Bivariate and Bilateral Gamma Distributions

Yusra A. Tashkandy¹, Maha A. Omair² & Abdulhamid A. Alzaid³

¹,² Department of Statistics and Operations Research, College of Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia

Correspondence: Maha A. Omair, Department of Statistics and Operations Research, College of Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia. E-mail: maomair@ksu.edu.sa

Received: December 8, 2017  Accepted: December 26, 2017  Online Published: February 15, 2018
doi:10.5539/ijsp.v7n2p66  URL: https://doi.org/10.5539/ijsp.v7n2p66

Abstract

This article review some known bivariate and bilateral (difference) gamma distributions. Some properties, advantages and limitations are pointed out. Two new bivariate gamma distributions using self-decomposability property are introduced. The corresponding bilateral gamma distributions are derived.

Keywords: bilateral distribution, bivariate distribution, hypergeometric function, Whittaker function

1. Introduction

In many real-life applications, more than one variable are collected on each individual. Therefore, multivariate distributions are needed to model and explain these variables where strong dependencies are possible. Bivariate distributions can be constructed by different methods. The simplest way is the reduction method. Copulas allow creating different bivariate distributions with different association parameters. Hutchinson and Lai (1990) discussed some of these distributions. Also, some bivariate distributions using compound distributions are defined, see for example Hutchinson (1981).

Bivariate gamma distributions are derived in the literature and commonly used to analyze skewed data. Balakrishnan and Lai (2009) listed different form of bivariate gamma distributions. Some of these have non-gamma marginal distributions such as Becker and Roux (1981) and Malik and Trudel (1985) who generalized Kibble bivariate gamma distribution. In this paper, we will focus only on bivariate gamma distributions whose marginals are gamma distributions.

In recent years, many researchers have paid attention to the difference of two random variables belonging to the same family of distributions such as differences of Poisson and gamma. Here we are interested in the difference of gamma variables. Cheng and Berger (2003) have defined the difference of two sums of independent generalized gamma random variables. Holm and Alouini (2004) have introduced the difference of two independent gamma random variables for the case of equal shape parameters. They proved that it followed the second of McKay’s (1932) distribution and computed the moments and the cumulative distribution functions. They also discussed the distribution of the difference between two correlated gamma random variables. The distribution of the difference of two independent sums of a finite number of gamma random variables with different rate parameters and integer shape parameters was obtained by Coellho and Mexia (2007).

Recently, Küchler and Tappe (2008a) considered the distribution of the difference between two independent gamma random variables with different shapes and scales parameters and refered to it as bilateral gamma distribution. They studied some of its properties such as moments, self-decomposability, and closeness under convolution. Additional properties especially those related to the shape of the density can be found in Küchler and Tappe (2008b). Küchler and Tappe (2008b) also gave representations of the density in terms of the Whittaker function.

Bilateral gamma distributions can be used to model real life applications. For example, Holm and Alouini (2004) and Coellho and Mexia (2007) used two special cases of bilateral gamma distributions to compute the outage probability. Küchler and Tappe (2008a) used the distribution to model stock prices. Küchler and Tappe (2008b) applied the bilateral gamma distribution to model the financial market fluctuation. Option pricing with bilateral gamma distribution in continuous time models had been considered by Küchler and Tappe (2009). Bellini and Mercuri (2012) considered modeling option pricing using bilateral gamma GARCH type model.

As there is more than one definition of the bivariate gamma distribution, it would be of interest to discuss their corresponding difference distributions. The aim of the paper is to review 7 different form of the bivariate gamma distributions and define two new bivariate gamma distributions based on self-decomposability property. And examine the
similarity and dissimilarity of the resulting difference distributions. The article is organized as follows. Some bivariate gamma distributions are reviewed in Section 2. In Section 3, we introduce two new bivariate gamma distributions. We discussed the corresponding gamma difference (bilateral) distribution and derived other new bilateral gamma distributions in Section 4.

Throughout we denote by $\Gamma(\alpha, \lambda)$ to the gamma distribution with probability density function

$$g(x) = \frac{1}{\Gamma(\alpha)} (x/\lambda)^{\alpha-1} e^{-x/\lambda}, \ x > 0.$$ 

As usual, we call $\alpha$ the shape parameter and $\lambda$ the scale parameter.

The calculations involve several special functions from Gradshteyn and Ryzhik (2007) (G-R), and for ease of references we list them here with the corresponding pages

The Pochhammer symbol is defined by [G-R, p. xliii]

$$(e)_k = e(e+1)...(e+k-1) = \frac{\Gamma(e+k)}{\Gamma(e)}.$$ 

The Gauss’ hypergeometric function is defined by [G-R, p. 1005]

$$2F_1(a, b; c; z) = \sum_{n=0}^\infty \frac{(a)_n (b)_n z^n}{(c)_n n!}. \tag{1}$$

This series converges for $|z| < 1$.

The integral representation of (1) is

$$2F_1(a, b; c; z) = \frac{1}{B(b-c-a)} \int_0^1 (1-t)^{b-1}(1-cz^{-1})^{-a} dt, \text{ for } c > b > 0. \tag{2}$$

The confluent hypergeometric function

$$1F_1(a; b; z) = \sum_{n=0}^\infty \frac{(a)_n z^n}{(b)_n n!}. \tag{3}$$

This series converges for the values of $|z| < 1$.

The integral representation of (3) is

$$1F_1(a; b; z) = \frac{1}{B(b-a)} \int_0^1 (1-t)^{b-1-a-1}(1+a-1 e^{zt} dt; \text{ for } 0 < a < b. \tag{4}$$

The Whittaker function is defined by [G-R, p. 1024]

$$W_{\alpha,\beta}(z) = \frac{z^{1/2} e^{-z/2}}{\Gamma(\beta-\alpha+1/2)} \int_0^\infty e^{-t} t^{\beta-1/2} \left(1 + \frac{1}{2}\right)^{\alpha+\beta-1} t^\alpha dt; \text{ for } \beta - \alpha > -\frac{1}{2}. \tag{5}$$

The confluent hypergeometric series of two variables is [G-R, p. 1031]

$$\Phi_1(\alpha, \beta, \gamma; x, y) = \sum_{m,n=0}^\infty (\frac{\alpha+m+n(\beta)}{\gamma}) mn! X^m Y^n; \ |x| < 1. \tag{6}$$

The integral representation of (6) is [G-R, p. 349]

$$\Phi_1(\alpha, \beta, \gamma; x, y) = \frac{1}{B(\alpha\gamma-\alpha)} \int_0^1 (1-t)^{\alpha-1} (1+\gamma-1-\gamma yt)^{-\alpha} e^{zt} dt, \tag{7}$$

for $\gamma > \alpha > 0 \ \text{arg}(1-\beta) < \pi.$

The hypergeometric functions of two variables is [G-R, p. 1018]

$$F_1[\alpha, \beta'; \gamma; x, y] = \sum_{m=0}^\infty \sum_{n=0}^\infty (\frac{\alpha+mn(\beta)}{\gamma}) mn! X^m Y^n; \ |x| < 1, |y| < 1. \tag{8}$$

