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Abstract

In this paper, we compare empirically the performance of some adaptive MCMC methods, that is, Adaptive Metropolis
(AM) algorithm, Single Component Adaptive Metropolis (SCAM) algorithm and Delayed Rejection Adaptive Metropolis
(DRAM) algorithm. The context is the simulation of non-standard discrete distributions. The performance criterion used
is the precision of the frequency estimator. An application to a Bayesian hypothesis testing problem shows the superiority
of the DRAM algorithm over the other considered sampling schemes.
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1. Introduction

The principle of Markov chain Monte-Carlo (MCMC) approach is to construct an ergodic Markov chain whose stationary
distribution corresponds exactly to the simulating density. To do this, several sampling schemes have been proposed and
the best known one is the Metropolis-Hastings (M-H) algorithm, see (Hastings, 1970). This algorithm uses an acceptance-
rejection mechanism on values generated from some proposal distribution. Its main advantage is that the convergence is
guaranteed whatever the used proposal density. But, a bad choice of this distribution may be disastrous and leads to a very
slow convergence. This is often the case when the density of interest is complicated or of high dimension.

To overcome this limit, diverse adaptive versions of the M-H algorithm are proposed in the literature [for an overview,
see (Bardenet, Cappé, Fort & Kégl, 2015), (Liang, Liu & Carroll, 2010) and (Vihola, 2012)]. These methods allow to
adjust, automatically, the parameters of the proposal distribution in order to speed up the convergence. However, most of
them seem to be problematic due to the difficulty in ensuring the ergodicity of the simulated chains. Consequently, the
theoretical convergence results of M-H algorithm will not be applicable.

The Adaptive Metropolis (AM) algorithm is one of the most successfully applied adaptive methods. Developed originally
by (Haario, Saksman & Tamminen, 2001), this sampling scheme has the advantage to preserve the correct ergodicity
properties [see (Saksman & Vihola, 2010)], which ensures the convergence of the chain to the target distribution. Its
basic principle is to use multi-normal proposal density whose covariance matrix is tuned at each iteration. Recently, the
AM algorithm has aroused the interest of many scientists and new variants had been proposed. Thus, to improve the
performance of this sampler, particularly for high dimensions, (Haario, Saksman & Tamminen, 2005) have developed
the Single Component Adaptive Metropolis (SCAM) algorithm. Likewise, (Haario, Laine, Mira & Saksman, 2006) have
proposed the Delayed Rejection Adaptive Metropolis (DRAM) algorithm which combines both the AM sampler and the
Metropolis-Hastings algorithm with delayed rejection (MHDR).

In the literature, the most frequently used criteria to test the efficiency of MCMC methods are both convergence rate and
accuracy of considered estimators. Although many works had revealed the rapid convergence of M-H adaptive algorithms,
few studies focused on the assessment of these methods in terms of the accuracy of the calculated estimators.

In this article, we suggest to compare and analyze, experimentally, the performances of AM, SCAM and DRAM al-
gorithms, in the context of simulating non-standard discrete distributions. The performance criterion considered is the
precision of the frequency estimator. Hence, the remaining part of this work is organized as follows. In section 2, we
explain the details of the AM sampler. Section 3 contains a description of the SCAM algorithm. In section 4, the founda-
tions of the DRAM method are given with its main characteristics. Finally, our empirical study is presented in section 5,
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where the results are analyzed and discussed.

2. AM algorithm

To properly set up the M-H algorithm, it is crucial to well choose the parameters of the proposal distribution and particu-
larly the variance. Indeed, if the variance is weak, the acceptance rate will be high but the chain will converge very slowly
because the steps are very small. In case of the opposite sense, if the variance is large, the algorithm will reject most of
the proposed candidates and, consequently, the speed of its convergence will be weak. In general, the adjustment of the
proposal variance is heuristic and it forms a quite tricky problem.

The AM algorithm aims to palliate this particular difficulty. The idea is to modify, at each iteration, the covariance matrix
of the proposal distribution in order to correspond it to the target density. Just one obstacle is that the target covariance
matrix is unknown in general. In order to get around this problem, the AM algorithm estimates on each iteration the target
covariance matrix from the past values of the simulated chain.

