = pi+1, j/pi j (i = 1, . . . , r − 1; j = 1, . . . , c). Then using the log odds ratio and the log local odds, the PLL model

can be expressed as

log θ(i< j;s<t) = (u j − ui)(vt − vs) log θ (i < j, s < t),

logωX
i j = (v j+1 − v j)ξX

i (i = 1, . . . , r; j = 1, . . . , c − 1),

logωY
i j = (ui+1 − ui)ξYj (i = 1, . . . , r − 1; j = 1, . . . , c),

where ξX
i and ξYj are unspecified. Namely, this model has the restrictions of local row odds and local column odds, in

addition to the structure of the LL association model. We are interested in proposing the parsimonious independence
model and considering decompositions of the proposed model using the PLL model and correlations.

In this paper, we (i) define the parsimonious independence model, (ii) show the parsimonious independence model holds
if and only if the PLL model holds and the each one of ρ(U,V), τb and ρs equals zero, and (iii) show the goodness-of-fit
test statistic for the parsimonious independence model is asymptotically equivalent to the sum of test statistics for the
decomposed models. Examples are given.

2. Decompositions of the Model

We define the parsimonious independence (PI) model by

pi j = µα
uiβv j (i = 1, . . . , r; j = 1, . . . , c).

The PI model is a special case of the PLL model obtained by letting θ = 1. This model describes that the row and column
variables are independent and the local row odds and local column odds have the restrictions, namely,

log θ(i< j;s<t) = 0 (i < j, s < t),

logωX
i j = (v j+1 − v j)ξX

i (i = 1, . . . , r; j = 1, . . . , c − 1),

logωY
i j = (ui+1 − ui)ξYj (i = 1, . . . , r − 1; j = 1, . . . , c).
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Tomizawa et al. (2008) showed the following lemma;

Lemma 1 Pearson correlation coefficient ρ(U,V) = 0 is equivalent to

r−1∑
i=1

r∑
j=i+1

c−1∑
s=1

c∑
t=s+1

(u j − ui)(vt − vs)p js pit(θ(i< j;s<t) − 1) = 0. (1)

From Lemma 1, we obtain the following theorem;

Theorem 4 The PI model holds, if and only if ρ(U,V) = 0 and the PLL model holds.

Proof. Under the PLL model, equation (1) is expressed as

r−1∑
i=1

r∑
j=i+1

c−1∑
s=1

c∑
t=s+1

(u j − ui)(vt − vs)p js pit(θ(u j−ui)(vt−vs) − 1) = 0.

Thus, ρ(U,V) = 0 holds if and only if θ = 1 (i.e., the PI model holds). The proof is completed.

Tomizawa et al. (2008) gave the following lemma;

Lemma 2 Kendall’s τb = 0 is equivalent to

r−1∑
i=1

r∑
j=i+1

c−1∑
s=1

c∑
t=s+1

p js pit(θ(i< j;s<t) − 1) = 0. (2)

From Lemma 2, we obtain the following theorem;

Theorem 5 The PI model holds, if and only if τb = 0 and the PLL model holds.

Proof. Under the PLL model, equation (2) is expressed as

r−1∑
i=1

r∑
j=i+1

c−1∑
s=1

c∑
t=s+1

p js pit(θ(u j−ui)(vt−vs) − 1) = 0.

Thus, τb = 0 holds if and only if θ = 1 (i.e., the PI model holds). The proof is completed.

Tahata et al. (2008) gave the following lemma;

Lemma 3 Spearman’s ρs = 0 is equivalent to

r−1∑
i=1

r∑
j=i+1

c−1∑
s=1

c∑
t=s+1

(rX
j − rX

i )(rY
t − rY

s )p js pit(θ(i< j;s<t) − 1) = 0. (3)

From Lemma 3, we obtain the following theorem;

Theorem 6 The PI model holds, if and only if ρs = 0 and the PLL model holds.

Proof. Under the PLL model, equation (3) is expressed as

r−1∑
i=1

r∑
j=i+1

c−1∑
s=1

c∑
t=s+1

(rX
j − rX

i )(rY
t − rY

s )p js pit(θ(u j−ui)(vt−vs) − 1) = 0.

Thus, ρs = 0 holds if and only if θ = 1 (i.e., the PI model holds). The proof is completed.

3. Orthogonal Decomposition of the PI Model

Let ni j denote the observed frequency in the cell of ith row and jth column of the table (i = 1, . . . , r; j = 1, . . . , c). Assume
that a multinomial distribution applies to the r × c table. The maximum likelihood estimates of expected frequencies
under the models can be obtained by using a iterative procedure, for example, the general iterative procedure for log-
linear models of Darroch and Ratcliff (1972) or using the Newton-Raphson method to the log-likelihood equations.

Let G2(M) denote the likelihood ratio chi-squared statistic for testing goodness-of-fit of model M, namely,

G2(M) = 2
r∑

i=1

c∑
j=1

ni jlog
(

ni j

m̂i j

)
,
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where m̂i j is the maximum likelihood estimate of expected frequency mi j under the model M. Each model can be tested for
goodness-of-fit by the likelihood ratio chi-squared statistic with the corresponding degrees of freedom (df). The numbers
of df for the PI model, PLL model, and ρ(U,V) = 0 are rc − 3, rc − 4, and 1, respectively. We obtain the following
theorem;

Theorem 7 The test statistic G2(PI) is asymptotically equivalent to the sum of G2(ρ(U,V) = 0) and G2(PLL).