We also need the following important equations.
For $u > 0, m > 0,$ and $r > 0,$
\[
\int_0^\infty (x + b)^{2v-1}(x - u)^{2r-1}e^{-mx} dx = \frac{(u+b)^{v+r-1}}{m^{v+r}} \exp \left[ \frac{(b-u)m}{2} \right] \Gamma(2r) \Gamma(v+r-\frac{1}{2})(um + bm). \tag{9}
\]
\[\text{[G-R, p. 349]}\]

For $\lambda > 0, \mu > 0$
\[
\int_0^1 x^{\lambda-1}(1-x)^{\mu-1}(1-ux)^{-\theta}(1-vx)^{-\sigma} dx = B(\lambda, \mu)F_t[\lambda, \varphi, \sigma, \lambda + \mu; u, v]. \tag{10}
\]
\[\text{[G-R, p. 318]}\]

The complete dependence or degenerated bivariate gamma is defined as
\[\mathcal{D}_{B}(\alpha_1, \alpha_2, 1, 1).\]

\[\text{The convolution of double gamma distribution with another bivariate gamma distribution with equal scale parameters yields a new bivariate gamma distribution with same scale parameters and different shape parameters but with smaller correlation in absolute value.}\]

\[\text{2. Complete Dependence Bivariate Gamma}\]

The complete dependence or degenerated bivariate gamma is defined as
\[Y_1 = X_0 \text{ and } Y_2 = X_0,\]
where $X_0 \sim \Gamma(\alpha_0, 1).$ The distribution is degenerated in the line \{(y_1, y_2): y_1 = y_2\}. The mgf is given by
\[
M_{Y_1, Y_2}(t, s) = \left( \frac{1}{1-t-s} \right)^{\alpha_0}. \tag{15}\]

\[\text{Obviously, the correlation between } Y_1 \text{ and } Y_2 \text{ is one.}\]

If $U$ is any bivariate gamma distribution, then its convolution with complete dependence gamma distribution after proper scaling will yield another bivariate gamma distribution with new scaling parameters. The covariance increases by $Var(X_0).$
2.3 Cherian’s BivariateGamma
Cherian (1941) derived a bivariate gamma using reduction method. Let \( X_i \sim \Gamma(\alpha_i, 1), i = 0,1,2, \) be three independent random variables, where \( Y_i = X_0 + X_i, \ i = 1,2. \) The joint pdf is
\[
f_{Y_1, Y_2}(y_1, y_2) = \frac{\exp(-y_1 - y_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \int_0^{y_1+y_2} (y_1 - y)^{\alpha_1-1}(y_2 - y)^{\alpha_2-1} y^{\alpha_0-1} e^{-y} dy, \tag{16}
\]
for \( y_1 > 0, \ y_2 > 0, \) and \( \alpha_i \geq 0, i = 0, 1, 2. \)
The corresponding mgf is
\[
M_{Y_1, Y_2}(t, s) = \left( \frac{1}{1-t} \right)^{\alpha_1} \left( \frac{1}{1-s} \right)^{\alpha_2} \left( \frac{1}{1-t-s} \right)^{\alpha_0}. \tag{17}
\]
The marginal distribution of \( Y_1 \) and \( Y_2 \) are gamma, with shape parameters \( \alpha_1 + \alpha_0, \ \alpha_2 + \alpha_0, \) and scale parameters 1, respectively.
Clearly, the distribution is the convolution of a double gamma distribution with a complete dependence bivariate gamma.

2.4 Kibble’s BivariateGamma
Kibble (1941) utilized the relation between normal distribution and gamma (chi-square) to introduced a bivariate gamma distribution
\[
f_{Y_1, Y_2}(y_1, y_2) = \frac{(1-p)^{-\alpha}}{\Gamma(\alpha)} \sum_{j=0}^{\infty} a_j (y_1 y_2)^{\alpha+j-1} \exp \left( -\frac{y_1+y_2}{1-p} \right), \tag{18}
\]
for \( y_1 > 0, \ y_2 > 0, \ \alpha > 0 \) and \( 0 < p < 1, \) where \( a_j = \frac{1}{\Gamma(\alpha+j)\Gamma(1-p)j^j}. \)
The corresponding mgf is
\[
M_{Y_1, Y_2}(t, s) = \left( \frac{1}{1-t-s(1-p)t} \right)^{\alpha}. \tag{19}
\]
This distribution can be used to model the summer and winter streamflows and many other applications.
The marginal distributions of \( Y_1 \) and \( Y_2 \) are gamma with the same shape parameter \( \alpha \) and scale parameter 1. Here \( \rho \) represents the correlation coefficient of the distribution. The special cases where \( \rho = 0 \) and \( \rho = 1 \) to correspond the double gamma distribution with equal shape parameters and the complete dependence gamma distribution, respectively.
In the following, we give an alternative derivation of this distribution.

Theorem 1. Let \( Y_1 \) and \( Y_2 \) be two random variables defined as \( Y_i = U_i + V_i, \ i = 1,2, \) where \( U_i \)’s are iid \( \Gamma\left(\alpha, \frac{1}{1-p}\right) \) and \( V_i = \sum_{j=1}^{K} E_{ij}, \) where \( E_{ij}, \ i = 1,2, \) and \( j = 1,2, \ldots, K \) are iid random variables with exponential distribution function \( \text{Exp}\left(\frac{1}{1-p}\right), \) and \( K \sim \text{NB}(\alpha, 1-\rho) \) is independent of \( E_{ij} \)’s. Then \( (Y_1, Y_2) \) has Kibble’s bivariate gamma. The special case for \( \alpha = 1 \) gives Moran–Downton bivariate exponential distribution introduced by Moran (1967) and Downton (1970).

Proof.
\[
M_{Y_1, Y_2}(t, s) = E\left[ e^{(U_1+V_1)+s(U_2+V_2)} \right] = E\left[ e^{U_1+sU_2} \right] E\left[ E\left( e^{tV_1+sV_2} | K \right) \right] \\
= \left( \frac{1}{1-(1-\rho)t} \right)^{\alpha} \left( \frac{1}{1-(1-\rho)s} \right)^{\alpha} E\left[ \left( \frac{1}{1-(1-\rho)t} \right)^{\alpha} \left( \frac{1}{1-(1-\rho)s} \right)^{\alpha} \right]^{K} \\
= \left( \frac{1}{1-(1-\rho)t} \right)^{\alpha} \left( \frac{1}{1-(1-\rho)s} \right)^{\alpha} \left( \frac{1-(1-\rho)K}{1-(1-\rho)s} \right)^{\alpha}
\]
where

\[ M_{Y_1,Y_2}(t,s) = \left( \frac{1}{1-\lambda_1 t-\lambda_2 s + (1-\rho)ts} \right)^{\alpha}. \]

2.5 Gunst and Webster’s Bivariate Gamma

Gunst and Webster (1973) considered Jensen’s bivariate gamma distribution when the scales parameters are equal. The joint pdf is

\[ f_{Y_1,Y_2}(y_1,y_2) = \gamma_{(\alpha_1 + \alpha_2)}^{\alpha_1 - 1} y_1^{\alpha_1 - 1} y_2^{\alpha_2 - 1} \exp[-(y_1 + y_2)] \sum_{j=0}^{\infty} \frac{\gamma_{(\alpha_1)}}{\Gamma(\alpha_1)} \frac{\gamma_{(\alpha_2)}}{\Gamma(\alpha_2)} \frac{\gamma_{(\alpha_1 + \alpha_2)}}{\Gamma(\alpha_1 + \alpha_2)} \Gamma_{(\alpha_1)}(y_1) \Gamma_{(\alpha_2)}(y_2), \]

where \( L_j^{(\gamma)}(y) = \sum_{k=0}^{j} \frac{(j + \alpha)(\gamma)}{k!} \frac{(-y)^k}{k!} \) for \( y_1 > 0, y_2 > 0, \alpha_1 > 0, \alpha_2 > 0, 0 < \rho < 1, \) and \( \alpha < \min(\alpha_1, \alpha_2). \)

The corresponding mgf is

\[ M_{Y_1,Y_2}(t,s) = \left( \frac{1}{1-\lambda_1 t-\lambda_2 s + (1-\rho)ts} \right)^{\alpha}. \]

where \( Y_1 \) and \( Y_2 \) have marginal gamma distributions, with shape parameters \( \alpha_1 \) and \( \alpha_2 \) and scale parameters \( 1, \) respectively.