Suppose that the AM algorithm is used to simulate a target density π and (xt, t = 0, 1, · · · ) specifies the obtained Markov
chain. The first step is to fix out the initial covariance matrix C0. On the (t + 1)th iteration of the algorithm, a candidate
is generated from a multi-normal proposal distribution, centered at the current state xt and with covariance matrix Ct+1
defined by

Ct+1 =

{
C0, if t + 1 ≤ t0,
sdcov(x0, · · · , xt) + sdϵId, if t + 1 > t0.

(1)

The term t0 indicates the time from which the proposal covariance matrix is adjusted, the parameter sd is a scaling factor
that depends to the dimension d of the states space, the term ϵ insures the non-singularity of the matrix Ct+1 and Id denotes
the identity matrix of order d.

Similarly to the M-H sampling scheme, the AM algorithm uses an acceptance/rejection mechanism to select proposed
candidates through the following steps:

1. Set x0,C0, t0, sd and ϵ.

2. On the (t + 1)th iteration:

(a) determine Ct+1 using formula (1).

(b) generate a candidate y from the proposal distribution Nd(xt,Ct+1).

(c) compute the acceptance probability

α(xt, y) = min
[
1,
π(y)
π(xt)

]
.

(d) take

xt+1 =

{
y with probability α(xt, y),
xt with probability 1 − α(xt, y).

3. Set t ← t + 1 and go to step 2.

It is important to note that the process (xt, t = 0, 1, · · · ) is far to be markovien since its future development depends on the
whole history. But its ergodicity was rigorously proved by (Haario, Saksman & Tamminen, 2001).

3. SCAM Algorithm

In the literature, the AM algorithm has been applied with success for various problems and its advantages are identified
by many authors. However, it is shown by (Haario, Saksman & Tamminen, 2005) that this simulation scheme looses
efficiency in high dimension problems. In this particular case, adjusting the covariance matrix leads to very complicated
calculations that slow down the convergence of the algorithm.

To overcome these difficulties, (Haario, Saksman & Tamminen, 2005) have suggested a new version of the AM algorithm
named the SCAM algorithm. Its special feature is that the chain future state, represented by a vector, is generated
component by component using univariate proposal densities. These distributions are normal and whose variance is
adjusted at each iteration similarly to the AM method. In this way, we pass from simulating a multivariate variable to
simulating many univariate variables which is often an easier task.

Let π be a d-dimensional distribution, that we desire to simulate through the SCAM algorithm. Suppose (xt, t = 0, 1, · · · )
is the produced markov chain and x1

t , · · · , xd
t are the d components of the vector xt. On the (t + 1)th iteration of the
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algorithm and to simulate the ith coordinate of xt+1, we generate a candidate from the normal distribution, centered at xi
t,

and with variance Ci
t+1 such that

Ci
t+1 =

{
Ci

0, if t + 1 ≤ t0,
sdcov

(
xi

0, · · · , xi
t

)
+ sϵ, if t + 1 > t0.

(2)

where Ci
0 is the initial value of the variance, t0 is the moment at which the variance is adjusted, s is a scaling factor whose

value exceeds 1 and ϵ is a positive constant such that 0 < ϵ < 1.

In order to accept/reject the proposed candidate, SCAM algorithm uses the M-H dynamic. Thus, starting from xi
t, the

component xi
t+1 is obtained by the following scheme:

1. Determine Ci
t+1 using the formula (2).

2. Generate a candidate yi from the proposal distribution N
(
xi

t,C
i
t+1

)
.

3. Compute the acceptance probability

α(xi
t, y

i) = min

1, π
(
x1

t+1, · · · , xi−1
t+1, y

i, xi+1
t , · · · , xd

t

)
π
(
x1

t+1, · · · , xi−1
t+1, x

i
t, x

i+1
t , · · · , xd

t

)  .
4. Take

xi
t+1 =

{
yi with probability α(xi

t, y
i),

xi
t with probability 1 − α(xi

t, y
i).