Proof. Let p = (p11, . . . , p1c, p21, . . . , p2c, . . . , pr1, . . . , prc)t denote the rc × 1 vector, where “t” denotes the transposed of
vector (or matrix). The structure of ρ(U,V) = 0 can be expressed as

H1(p) =
r∑

i=1

c∑
j=1

uiv j pi j −
 r∑

i=1

ui pi·

c∑
j=1

v j p· j

 = 0d1 ,

where 0s is the vector (or scalar) of order s × 1 with all elements zero and d1 = 1. The PLL model can be expressed as

H2(p) = (h12, h13, . . . , h1,c−1, h21, . . . , h2,c−1, . . . , hr−1,c−1, a2, . . . , ac−1, b2, . . . , br−1)t = 0d2 ,

where

hkl =
1

(uk+1 − uk)(vl+1 − vl)
log θ(k<k+1;l<l+1) −

1
(u2 − u1)(v2 − v1)

log θ(1<2;1<2),

al =
1

(vl+1 − vl)
log

(
p1,l+1

p1,l

)
− 1

(v2 − v1)
log

(
p12

p11

)
,

bk =
1

(uk+1 − uk)
log

(
pk+1,1

pk,1

)
− 1

(u2 − u1)
log

(
p21

p11

)
,

and d2 = rc − 4. From Theorem 4, the PI model can be expressed as

H3(p) =
(
H1(p),H2(p)t

)t
= 0d3 ,

where d3 = rc − 3. Let hs(p) (s = 1, 2, 3) denote the ds × rc matrix (or vector) of partial derivatives of Hs(p) with respect
to p, i.e.,

hs(p) =
∂Hs(p)
∂pt .

Let Σ(p) denotes the inverse of information matrix, i.e., Σ(p) = diag(p) − ppt, where diag(p) denotes a diagonal matrix
with ith component of p as ith diagonal component. Let p̂ denotes p with {pi j} replaced by { p̂i j}, where p̂i j = ni j/n and
n =

∑
i
∑

j ni j. Using the delta method, H3( p̂) has asymptotically (as n → ∞) a normal distribution with mean H3(p) and
covariance matrix;

1
n

h3(p)Σ(p)h3(p)t =
1
n

 h1(p)Σ(p)h1(p)t h1(p)Σ(p)h2(p)t

h2(p)Σ(p)h1(p)t h2(p)Σ(p)h2(p)t

 .
Then, we can see

h1(p)Σ(p)h2(p)t = 0t
d2
.

Namely,

h3(p)Σ(p)h3(p)t =

 h1(p)Σ(p)h1(p)t 0t
d2

0d2 h2(p)Σ(p)h2(p)t

 .
Thus, we obtain ∆3(p) = ∆1(p) + ∆2(p), where

∆s(p) = Hs(p)t[hs(p)Σ(p)hs(p)t]−1Hs(p). (4)

Under each Hs(p) = 0ds (s = 1, 2, 3), the Wald statistic Ws = n∆s( p̂) has asymptotically a chi-squared distribution with
ds degrees of freedom. From equation (4), we see that W3 = W1 + W2. From the asymptotic equivalence of the Wald
statistic and the likelihood ratio statistic (Rao, 1973, Sec. 6e. 3; Darroch and Silvey, 1963; Aitchison, 1962), G2(PI) is
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asymptotically equivalent to the sum of G2(ρ(U,V) = 0) and G2(PLL). Note that the numbers of df for testing Hs(p) = 0ds

are ds (s = 1, 2, 3). Thus Theorem 7 is obtained. The proof is completed.

4. Examples

In this section, we use the known integer scores {ui = i}, {v j = j} for rows and columns to simplify the problems.

4.1 Example 1

We consider the data in Table 1, obtained in Grizzle et al. (1969). These data have four different operations for treating
duodenal ulcer patients correspond to removal of various amounts of the stomach. Operation A1 is drainage and vagotomy,
A2 is 25% resection (antrectomy) and vagotomy, A3 is 50% resection (hemigastrectomy) and vagotomy, and A4 is 75%
resection. The categories of operation variable have a natural ordering. The dumping severity variable describes the extent
of an undesirable potential consequence of the operation (none, slight and moderate), which are also ordered.