Since \( \alpha < \min(\alpha_1, \alpha_2), \) we can rewrite the mgf of Gunst and Webster’s bivariate gamma as

\[ M_{Y_1,Y_2}(t,s) = \left( \frac{1}{1-\lambda_1 t-\lambda_2 s + (1-\rho)ts} \right)^{\alpha}. \]

Therefore, Gunst and Webster’s bivariate gamma can be considered as Kibble’s bivariate gamma convoluted with a double gamma distribution.

The above result motives a new bivariate gamma distribution as

\[ M_{Y_1,Y_2}(t,s) = \left( \frac{1}{1-\lambda_1 t-\lambda_2 s + (1-\rho)ts} \right)^{\alpha}. \]

The corresponding pdf is

\[ f_{Y_1,Y_2}(y_1,y_2) = \gamma_{(\alpha_1 + \alpha_2)}^{\alpha_1 - 1} y_1^{\alpha_1 - 1} y_2^{\alpha_2 - 1} \exp[-(y_1 + y_2)] \sum_{j=0}^{\infty} \frac{\gamma_{(\alpha_1)}}{\Gamma(\alpha_1)} \frac{\gamma_{(\alpha_2)}}{\Gamma(\alpha_2)} \frac{\gamma_{(\alpha_1 + \alpha_2)}}{\Gamma(\alpha_1 + \alpha_2)} \Gamma_{(\alpha_1)}(y_1) \Gamma_{(\alpha_2)}(y_2) \times \]

\[ \Phi_1 \left( \beta, 1 - \alpha - j, \alpha + \beta - j, (y_1 \wedge y_2) \frac{1+\mu}{1-\rho} \frac{(y_1)}{(y_2)} \delta \right). \]

where \( \Phi_1(\alpha, \beta, \gamma, \delta) \) is the confluent hypergeometric (7) and \( \delta = \begin{cases} 1 & y_1 \leq y_2 \\ -1 & y_1 > y_2 \end{cases}. \)

A rescaled version of Gunst and Webster’s bivariate gamma distribution is the following

\[ f_{Y_1,Y_2}(y_1,y_2) = \gamma_{\alpha_1 + \alpha_2}^{\alpha_1 - 1} y_1^{\alpha_1 - 1} y_2^{\alpha_2 - 1} \exp[-(y_1 + y_2)] \sum_{j=0}^{\infty} \frac{\gamma_{(\alpha_1)}}{\Gamma(\alpha_1)} \frac{\gamma_{(\alpha_2)}}{\Gamma(\alpha_2)} \frac{\gamma_{(\alpha_1 + \alpha_2)}}{\Gamma(\alpha_1 + \alpha_2)} \Gamma_{(\alpha_1)}(y_1) \Gamma_{(\alpha_2)}(y_2) \times \]

\[ \Phi_1 \left( \beta, 1 - \alpha - j, \alpha + \beta - j, (y_1 \wedge y_2) \frac{1+\mu}{1-\rho} \frac{(y_1)}{(y_2)} \delta \right). \]
where \( I_j^{(a)}(y) = \sum_{k=0}^{j} \frac{(j + a)^k (-y)^k}{k!} \), for \( y_1 > 0, y_2 > 0, \alpha_1 > 0, \alpha_2 > 0, \lambda_1 > 0, \lambda_2 > 0, 0 < \rho < 1, \) and \( \alpha < min(\alpha_1, \alpha_2) \).

The corresponding mgf is

\[
M_{Y_1, Y_2}(t, s) = \left( \frac{1}{1-B_1t} \right)^{\alpha_1} \left( \frac{1}{1-B_2s} \right)^{\alpha_2} \left( \frac{1}{1-(1-\rho)B_1tB_2s} \right)^{\alpha}.
\]  

(27)

2.6 Loaiciga and Leipnik’s Bivariate Gamma

Loaiciga and Leipnik (2005) derived a bivariate gamma of two correlated gamma variables. The joint pdf is

\[
f_{Y_1, Y_2}(y_1, y_2) = \sum_{n=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} A_{njk}(y_1)^{\tau_1+j-n-1}(y_2)^{\tau_2+k-n-1} e^{-y_1-y_2},
\]

for \( y_1 > 0, y_2 > 0, \) where \( \tau_i = \alpha_i(n + \nu), i = 1,2 \) and \( A_{njk} \) are given by

\[
A_{njk} = \frac{(-1)^{n+j+k-\nu} \Gamma(n+j+k)}{\Gamma(\nu)} \left( \frac{\tau_1 - 1}{n - j} \right) \left( \frac{\tau_2 - 1}{n - k} \right),
\]

with \( \alpha_1, \alpha_2, \) and \( \nu > 0 \).

The mgf is

\[
M_{Y_1, Y_2}(t, s) = \left( \frac{1}{(1-t)^{\alpha_1} (1-s)^{\alpha_2}} \right)^{\nu}.
\]  

(29)

The marginal distribution of \( Y_1 \) and \( Y_2 \) are gamma, with shape parameters \( \nu \alpha_1 \) and \( \nu \alpha_2 \) and scale parameter 1, respectively.

When \( \alpha_1 = \alpha_2 = 1 \) the Loaiciga and Leipnik bivariate gamma distribution can be considered as Kibble’s bivariate gamma.

2.7 Nadarajah and Gupta’s Bivariate Gamma

Nadarajah and Gupta (2006) introduced two bivariate gamma distribution. These distributions are useful for modeling applications in several areas such as rainfall at two nearby rain gauges, wind gust data and the dependence between rainfall and runoff. The first one is defined as \( Y_1 = UX_1 \) and \( Y_2 = UX_2 \), where \( U \) has beta distribution with shape parameters \( \alpha_1 \) and \( \alpha_2 \). \( X_1 \) and \( X_2 \) are independent gamma distributions with common shape parameters \( \alpha_1 + \alpha_2 \) and scale parameter 1. Then \( Y_1 \) and \( Y_2 \) have a bivariate gamma distribution with joint pdf given by

\[
f_{Y_1, Y_2}(y_1, y_2) = C \left( \frac{y_1 y_2}{\alpha_1+\alpha_2} \right)^{\frac{\alpha_1+\alpha_2}{2}} e^{-\left( \frac{y_1+y_2}{2} \right)} \frac{1}{\Gamma\left( \frac{\alpha_1+\alpha_2}{2} \right)}(y_1+y_2),
\]

where \( C = \frac{1}{\Gamma\left( \frac{\alpha_1}{2} \right) \Gamma\left( \frac{\alpha_1+\alpha_2}{2} \right)} \), for \( y_1 > 0, y_2 > 0, \) and \( \alpha_1, \alpha_2 > 0 \).