As for the AM sampler, the generated process (xt, t = 0, 1, · · · ) is no more a Markov chain. However and according
to (Haario, Saksman & Tamminen, 2005), this process meets the ergodicity property that ensures its convergence to the
distribution of interest π.

4. DRAM Algorithm

Originally developed by (Haario, Laine, Mira & Saksman, 2006), the DRAM sampling scheme aims to combine the
rapidity of the AM algorithm with the high performance of the MHDR algorithm. The latter was suggested by (Mira,
1998) and constitutes an improved version of the M-H algorithm whose aim is to reduce the variance of the computed
estimators. The idea is to propose more than one candidate within the same iteration in order to increase the acceptance
rate, see (Baffoun, Hajlaoui & Farhat, 2017).

4.1 MHDR Algorithm

Suppose that we desire to construct a Markov chain (xt, t = 0, 1, · · · ) whose invariant distribution is exactly π. Analogously
to the M-H algorithm, on the (t + 1)th iteration of MHDR algorithm, the first step is to generate a candidate y1 from the
proposal distribution q1(xt, ·). This candidate is accepted as a new state of the chain with the probability

α1(xt, y1) = min
[
1,
π(y1)q1(y1, xt)
π(xt)q1(xt, y1)

]
.

In case of rejection and instead of staying in the current state, as suggested by M-H algorithm, we pass to step two by
generating a new candidate y2 from the proposal density q2(xt, y1, ·). This candidate is accepted with the probability

α2(xt, y2) = min
[
1,
π(y2)q1(y2, y1)q2(y2, y1, xt)[1 − α1(y2, y1)]
π(xt)q1(xt, y1)q2(xt, y1, y2)[1 − α1(xt, y1)]

]
.

This sampler can be applied with fixed or random number of steps by iteration, see (Mira, 1998). It is interesting to note
that all acceptance probabilities are computed so that reversibility of the chain, with respect to the density of interest, is
preserved separately at each step.

4.2 Combining MHDR and AM Algorithms

The DRAM sampling scheme is based on a similar concept as MHDR method. Except that the candidate of the first step
is now generated by AM algorithm rather than by M-H algorithm. For this fact, a normal proposal distribution is used
which is centered on the current value of the chain and whose variance is adjusted at each iteration. For the second step,

3



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 7, No. 3; 2018

(Haario, Laine, Mira & Saksman, 2006) recommend that the proposal density of the previous step is maintained while
reducing its variance.

Let π be a d−dimensional distribution that we desire to simulate through the DRAM algorithm. On the (t+1)th iteration of
the algorithm, we use, for the first step, the proposal density q1 = Nd(xt,Ct+1) where Ct+1 specifies the covariance matrix
computed according to eq.(1). The proposal density of the second step is q2 = Nd(xt, αCt+1) with α is a scaling factor
chosen from the interval ]0, 1[. Thus, the transition from the current state xt to the future state xt+1 is done as follows:

1. Set the initial state x0 and the initial covariance matrix C0.

2. On the (t + 1)th iteration:

(a) determine Ct+1.

(b) generate a candidate y1 from the proposal distribution q1.

(c) compute the acceptance probability

α1(xt, y1) = min
[
1,
π(y1)
π(xt)

]
.

(d) set xt+1 = y1 with probability α1(xt, y1), otherwise

i. generate a candidate y2 from the proposal density q2,
ii. calculate the acceptance probability

α2(xt, y2) = min
[
1,
π(y2)q1(y2, y1)[1 − α1(y2, y1)]
π(xt)q1(xt, y1)[1 − α1(xt, y1)]

]
.

iii. take

xt+1 =

{
y2 with probability α2(xt, y2),
xt with probability 1 − α2(xt, y2).

3. Set t ← t + 1 and go to step (2).

As for the AM algorithm, the simulated process (xt, t = 0, 1, · · · ) does not form a Markov chain since its future devel-
opment depends to all its past states. However and according to (Haario, Laine, Mira & Saksman, 2006), this process
complies with the ergodicity property that ensures its convergence to the distribution of interest π.