When we apply the PLL model for these data, the PLL model fits well with G2 = 7.87 based on df = 8. Also the PI
model fits well with G2 = 13.61 based on df = 9. For testing the hypothesis that the PI model holds under the assumption
that the PLL model holds, the likelihood ratio statistic G2(PI | PLL) is given as G2(PI) − G2(PLL) = 5.74 based on df
= 9 − 8 = 1. Therefore this hypothesis is rejected at 0.05 significance level. Hence we prefer the PLL model to the PI
model for the data in Table 1. Also the likelihood ratio statistic G2(PLL | LL) is given as G2(PLL)−G2(LL) = 3.28 based
on df = 8 − 5 = 3. Therefore this hypothesis is accepted at 0.05 significance level. Hence we prefer the PLL model to
the LL model for the data in Table 1. Under the PLL model, the maximum likelihood estimates of α and β are 0.83 and
0.32, respectively, and the maximum likelihood estimate of θ is 1.16. From Table 3, for any fixed row i, all local odds
ωX

i j ( j = 1, 2) are estimated to be smaller than 1. Also, the odds ωX
i1 (and ωX

i1ω
X
i2) are estimated to increase as the row i

increase. Thus it is inferred that the Damping severity tend to worse as the Operation levels increases.

Table 1. Cross-classification of duodenal ulcer patients according to Operation and Dumping Severity; from Grizzle et al.
(1969). (The parenthesized values are the maximum likelihood estimates of expected frequencies under the PLL model.)

Dumping Severity
Operation None Slight Moderate Total

A1 61 28 7 96
(65.66) (24.35) (9.03)

A2 68 23 13 104
(62.98) (27.07) (11.64)

A3 58 40 12 110
(60.41) (30.10) (15.00)

A4 53 38 16 107
(57.95) (33.47) (19.34)

Total 240 129 48 417

Table 2. Likelihood ratio chi-squared values for the testing the models and structures applied to Table 1.

Models df G2

PI 9 13.61
PLL 8 7.87

I 6 10.88
LL 5 4.59

ρ(U,V) = 0 1 6.35*
τb = 0 1 6.73*
ρs = 0 1 6.73*

∗ means significant at 0.05 level.

Table 3. Maximum likelihood estimates of (local) odds of classification in column 2 and column 3 instead of column 1
for a fixed row i (i = 1, 2, 3, 4) under the PLL model, applied to Table 1.

Row i ωX
i1 (= pi2/pi1) ωX

i1ω
X
i2 (= pi3/pi1)

1 0.37 0.14
2 0.43 0.18
3 0.50 0.25
4 0.58 0.33
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4.2 Example 2

The data in Table 4, obtained in Fienberg (1980, p. 20), present the relationship between aptitude (as measured at an
earlier data by a scholastic aptitude test) and occupation. Occupation level O1 is self-employed, business, O2 is self-
employed, professional, O3 is teacher and O4 is salaried, employed. From Table 5 we see that the PI and PLL models fit
these data poorly, however, the tests for ρ(U,V) = 0, τb = 0, and ρs = 0 are accepted. From Theorems 4, 5 and 6, we see
that the poor fit of the PI model is caused by the influence of the lack of structure of the PLL model (not the lack of the
ρ(U,V) = 0, τb = 0, and ρs = 0).

From Table 5, we see that the I model fits these data poorly. Thus, we can interpret that row and column variables are not
independent, although the correlations of row and column variables are equal to zero. These data are one example that
when the I model holds, ρ(U,V) = 0 is true, however, converse does not always holds.

Table 4. Cross-classification of subjects according to the aptitude and the occupation; from Fienberg (1980, p. 20). (The
parenthesized values are the maximum likelihood estimates of expected frequencies under the structure of ρ(U,V) = 0.)

Occupational level
Aptitude O1 O2 O3 O4 Totals

(low) A1 122 30 20 472 644
(119.48) (29.65) (19.95) (475.40)

A2 226 51 66 704 1047
(223.92) (50.74) (65.93) (706.23)

A3 306 115 96 1072 1589
(306.76) (115.16) (96.03) (1071.10)

A4 130 59 38 501 728
(131.88) (59.47) (38.06) (498.59)

(high) A5 50 31 15 249 345
(51.34) (31.45) (15.04) (246.82)

Totals 834 286 235 2998 4353

Table 5. Likelihood ratio chi-squared values for the testing the models and structures applied to Table 4.

Models df G2

PI 17 3086.43*
PLL 16 3086.21*

I 12 37.41*
LL 11 37.20*

ρ(U,V) = 0 1 0.22
τb = 0 1 0.003
ρs = 0 1 0.002

∗ means significant at 0.05 level.

5. Concluding Remarks

When the PI model fits the data poorly, Theorems 4, 5, and 6 may be useful for seeing the reason for the poor fit, namely,
which of the lack of the structures ρ(U,V) = 0, τb = 0 and ρs = 0 and the lack of the PLL model influences strongly.
We point out from Theorem 7 that the statistic for testing the PI model under the assumption that the PLL model holds,
i.e., G2(PI) −G2(PLL), is asymptotically equivalent to the statistic for testing the ρ(U,V) = 0, i.e., G2(ρ(U,V) = 0). We
emphasize that testing the PI model is not equivalent to testing the ρ(U,V) = 0. We saw in Example 2 that the structure of
ρ(U,V) = 0 holds, however, the PI model does not hold.

6. Discussion

Tomizawa (1992) also described the parsimonious uniform (PU) association model. It is a special case of the PLL model
obtained by using integer scores {ui = i}, {v j = j} or equal interval scores for rows and columns. We may obtain the
theorems changed the PLL model into the PU model in a similar manner to this paper.
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