The moment function is

\[
E(Y_1^m Y_2^n) = \frac{\Gamma(\alpha_1+m+n) \Gamma(\alpha_1+\alpha_2+m) \Gamma(\alpha_1+\alpha_2+n)}{\Gamma(\alpha_2) \Gamma(\alpha_1+\alpha_2) \Gamma(\alpha_1+\alpha_2+m+n)}
\]  

(31)

The marginal distribution of \( Y_1 \) and \( Y_2 \) are gamma with common shape parameters \( \alpha_1 \) and scale parameter 1. The correlation coefficient is \( \frac{\alpha_1 \alpha_2}{\alpha_1 + \alpha_2 + 1} \).

Here, we derive the moment generating function as

**Theorem 2**. The mgf of Nadarajah and Gupta bivariate gamma distribution according to (30) is

\[
M_{Y_1, Y_2}(t, s) = F_1[\alpha_1, \alpha_2, \alpha_1 + \alpha_2, \alpha_1 + \alpha_2 + 1; t, s].
\]  

(32)
Proof.

\[ M_{Y_1 Y_2}(t, s) = E\left(e^{U(X_1) + s(U X_2)}\right) = E\left(E\left(e^{U(X_1) + s(U X_2)} | U\right)\right) = E\left(\frac{1}{1 - tU} \frac{1}{1 - sU}\right)^{a_1 + a_2} \]

By using (8), where \( F_1[\alpha, \beta, \gamma'; x, y] \) is the hypergeometric function (8).

The second Nadarajah and Gupta bivariate gamma distribution is defined as \( Y_1 = U_1 X \) and \( Y_2 = U_2 X \), where \( X \) has gamma distribution with shape parameter \( c \) and scale parameter \( 1 \), where \( a_1 + b_1 = a_2 + b_2 = c \). \( U_1 \) and \( U_2 \) are independent beta distributions with shape parameters \((a_1, b_1)\) and \((a_2, b_2)\), respectively. Then \( Y_1 \) and \( Y_2 \) have a bivariate gamma distribution with joint pdf given by

\[ f_{Y_1 Y_2}(y_1, y_2) = C \sum_{j=0}^{\infty} \frac{(-1)^j \Gamma(b_2) \Gamma(b_2)}{\beta \Gamma(b_2-j)} e^{-\frac{y_1}{2}} y_1^{a_1+b_2-j-1} \Gamma(b_2) \Gamma(b_2-j) W \left( \frac{b_2-b_1-1}{2} - \frac{b_2-c-j}{2} \right) y_1 \right) \]

for \( y_1 \geq y_2 > 0 \), \( a_1, a_2, b_1, b_2 > 0 \), and \( a_1 + b_1 = a_2 + b_2 = c \), where the constant \( C = \frac{1}{\Gamma(c)} B(a_1, b_1) B(a_2, b_2) \).

The moment function is

\[ E(Y_1^m Y_2^n) = \frac{\Gamma(c+m+n) \Gamma(a_1+m, b_1) \Gamma(a_2+n, b_2)}{\Gamma(c) \Gamma(a_1, b_1) \Gamma(a_2, b_2)} \]

The marginal distribution of \( Y_1 \) and \( Y_2 \) are gamma with shape parameters \( a_1 \), and \( a_2 \), and scale parameter \( 1 \), respectively. The correlation coefficient is \( \frac{\sqrt{a_1 a_2}}{c} \).

Here, we derive the moment generating function as

**Theorem 3.** The mgf of Nadarajah and Gupta bivariate gamma distribution according to (33) is

\[ M_{Y_1 Y_2}(t, s) = \left( \frac{1}{1-\ln\left( \frac{1}{f_1[a_1, c] f_1[a_2, c]} \right)} \right)^c \]

Proof.

\[ M_{Y_1 Y_2}(t, s) = E\left(e^{U(X_1) + s(U X_2)}\right) = E\left(E\left(e^{X(U_1 + s U_2)} | X\right)\right) = E\left(\frac{1}{1-t} \frac{1}{1-s}\right)^{a_1 + a_2} \]

\[ = \int_0^\infty e^{x} \Gamma(c) e^{-x(1-\ln\left( \frac{1}{f_1[a_1, c] f_1[a_2, c]} \right))} dx \]

3. **Bivariate Gamma Distribution Based on Self-Decomposability**

Let \( X \sim \Gamma(\alpha, 1) \) then it is well known from the self-decomposability of gamma distribution that for every \( 0 < \rho < 1 \) there exists two independent random variables \( X \sim \Gamma(\alpha, 1) \) and \( X_\rho \) such that \( Y = \rho X + X_\rho \) where \( X_\rho \sim CENB(\alpha, \rho) \).

This kind of decomposition of gamma distribution can be used to introduce two different bivariate gamma distributions. We denote these two distributions by SD1 and SD2.

3.1 **SD1 Bivariate Gamma Distribution**

Let \( Y_1 = \rho X_1 + X_\rho \) and \( Y_2 = \rho X_2 + X_\rho \), where \( X_1 \) and \( X_2 \) are independent \( \Gamma(\alpha, 1) \) and independent of \( X_\rho \sim CENB(\alpha, \rho) \). Then clearly both \( Y_1 \) and \( Y_2 \) have \( \Gamma(\alpha, 1) \) with \( \text{Cov}(Y_1, Y_2) = \text{Var}(X_\rho) = \alpha(1 - \rho^2) \) and hence \( \text{Cov}(Y_1, Y_2) = (1 - \rho^2) \).

The joint mgf is

\[ M_{Y_1 Y_2}(t, s) = \left( \frac{1}{1-\rho t} \right)^a \left( \frac{1}{1-\rho s} \right)^a \left( \rho + (1-\rho) \frac{1}{1-s} \right)^a \]

and the pdf of \( Y_1 \) and \( Y_2 \) is
\[ f_{Y_1,Y_2}(y_1,y_2) = \sum_{k=0}^{\infty} \frac{(1-\rho)^k}{\rho^k} \frac{\Gamma(\alpha)}{\Gamma(\alpha+k)} (y_1 \wedge y_2)^{k+1} e^{-\frac{y_1+y_2}{\rho}} \phi_1 \left( \alpha, 1-\alpha, \alpha + k, \frac{y_1+y_2}{\rho}, y_2 \right)^{\delta}. \]

where \( \phi_1(\alpha, \beta, \gamma, x, y) \) is the confluent hypergeometric (7) and \( \delta = \begin{cases} 1 & ; \ y_1 \leq y_2 \\ -1 & ; \ y_1 > y_2. \end{cases} \)