5. Experimental Study

This section aims to compare, empirically, the performances of AM, SCAM, and DRAM algorithms. For this purpose, we
use a real application from (Liang & Liu, 2005). It is a Bayesian hypothesis testing problem which consists of checking
if one of the coefficients of a logistic regression model is positive or not.

5.1 Data Description

In this study, the dataset is taken from (Ashford, 1959). It concerns the proportion of British coal miners who present
symptoms of severe pneumoconiosis and the length of service in the colliery. Following (Liang & Liu, 2005), we consider
the logistic regression model given by

E(yi) =
exp(β0 + β1zi + β2z2

i )

1 + exp(β0 + β1zi + β2z2
i )
, i = 1, · · · , 371,

where β0, β1, and β2 are the regression coefficients, zi is the number of years of service of the ith miner and yi is the binary
indicator of severe pneumoconiosis. By assuming that β0, β1, and β2 are independently distributed with a common normal
density of mean 0 and variance σ2 = 100 and if we let β be the column vector of these coefficients, the log-posterior
density of β is defined (up to an additive constant) by

log π(β|D) =
∑371

i=1 yi(β0 + β1zi + β2z2
i ) −∑371

i=1 log(1 + exp(β0 + β1zi + β2z2
i ))

− 1
2σ2 (β2

0 + β
2
1 + β

2
2),

where D is the set of all observations.

The aim of this study is to test the null hypothesis β2 < 0. In (Liang & Liu, 2005), this problem is reduced to the
comparison of the posterior probabilities π(A1) and π(A2), where A1 = {β : β2 < 0} and A2 = {β : β2 ≥ 0}. The solution
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consists of sampling at first, through a MCMC algorithm, an ergodic chain (xt, t = 0, 1, · · · ) whose invariant distribution
is the posterior π(β|D) to approximate later π(Ai), i = 1, 2, with the frequency estimator,

π̂ f (Ai) =
1
n

n−1∑
t=0

I(xt ∈ Ai), i = 1, 2, (3)

where n is the number of iterations performed and I(·) is the indicator function of Ai. In this study, we suggest to resolve
this problem in a similar manner using AM, SCAM and DRAM algorithms. The objective is to compare the performances
of these adaptive MCMC methods in terms of the precision of the frequency estimator.

5.2 Implementation

To set up a MCMC method, it is important to fix out some parameters that largely affect the simulation results. The
choice of these parameters is based mainly on the characteristics of the considered problem. In the sequel, we detail our
implementation for each considered sampling scheme.

5.2.1 Parameterizing of the AM Algorithm

Contrary to the M-H algorithm where the choice of the proposal distribution is arbitrary, the AM sampler uses a multi-
normal proposal density. The proper application of this method requires optimization of the proposal covariance matrix
in order to better approximate the target covariance matrix.

As explained in section 2, AM algorithm generates the first t0 observations from a fixed candidate density, centered at
the current state of the chain and with covariance matrix C0. (Haario, Saksman & Tamminen, 2001) recommend that
this first part of the simulated chain should be relatively short in order to speed up the convergence of the algorithm.
For this application, we choose t0 = 1000 and C0 = diag[1, 0.001, 0.0001]. Then, to construct the rest of the chain, the
AM sampler uses a proposal distribution whose covariance matrix is updated at each iteration according to eq.(1). The
calculation of the latter requires to set the parameters sd and ϵ. Following (Haario, Saksman & Tamminen, 2001), we
take the scaling parameter to be sd =

(2.4)2

d . Concerning the parameter ϵ, which is chosen to be small (compared to the
dimension of the states space), we assign it a value of 0.001.

To simulate from π(β|D), we choose β0, the null column vector of order 3, as the starting point of the AM algorithm. On
(t + 1)th iteration, a value y is generated from the candidate distribution N3(βt,Ct+1) where βt is the current state of the
chain and Ct+1 is the covariance matrix defined by

Ct+1 =

{
C0, if t + 1 ≤ 1000,
5.760

3 cov(β0, · · · , βt) + 0.006
3 I3, if t + 1 > 1000.