**Proof.** Appendix A.1.

### 3.2 SD2 Bivariate Gamma Distribution

Let \( Y_1 = \rho_1 X + X_{\rho_1} \) and \( Y_2 = \rho_2 X + X_{\rho_2} \), where \( X, X_{\rho_1} \) and \( X_{\rho_2} \) are independent \( X \sim \Gamma(\alpha, 1) \) and \( X_{\rho_i} \sim \text{CENB}(\alpha, \rho_i), \ i = 1,2 \). Then clearly both \( Y_1 \) and \( Y_2 \) have \( \Gamma(\alpha, 1) \) with \( \text{Cov}(Y_1, Y_2) = \alpha \rho_1 \rho_2 \), and \( \text{Corr}(Y_1, Y_2) = \rho_1 \rho_2 \). The joint mgf is

\[ M_{Y_1,Y_2}(t, s) = \left( \frac{1}{1-\rho_1 - \rho_2 s} \right)^{\alpha} \left( \rho_1 (1-\rho_1) \frac{1}{1-t} \right)^{\alpha} \left( \rho_2 (1-\rho_2) \frac{1}{1-s} \right)^{\alpha}. \]

and the joint pdf is

\[ f_{Y_1,Y_2}(y_1,y_2) = \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} K_{k,l} y_1^{k+1} y_2^{l+1} e^{-\frac{y_1+y_2}{\rho}} \phi_1 \left( \alpha, 1-\alpha, \alpha + k, \frac{y_1+y_2}{\rho}, y_2 \right)^{\delta}. \]

where \( K_{k,l} = \frac{\Gamma(\alpha+k) \Gamma(\alpha+l)}{\Gamma(\alpha) \Gamma(\alpha+k+l)} \text{B}(\alpha,k) \text{B}(\alpha,l)^{1+\delta} \frac{(1-\rho_1)^k}{\rho_1} \frac{(1-\rho_2)^l}{\rho_2} \), and \( \delta = \begin{cases} 1 & ; \ y_1 \leq y_2 \\ -1 & ; \ y_1 > y_2 \end{cases} \).

**Proof.** Appendix A.2.

Explicit expressions for the pdfs of \( Z = Y_1 - Y_2 \) for these four distributions are derived in Section 4.

### 4. Bilateral Gamma Distribution (BD\( \Gamma \))

For fitting real-life data, it is essential to find appropriate distributions. In many practical situations, the data show a tendency of asymmetry and heavy-tailed distributions. Examples of such data are price movements in financial markets, input-output processes, the formation of sand dunes, communications, and formation of solar neutrinos, etc. For those issues, normal distributions often provide a poor fit. In recent years, alternative models based on the difference of two non-negative random variables such as gamma, Poisson and negative binomial were developed. In this section, we introduced several new gamma difference distributions constructed from the bivariate gamma distributions defined in Section 2 and Section 3.

#### 4.1 Bilateral Double Gamma

The bilateral double gamma (BD\( \Gamma \)) was introduced by Küchler and Tappe (2008a), such as \( Z = Y_1 - Y_2 \), where \( Y_1 \) and \( Y_2 \) are independent \( \Gamma(\alpha_i, \lambda_i), \ i = 1,2 \). This distribution will be denoted by BD\( \Gamma(\alpha_1, \alpha_2, \lambda_1, \lambda_2) \). The probability density function of \( Z \) is

\[ f(z) = \frac{(\lambda_1)^{1-a_1} \lambda_2^{1-a_2} z^{a_1+a_2-1} e^{\frac{z(\lambda_2-\lambda_1)}{\lambda_1 \lambda_2}} W_{a_1-a_2, a_1+a_2-1} \left( \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2} \right)^{1+\delta} \right)}{(\lambda_1+\lambda_2)^{a_1+a_2-1} \lambda_1^{1-a_2} \lambda_2^{1-a_1} \Gamma(\alpha_1) \Gamma(\alpha_2) \Gamma(\alpha_1+\alpha_2) \Gamma(\alpha_1+\alpha_2-1)}; \quad z \geq 0, \]

and \( f(-z; \alpha_1, \alpha_2, \lambda_1, \lambda_2) = f(z; \alpha_1, \alpha_2, \lambda_1, \lambda_2) \) for \( z < 0 \),

where \( \alpha_1 > 0, \alpha_2 > 0, \lambda_1, \lambda_2 > 0 \).

This pdf can be rewritten as

\[ f(z) = \frac{(\lambda_1)^{1-a_1} \lambda_2^{1-a_2} z^{a_1+a_2-1} e^{\frac{z(\lambda_2-\lambda_1)}{\lambda_1 \lambda_2}} W_{a_1-a_2, a_1+a_2-1} \left( \frac{\lambda_1 \lambda_2}{\lambda_1 + \lambda_2} \right)^{1+\delta} \right)}{(\lambda_1+\lambda_2)^{a_1+a_2-1} \lambda_1^{1-a_2} \lambda_2^{1-a_1} \Gamma(\alpha_1) \Gamma(\alpha_2) \Gamma(\alpha_1+\alpha_2) \Gamma(\alpha_1+\alpha_2-1)}; \quad -\infty < z < \infty. \]

73
where $\text{sign}(x) = \begin{cases} 1 & \text{for } x \geq 0 \\ -1 & \text{for } x < 0 \end{cases}$

The corresponding mgf is

$$M_Z(t) = \left( \frac{1}{1-\lambda_1 t} \right)^{\alpha_1} \left( \frac{1}{1+\lambda_2 t} \right)^{\alpha_2}.$$  \hfill (42)

The mean and the variance are $\mu = E(Z) = \alpha_1 \lambda_1 - \alpha_2 \lambda_2$, and $\sigma^2 = \text{Var}(Z) = \alpha_1 \lambda_1^2 + \alpha_2 \lambda_2^2$, respectively. For the special case where $\alpha_1 = \alpha_2 = \alpha$, we can write the mgf as

$$M_Z(t) = \left( \frac{1}{1-\lambda t} \right)^{\alpha \frac{\sigma^2 - \mu^2}{2\sigma^2}}.$$  \hfill (43)

In the following proposition, a general form for the $n$th moment is given.

**Theorem 4.** If $Z$ has $BD\Gamma(\alpha_1, \alpha_2, \lambda_1, \lambda_2)$, then for $n \geq 1$

$$E(Z^n) = \frac{\Gamma(\alpha_1 + n)}{\Gamma(\alpha_1)} \lambda_1^n F_1 \left( \alpha_2, -n; 1 - \alpha_1 - n; -\frac{\lambda_2}{\lambda_1} \right).$$  \hfill (44)

and

$$E[(Z - \mu)^n] = \sum_{i=0}^{n} \binom{n}{i} \frac{\Gamma(\alpha_1 + i)}{\Gamma(\alpha_1)} \lambda_1^{i} (\alpha_2 \lambda_2 - \alpha_1 \lambda_1)^{n-i} F_1 \left( \alpha_2, -i; 1 - \alpha_1 - i; -\frac{\lambda_2}{\lambda_1} \right).$$  \hfill (45)

**Proof.** Appendix B.1.

4.2 Cheriany’s Bilateral Gamma

As the components of Cherian and Ramabhadran bivariate gamma are $Y_1 = X_0 + X_1$, and $Y_2 = X_0 + X_2$ then their difference is $Z = X_1 - X_2$, which is the bilateral double gamma. Therefore Cherian’s Bilateral Gamma is a bilateral double gamma.

4.3 Kibble Bilateral Gamma

Let the joint distribution of $Y_1$ and $Y_2$ be Kibble’s bivariate gamma distribution, with parameters $\alpha, \lambda_1, \lambda_2 > 0$, and $0 < \rho < 1$. The Kibble bilateral gamma distribution is the distribution of the difference $Z = Y_1 - Y_2$. This distribution will be denoted by $BKT(\alpha, \lambda_1, \lambda_2, \rho)$. The probability density function is

$$f_Z(z) = \sum_{j=0}^{\infty} b_j e^{\frac{-\rho j}{(1-\rho)^j}} \frac{1}{\alpha_1^j} \left( \frac{1}{\alpha_2^j} \right) \left( \frac{1}{\lambda_1} + \frac{1}{\lambda_2} \right); -\infty < z < \infty.$$  \hfill (46)

where $b_j = \frac{1}{\Gamma(\alpha)\left(1-\rho\right)^j} \frac{1}{\Gamma(\alpha+1)} \frac{\rho^j}{\alpha_1^{j-1} \alpha_2^{j-1}}$.

The derivation of the pdf is in Appendix B.2.

The mgf is

$$M_Z(t) = \left( \frac{1}{1-(\lambda_1 - \lambda_2)\rho(1-\rho)t} \right)^{\alpha}.$$  \hfill (47)

Hence, the mean and the variance are $\mu = E(Z) = \alpha(\lambda_1 - \lambda_2)$, and $\sigma^2 = \alpha(\lambda_1 - \lambda_2)^2 + 2\alpha \lambda_1 \lambda_2(1-\rho)$, respectively. In terms of the mean and the variance (47) can be written as

$$M_Z(t) = \left( \frac{1}{1-\lambda t} \right)^{\alpha \frac{\sigma^2 - \mu^2}{2\sigma^2}}.$$  \hfill (48)

which is identical with (43). Thus the $BKT$ can be viewed as a special case of the $BD\Gamma$.

**Remarks:**

(i) The $BKT(\alpha, \lambda_1, \lambda_2, \rho)$ is identical with $BD\Gamma(\alpha, \alpha, \lambda_1 \sqrt{1-\rho}, \lambda_2 \sqrt{1-\rho})$.

(ii) The $BKT(\alpha, \lambda_1, \lambda_2, 0)$ is identical with $BD\Gamma(\alpha, \alpha, \lambda_1, \lambda_2)$.

(iii) For $\lambda_1 > \lambda_2$, the $BKT(\alpha, \lambda_1, \lambda_2, 1)$ is $\Gamma(\alpha, \lambda_1 - \lambda_2)$ while for $\lambda_1 < \lambda_2$, the $BKT(\alpha, \lambda_1, \lambda_2, 1)$ is the negative of
\( \Gamma(\alpha, \lambda_2 - \lambda_1) \).

### 4.4 Gunst and Webster’s Bilateral Gamma

As Gunst and Webster’s bivariate gamma is the convolution of \( DBGamma \) and \( KBT\), then the corresponding Gunst and Webster’s bilateral gamma is \( BDBGamma(\alpha_1 - \alpha, \alpha_2 - \alpha, \lambda_1, \lambda_2) \) convoluted with \( BKTGamma(\alpha, \lambda_1, \lambda_2, \beta) \).

The mgf is

\[
M_2(t) = \left( \frac{1}{1-\lambda_1 t} \right)^{\alpha_1 - \alpha} \left( \frac{1}{1+\lambda_2 t} \right)^{\alpha_2 - \alpha} \left( \frac{1}{1-(\lambda_1-\lambda_2) \pi (-1-\rho) \lambda_1 \lambda_2 t^2} \right)^{\alpha}.
\]

(49)

The pdf can be computed in term of Whittaker function but it will be more harder to deal with in term of inference.

### 4.5 Loaiciga and Leipnik's Bilateral Gamma

Let \( Y_1, \) and \( Y_2 \) follow Loaiciga and Leipnik’s bivariate gamma distribution, with parameters \( \alpha_1, \alpha_2, \alpha > 0, \lambda_1, \lambda_2 > 0, \) and \( |\beta| \leq \lambda_1 \lambda_2 \sqrt{\alpha_1 \alpha_2} \). The Loaiciga and Leipnik bilateral gamma distribution as \( Z = Y_1 - Y_2 \). This distribution will be denoted by \( BVTGamma(\alpha, \alpha_1, \alpha_2, \beta, \lambda_1, \lambda_2) \).

The pdf is

\[
f_z(z) = \sum_{\tau_1=0}^{\infty} \sum_{j=0}^{\infty} B_{njk} |z|^{\tau_1+j/k-n-1} \exp \left[ \frac{-z}{2} \left( \frac{\lambda_1 - \lambda_2}{\lambda_1 \lambda_2} \right) \right] \frac{\Gamma(\tau_1 + k + n - 1)}{(\tau_1 + k + n - 1)!} \frac{\Gamma(\tau_2 + k - n)}{(\tau_2 + k - n)!} \frac{\Gamma(\tau_1 + n - j)}{(\tau_1 + n - j)!} \frac{\Gamma(\tau_2 + j - n)}{(\tau_2 + j - n)!}.
\]

(50)

for \(-\infty < z < \infty\), where \( \tau_i = \alpha_i (n + \alpha) \) and \( B_{njk} \) are given by

\[
B_{njk} = \frac{(-1)^n n^{\tau_1 + \tau_2} \beta^{n/2} (1 + \lambda_2^{1/2})^{\tau_2 + j + k - n}}{\lambda_1 \tau_1 \lambda_2 \tau_2 (\tau_1 + k)! (\tau_2 + j)!} \frac{\Gamma(\tau_1 + n - j)}{(\tau_1 + n - j)!} \frac{\Gamma(\tau_2 + j - n)}{(\tau_2 + j - n)!}.
\]

The derivation of the pdf is in Appendix B.3.

The mgf is

\[
M_2(t) = \left( \frac{1}{1-\lambda_1 t} \right)^{\alpha_1 - \alpha} \left( \frac{1}{1+\lambda_2 t} \right)^{\alpha_2 - \alpha} \left( \frac{1}{1-(\lambda_1-\lambda_2) \pi (-1-\rho) \lambda_1 \lambda_2 t^2} \right)^{\alpha}.
\]

(51)

The mean and the variance are \( E(Z) = \alpha(\alpha_1 \lambda_1 - \alpha_2 \lambda_2) \), and \( V(Z) = \alpha(\alpha_1 \lambda_1^2 - \alpha_2 \lambda_2^2 - 2\beta) \), respectively.

When \( \alpha_1 = \alpha_2 = 1 \), The Loaiciga and Leipnik bilateral gamma is identical with \( BVTGamma(\alpha, 1, \lambda_1, \lambda_2, \beta) \).

The triple summation with Whittaker function in the pdf makes the distribution more complicated for getting the properties and parameters estimation of the distribution.

### 4.6 Nadarajah and Gupta’s Bilateral Gamma

The corresponding bilateral gamma distribution to Nadarajah and Gupta’s bivariate gamma distribution has complicated pdf, therefore, it will not be discussed here.

### 4.7 SD1 Bilateral Gamma

Let \( Y_1, \) and \( Y_2 \) follow SD1 bivariate gamma distribution given in Section 3, and \( Z = Y_1 - Y_2 \), then \( Z \) has \( BDBGamma\left(\alpha, 1, \frac{1}{\rho}, \frac{1}{\rho}\right) \). So the SD1 bivariate gamma distribution does not provide a new difference distribution.