The value y is then accepted with the probability

α(βt, y) = min
[
1,
π(y)
π(βt)

]
.

In case of rejection, the produced chain stays in its current state i.e. βt+1 = βt.

5.2.2 Parameterizing of the SCAM Algorithm

Recall that in case of the SCAM algorithm, the realizations are simulated component by component using proposal
normal distributions. To generate a Markov chain with stationary distribution π(β|D), each iteration of this sampler
scheme contains three steps. Given the current state of the chain βt = (βt

0, β
t
1, β

t
2)′, the first step consists of replacing the

first coordinate βt
0 by βt+1

0 to thereby produce the vector (βt+1
0 , β

t
1, β

t
2)′. The second coordinate of the latter is then replaced

during the second step by βt+1
1 . The last step finishes the movement from βt to βt+1 by replacing the third coordinate βt

2 by
βt+1

2 .

During the 1000 first iterations, we use to simulate βt+1
i , for i = 0, 1, 2, a proposal normal distribution, centered at the

current value βt
i, and with variance C0 whose value is set to 0.01. In the remaining iterations, the proposal variance C0

is replaced by another whose value changes at each step using eq.(2). In this equation the choice of the parameter s
can largely affect the performance of the SCAM algorithm. So, we take s = 2.4, corresponding to the optimum value
presented in (Haario, Saksman & Tamminen, 2005). Concerning the parameter ϵ, which should be included between 0
and 1, we set its value to 0.001.

5.2.3 Parameterizing of the DRAM Algorithm

In order to combine MHDR algorithm with AM method, several strategies had been proposed and experimented in the
literature. Among them, we retain here the one recommended by (Haario, Laine, Mira & Saksman, 2006). Its principle
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is to simulate a first part of the chain using the standard MHDR algorithm with a multi-normal proposal distribution. For
the rest of iterations, the proposal covariance matrix of the first step is updated, at each step, using AM method.

To simulate from the target density π(β|D), we employ the MHDR algorithm to generate the first 1000 observations. On
the (t + 1)th iteration of the algorithm, the first step is to suggest a value y1 from the candidate density q1 = N3(βt,C0)
where βt is the current state of the chain and C0 denotes the covariance matrix such that C0 = diag[1, 0.001, 0.0001]. In
the second step of the algorithm, a new value y2 is generated from the candidate distribution q2 = N3(βt,M0). As advised
by (Green & Mira, 2001), we set M0 = 0.5C0 so that, in stationarity, the acceptance rate would be optimum.

In the remaining iterations, we use, in the first step of the MHDR algorithm, the AM method, and this in order to adjust
the proposal covariance matrix. Thus, on the (t + 1)th iteration, a first value y1 is generated from the proposal distribution
q1 = N3(βt,Ct+1) where Ct+1 is the covariance matrix obtained by

Ct+1 =
5.760

3
cov(β0, · · · , βt) +

0.006
3

I3.

Recall that this proposal distribution is the same used to simulate from π(β|D) via the AM algorithm. During the second
step of the sampling scheme, a second value y2 is generated from the candidate density q2 = N3(βt,Mt+1) where Mt+1
denotes the covariance matrix such that Mt+1 = 0.5Ct+1.

As indicated in section 4, the acceptance probability of the proposition y1 is defined by

α1(βt, y1) = min
[
1,
π(y1)
π(βt)

]
.

In case of rejection, the second proposed candidate y2 becomes the new state of the chain with the probability

α2(βt, y2) = min
[
1,
π(y2)q1(y2, y1)[1 − α1(y2, y1)]
π(βt)q1(βt, y1)[1 − α1(βt, y1)]

]
.

5.3 Experimental Results and Interpretation

To simulate from the posterior distribution π(β|D), we run 110000 iterations using AM, SCAM and DRAM algorithms
with an initial common value β0, the null column vector of order three. After an initial burn-in period of 10000 iterations,
we consider that each generated chain has reached its stationary distribution. Then the quantities π(A1) and π(A2) are
solely estimated on the basis of the remaining 100000 iterations. These estimates have been repeated 100 times in order
to know their variability. The results given in table-1 present the mean values of estimates and their standard errors.
Whereas, those in table-2 concern the acceptance rates calculated in (Baffoun, Hajlaoui & Farhat, 2017) and in this work.