### 4.8 SD2 Bilateral Gamma

Let \( Y_1, \) and \( Y_2 \) follow SD2 bivariate gamma distribution. The second self-decomposable bilateral gamma distribution as \( Z = Y_1 - Y_2 \). The mgf is

\[
M_2(t) = \left( \frac{1}{1-(\rho_1 - \rho_2) t} \right)^{\alpha} \left( \rho_1 \rho_2 + \rho_2 (1 - \rho_1) \frac{1}{1-t} + \rho_1 (1 - \rho_2) \frac{1}{1+t} + (1 - \rho_1) (1 - \rho_2) \frac{1}{1-t^2} \right)^{\alpha}.
\]

(52)

The mean and the variance are \( E(Z) = 0 \), and \( V(Z) = 2\alpha(1 - \rho_1 \rho_2) \), respectively.

The pdf is very complicated and involve triple summation with Whittaker function in the pdf makes the distribution more complicated for setting the properties and parameters estimation of the distribution.

### 5. Conclusion

Different bivariate gamma distributions provide different bilateral gamma distributions. However, under some conditions,
one can see that bilateral gamma distributions are connected. By comparing the different bivariate gamma distributions, we found that Cheriyan and Ramabhadran bivariate gamma is the convolution of a double gamma distribution with a complete dependence bivariate gamma. Gunst and Webster’s bivariate gamma can be considered as Kibble’s bivariate gamma convoluted with double gamma distribution. Loaiciga and Leipnik’s bivariate gamma is a generalization of Kibble’s bivariate gamma.

The Kibble’s bilateral gamma is a special case of the bilateral double gamma. Kibble’s bilateral gamma is equivalent to \( \alpha \cdot \Gamma(\alpha, \lambda_1, \lambda_2, 1) \) while for \( \lambda_1 < \lambda_2 \), the \( B(K(\alpha, \lambda_1, \lambda_2, 1)) \) is the negative of \( \Gamma(\alpha, \lambda_2 - \lambda_1) \).

**Funding**

This project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, Award Number (11- MAT1856-02).

**References**


Appendix A

SD1 Bivariate Gamma Distribution to Appendix A.1

Let $Y_1 = \rho X_1 + X_\rho$ and $Y_2 = \rho X_2 + X_\rho$, where $X_1$ and $X_2$ are independent $\Gamma(\alpha, 1)$ and independent of $X_\rho \sim CENB(\alpha, \rho)$.

The joint pdf of $Y_1$ and $Y_2$ is

$$f(x_1, x_2, x_\rho) = \sum_{k=0}^{\infty} \frac{\Gamma(k + \alpha)}{\Gamma(\alpha)^3 \Gamma(k) k!} \left(1 - \frac{\rho}{\alpha}\right)^k \rho^{a_1} x_1^{a_1 - 1} x_2^{a_2 - 1} x_\rho^{k-1} e^{-x_1-x_2-x_\rho}$$

$$f(y_1, y_2) = \sum_{k=0}^{\infty} \frac{\Gamma(k + \alpha)}{\Gamma(\alpha)^3 \Gamma(k) k!} \left(1 - \frac{\rho}{\alpha}\right)^k \rho^{a_2} \int_{0}^{y_1} e^{-x_1-x_2-x_\rho} dx$$

$$= \sum_{k=0}^{\infty} \frac{\Gamma(k + \alpha)}{\Gamma(\alpha)^3 \Gamma(k) k!} \left(1 - \frac{\rho}{\alpha}\right)^k \rho^{a_2} \int_{0}^{y_1} e^{-x_1-x_2-x_\rho} dx$$

For $y_1 \leq y_2$

$$\int_{0}^{y_1} x^{k-1} (y_1 - x)^{a_1-1} (y_2 - x)^{a_2-1} e^{-x} dx = \int_{0}^{y_1} x^{k-1} (y_1 - x)^{a_1-1} (y_2 - x)^{a_2-1} e^{-x} dx$$

$$= y_1^{a_1-1} y_2^{a_2-1} \int_{0}^{y_1} x^{k-1} (1 - x y_1) (1 - x y_2) e^{-x} dx$$

$$= y_1^{a+k-1} y_2^{a-1} \int_{0}^{1} u^{k-1} (1 - u)^{a_1-1} (1 - y_1 y_2 u)^{a_2} e^{-y_1 y_2 u} du.$$ 

By using (7)

$$\int_{0}^{1} u^{k-1} (1 - u)^{a_1-1} (1 - y_1 y_2 u)^{a_2} e^{-y_1 y_2 u} du = B(k, \alpha) \Phi_1(\alpha, 1 - \alpha, a + k, y_1, y_2)$$

then,

$$f(y_1, y_2) = \sum_{k=0}^{\infty} \frac{\Gamma(k + \alpha)}{\Gamma(\alpha)^3 \Gamma(k) k!} \left(1 - \frac{\rho}{\alpha}\right)^k \rho^{a_2} \int_{0}^{y_1} e^{-x_1-x_2-x_\rho} dx$$

For $y_1 > y_2$, by the same above way.

SD2 Bivariate Gamma Distribution to Appendix A.2

Let $Y_1 = \rho X_1 + X_\rho$ and $Y_2 = \rho X_2 + X_\rho$, where $X_1, X_\rho$ and $X_2, X_\rho$ are independent $X \sim \Gamma(\alpha, 1)$ and $X_\rho \sim CENB(\alpha, \rho)$, $i = 1, 2$. Then clearly both $Y_1$ and $Y_2$ have $\Gamma(\alpha, 1)$.

The joint pdf is

$$f(x_{\rho_1}, x_{\rho_2}, x) = \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{\Gamma(l + \alpha) \Gamma(k + \alpha)}{\Gamma(\alpha)^3 \Gamma(l) \Gamma(k) k! l!} \left(1 - \frac{\rho_1}{\rho}\right)^k \left(1 - \frac{\rho_2}{\rho}\right)^l \rho^{a_1} x_{\rho_1}^{a_1-1} x_{\rho_2}^{a_2-1} e^{-x_{\rho_1} e^{-x_{\rho_2}}}$$

$$f_{y_1, y_2}(y_1, y_2) = \sum_{k=0}^{\infty} \sum_{l=0}^{\infty} \frac{\Gamma(l + \alpha) \Gamma(k + \alpha)}{\Gamma(\alpha)^3 \Gamma(l) \Gamma(k) k! l!} \left(1 - \frac{\rho_1}{\rho}\right)^k \left(1 - \frac{\rho_2}{\rho}\right)^l \rho^{a_1} x_{\rho_1}^{a_1-1} x_{\rho_2}^{a_2-1} e^{-x_{\rho_1} e^{-x_{\rho_2}}}$$

$$\times \int_{0}^{y_1} \frac{y_1 + y_2}{\rho_1} e^{-x} dx$$
For \( \frac{Y_1}{\rho_1} \leq \frac{Y_2}{\rho_2} \),

\[

t_1 \frac{\rho_2}{\rho_1} e^{\rho_1 (\frac{Y_1}{\rho_1} - x)} x^{k-1} \int_0^1 \frac{\rho_1}{\rho_2} e^{\rho_1 (\frac{Y_1}{\rho_1} - x)} x^{k-1} \int_0^1 u^{a-1} (1-u)^{k-1} \left( 1 - \frac{\rho_2 y_1}{\rho_1} u \right)^{\frac{2a}{\rho_1}} d\rho_1 d\rho_2
\]

By using (7)

\[
\int_0^1 u^{a-1} (1-u)^{k-1} \left( 1 - \frac{\rho_2 y_1}{\rho_1} u \right)^{\frac{2a}{\rho_1}} d\rho_1 d\rho_2 = B(\alpha, k) \phi_1 \left( \alpha, 1 - l, \alpha + k \frac{Y_1}{\rho_1} \frac{Y_2}{\rho_1} \right)
\]

for \( \frac{Y_1}{\rho_1} \leq \frac{Y_2}{\rho_2} \), by the same above way.