Table 1. Estimation results obtained by M-H, AM, SCAM and DRAM methods.

Algorithm π̂ f (A1) π̂ f (A2)
Average (%) Std error (×10−3) Average (%) Std error (×10−3)

M-H(∗) 95.62 2.523 4.38 2.523
AM 95.51 2.179 4.49 2.179
SCAM 95.67 2.186 4.33 2.186
DRAM 95.65 1.953 4.35 1.953
(∗) The M-H statistics are derived from (Liang & Liu, 2005).

Table 2. Acceptance rates of MCMC algorithms.

Algorithm M-H AM SCAM DRAM
Acceptance rate 0.168 0.248 0.233 0.379

Examining table-1 shows that all the tested sampling schemes lead practically to the same estimated quantities π(A1) and
π(A2). But in terms of precision, we can note some disparities in the obtained results. According to this criterion, DRAM
algorithm seems to be the most attractive method while, the M-H algorithm appears to have the worst performances. In
what follows, we will try to analyze and interpret these results function of the behavior of each considered algorithm,
particularly, using the acceptance rate whose values are provided in table-2.

It is important to remark that the AM and SCAM algorithms provide very close results for the precision of the considered
estimators. This finding is perfectly coherent with the literature that indicates for small dimension, the performances of
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AM sampling scheme are identical to those of SCAM method. This similarity appears even in the values of the computed
acceptance rate for each algorithm.

Compared with M-H algorithm, AM and SCAM methods seem to offer a tangible improvement since the standard error
is decreased about 15%. Moreover, we note that these two sampling schemes tend to reject fewer propositions than MH
algorithm, thus resulting in relatively high acceptance rates, quite close to the optimum value of 0.25. This shows clearly
that the tuning of the proposal distribution allowed a good exploration of the target density support and, at the same time,
a decrease in the correlation between the states of a same chain. It is precisely this last point which explains the observed
reduction of the standard error by referring to Peskun’s asymptotic variance ordering (Peskun, 1973).

Considering the performances of DRAM algorithm, we can notice that the obtained results are clearly better than that of
AM method. In fact, the standard error has been decreased at about 10% while the acceptance rate is increased at about
35%. This constatation indicates that the proposed jumps, during the second step of the algorithm, are very small and then
frequently accepted. Intuitively, this augmentation of the number of accepted candidates would decrease the correlation
between the states of the simulated chain. This fact justifies the observed reduction of the standard error under the Peskun
ordering.

Compared to the M-H method, the DRAM algorithm gives appreciably better results since the standard error is decreased
by more than 20%. Moreover, the low acceptance rate realized by the M-H scheme indicates that most of the proposed
values are localized in low density zones of π(β|D). This leaves to suppose that the used proposal distribution is signifi-
cantly different from the target density. The DRAM algorithm allowed overcoming this failure by adjusting the covariance
matrix of the instrumental distribution so as to correspond with that of the target density. In addition, this algorithm has the
advantage to propose more than one value per iteration, that ensures a better exploration of the support of the distribution
of interest. Thus, in view of its exceptional proprieties, the DRAM scheme constitutes an interesting alternative to the
M-H algorithm.

6. Conclusion

In this paper, three advanced MCMC methods: AM, SCAM and DRAM algorithms are studied experimentally in the
context of estimating non-standard discrete distributions. The performance criterion used is the precision of the frequency
estimator. The obtained results reflect the superiority of the DRAM algorithm over to the other considered sampling
schemes. We also deduced that the performance of AM and SCAM algorithms are almost similar and significantly
superior to that of the M-H sampler, whose results are presented in (Liang & Liu, 2005). All these results prove the high
performance of adaptive MCMC methods, and more particularly the DRAM sampler. However, this powerful algorithm
has the disadvantage to be expensive in terms of computing time.
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