**Appendix B**

The \( n \)th Moment of Küchler and Tappe Bilateral Gamma Distribution to Appendix B.1

If \( Z \) has Küchler and Tappe bilateral gamma distribution, then the \( n \)th moment is

\[
E(Z^n) = E \left[ (X_1 - X_2)^n \right] = \sum_{i=0}^n \binom{n}{i} X_1^{n-i} (-1)^i X_2^i
\]

\[
= \frac{\Gamma(\alpha + n)}{\Gamma(\alpha)} \frac{\phi_{1\alpha}^{(-n)}(Y_1, Y_2)}{\phi_{1\alpha}^{(-1)}(Y_1, Y_2)}
\]

\[
= \lambda_1 \lambda_2 \frac{\Gamma(\alpha + n) - 1}{\Gamma(\alpha)} F_2 \left( \alpha_2, -n; 1 - \alpha_1 - n; -\frac{\lambda_2}{\lambda_1} \right)
\]

\[
E((Z - \mu)^n) = E \left[ \sum_{i=0}^n \binom{n}{i} (Z - \mu)^{n-i} \right] = \sum_{i=0}^n \binom{n}{i} (-\mu)^{n-i} E(Z^i)
\]

\[
= \frac{\Gamma(\alpha + n) Y_1 \lambda_1 (\alpha_2 \lambda_2 - \alpha_1 \lambda_1)^{n-i} F_2 \left( \alpha_2, -i; 1 - \alpha_1 - i; -\frac{\lambda_2}{\lambda_1} \right)}{\Gamma(\alpha)}
\]

**Kibble Bilateral Gamma to Appendix B.2**

Let \( Y_1 \) and \( Y_2 \) follow Kibble’s bivariate gamma distribution, with parameters \( \alpha, \lambda_1, \lambda_2 > 0 \), and \( 0 < \rho < 1 \). The Kibble bilateral gamma distribution as \( Z = Y_1 - Y_2 \). This distribution will be denoted by \( BKG(\alpha, \lambda_1, \lambda_2, \rho) \).

\[
f(z) = \frac{(1-\rho)^{-a}}{\Gamma(a)} \sum_{j=0}^a \frac{\rho^j}{(\lambda_1 \lambda_2)^{a+j}} e^{\frac{1}{1-\rho}} \int_0^\infty y_1 y_1^{a+j-1} e^{-y_1 (\frac{1}{1-\rho})^{\frac{1}{\lambda_1}} \frac{1}{\lambda_2}} dy_1
\]

where \( \rho = \frac{\lambda_1 \lambda_2}{(1-\rho)^{a+j}} \).

By using (9)

\[
\int_0^\infty y_1^{a+j-1} e^{-y_1 (\frac{1}{1-\rho})^{\frac{1}{\lambda_1}} \frac{1}{\lambda_2}} dy_1
\]
\[
\begin{align*}
\frac{d}{dz} \Gamma(\alpha + j) e^{\frac{z}{2(1-\rho)}} \Gamma(\frac{1}{\lambda_1} + \frac{1}{\lambda_2}) \left( z \left( \frac{1}{1-\rho} \right) \left( \frac{1}{\lambda_1} + \frac{1}{\lambda_2} \right)^{1/2} \right) \\
\int_0^\infty y_1 a^{j-1} (y_1 - z) a^{j-1} e^{-y_1 \left( \frac{1}{\lambda_1} + \frac{1}{\lambda_2} \right)} dy_1 \\
\frac{(-z)^{a+j-1} \Gamma(\alpha + j)}{\left( \frac{1}{\lambda_1} + \frac{1}{\lambda_2} \right)^{a+j}} e^{\frac{z}{2(1-\rho)}} \Gamma(\frac{1}{\lambda_1} + \frac{1}{\lambda_2}) \left( z \left( \frac{1}{1-\rho} \right) \left( \frac{1}{\lambda_1} + \frac{1}{\lambda_2} \right)^{1/2} \right) \\
\end{align*}
\]

Then,

\[
f_Z(z) = \sum_{n=0}^\infty \sum_{j=0}^\infty \sum_{k=0}^\infty A_{njk} \exp \left( \frac{z}{\lambda_2} \right) \int_0^\infty \frac{z^{n+j-1} (x - z)^{\tau_2 + k - n - 1} \exp \left( -x \left( \frac{1}{\lambda_1} + \frac{1}{\lambda_2} \right) \right) dx
\]

where \( \tau_i = \alpha_i(n + v) \) and \( A_{njk} \) are given by

\[
A_{njk} = \frac{(-1)^{n+j+k} \rho^n (\rho)^{2}}{\lambda_1^{k+n+2} \lambda_2^{k+2} \Gamma(\tau_1) \Gamma(\tau_2)} \left( \frac{\tau_1 - 1}{n} \right) \left( \tau_2 - 1 \right)
\]

By using (9)

\[
\int_0^\infty \frac{z^{\tau_1 + j - n - 1} (x - z)^{\tau_2 + k - n - 1} \exp \left( -x \left( \frac{1}{\lambda_1} + \frac{1}{\lambda_2} \right) \right) dx
\]

\[
= \frac{z^{\tau_1 + j + \tau_2 + 2k - 2n - 1}}{\left( \frac{1}{\lambda_1} + \frac{1}{\lambda_2} \right)^{\tau_1 + j + \tau_2 + 2k - 2n + 1}} \exp \left[ -\frac{z}{2} \left( \frac{1}{\lambda_1} + \frac{1}{\lambda_2} \right) \right] \Gamma(\tau_2 + k - n - \tau_1 + j) \left( \frac{1}{\lambda_1} + \frac{1}{\lambda_2} \right)^{1/2} \left( z \left( \frac{1}{1-\rho} \right) \left( \frac{1}{\lambda_1} + \frac{1}{\lambda_2} \right)^{1/2} \right)
\]

\[
\int_0^\infty \frac{z^{\tau_1 + j - n - 1} (x - z)^{\tau_2 + k - n - 1} \exp \left( -x \left( \frac{1}{\lambda_1} + \frac{1}{\lambda_2} \right) \right) dx
\]

\[
= \frac{(-z)^{\tau_1 + j + \tau_2 + 2k - 2n - 1}}{\left( \frac{1}{\lambda_1} + \frac{1}{\lambda_2} \right)^{\tau_1 + j + \tau_2 + 2k - 2n + 1}} \exp \left[ -\frac{z}{2} \left( \frac{1}{\lambda_1} + \frac{1}{\lambda_2} \right) \right] \Gamma(\tau_1 + j - n) \left( \frac{1}{\lambda_1} + \frac{1}{\lambda_2} \right)^{1/2} \left( z \left( \frac{1}{1-\rho} \right) \left( \frac{1}{\lambda_1} + \frac{1}{\lambda_2} \right)^{1/2} \right)
\]

**Copyrights**

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).