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Abstract

A new family of generalized distributions called the beta Weibull-G (BWG) distribution is proposed and developed. This
new class of distributions has several new and well known distributions including exponentiated-G, Weibull-G, Rayleigh-
G, exponential-G, beta exponential-G, beta Rayleigh-G, beta Rayleigh exponential, beta-exponential-exponential, Weibull-
log-logistic distributions, as well as several other distributions such as beta Weibull-Uniform, beta Rayleigh-Uniform, beta
exponential-Uniform, beta Weibull-log logistic and beta Weibull-exponential distributions as special cases. Series expan-
sion of the density function, hazard function, moments, mean deviations, Lorenz and Bonferroni curves, Rényi entropy,
distribution of order statistics and maximum likelihood estimates of the model parameters are given. Application of the
model to real data set is presented to illustrate the importance and usefulness of the special case beta Weibull-log-logistic
distribution.

Keywords: Generalized distribution, Beta Weibull-G distribution, Beta Weibull log-logistic distribution, Exponentiated-
G distribution, Maximum Likelihood Estimation

1. Introduction

In this note, we present and study a new class of generalized distributions namely the beta Weibull-G family of distribu-
tions. This new family of distributions is a mixture of the exponentiated-G family of distributions and it includes new
distributions such as the beta-Weibull-uniform (BWU), beta-Weibull exponential (BWE), and beta Weibull log-logistic
(BWLLoG) distributions among several other distributions as special cases. The Weibull-G family of distributions gen-
eralizes the Weibull distribution which is considered one of the most important distribution used in the modeling lifetime
data.

Oluyede, Pu, Makubate & Qiu (2018) introduced the gamma Weibull-G family of distributions by combining the gamma-
generator with the Weibull-G family of distributions which was defined by Bourguignon, Silva & Cordeiro (2014). This
new class of distributions is flexible in accommodating all forms of hazard rate functions and contains several well
known and new sub-models such as Weibull, Rayleigh, exponential, modified Weibull, gamma-modified Weibull, gamma-
modified exponential, gamma-Weibull and gamma-Rayleigh distributions.

Weibull distribution is often the initial choice when modeling monotone hazard rate functions, however, when modeling
phenomenon with non-monotone failure rates such as bathtub and unimodal failure rates, it is not a reasonable fit (Al-
malki and Nadarajah (2015), Elbatal and Merovci (2015)). To avoid this problem, several generalizations of the Weibull
distribution have been introduced for modeling complex data and obtaining better fits. Oluyede, Huang & Yang (2015)
developed and presented a new class of generalized modified Weibull distribution in this context. Gurvich, DiBenedetto
& Ranade (1997) developed a new general family of univariate distributions generated from the Weibull distribution for
characterizing the random strength of brittle materials. Other generalizations include the gamma-exponentiated Weibull
distributions (GEW) in line with the work done by Zografos and Balakrishnan (2009). See Pinho, Cordeiro & Nobre
(2012) and references therein for details.

We are motivated to introduce this new and flexible extended generator, the beta Weibull-G family of distributions by
combining the beta generator with the Weibull-G family of distributions given by Bourguignon et al. (2014). We hope
this new family of generalized distributions will provide a much better fit in certain practical situations. We also provide
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a rigorous derivation of the statistical properties of the new family of distributions.

This content of this paper is outlined as follows. The Weibull-G family of distributions is given in Section 2. In Section
3, some mathematical and statistical properties of the beta Weibull-G family of distributions including the sub-models,
expansion of density function, hazard and reverse hazard functions, quantile function, moments, conditional moments,
mean deviations, Bonferroni and Lorenz curves, order statistics, Rényi entropy and maximum likelihood estimates are
presented. Some examples of the beta Weibull-G distribution are given in Section 4. The special case of the beta Weibull
log-logistic distribution is treated in detail in Section 5. A Monte Carlo simulation study to examine the performance of
the maximum likelihood estimates of the BWLLoG distribution is presented in Section 6. An application of the special
case of the BWLLoG distribution is given in Section 7, followed by concluding remarks in Section 8.

2. The Weibull-G Family of Distributions

The Weibull-G family of distributions was proposed by Bourguignon et al. (2014). Considering the cumulative distri-
bution function (cdf) of the Weibull distribution expressed as F(x) = 1 − exp

{
−αxβ

}
for x > 0 with α and β as scale

and shape parameters, and by replacing x with G(x; ξ)/Ḡ(x; ξ), where Ḡ(x; ξ) = 1 − G(x; ξ), then the Weibull-G cdf and
probability density function (pdf) are given by

FWG(x;α, β, ξ) = 1 − exp

−α
[
G(x; ξ)
Ḡ(x; ξ)

]β , (1)

and

fWG(x;α, β, ξ) = αβg(x; ξ)
G(x; ξ)β−1

Ḡ(x; ξ)β+1
exp

−α
[
G(x; ξ)
Ḡ(x; ξ)

]β , (2)

respectively, where G(x; ξ) and g(x; ξ) as the cdf and pdf of any baseline distribution depending on a parameter vector
ξ. Tahir, Zubair, Mansoor, Alizadeh, Cordeiro & Hamedani (2016) introduced a new Weibull-G (NWG) family of dis-
tributions which is flexible since the hazard rate shapes include: constant, increasing, decreasing, bathtub, upside-down
bathtub, J, reversed-J and S. The sub-models or special cases include Weibull-Uniform (WU), Weibull-Rayleigh (WR),
Weibull-Logistic (WLLoG), Weibull-Burr XII (WBXII) and Weibull-Normal (WN) distributions. The density of the new
family of distributions can be symmetrical, left skewed, right skewed, bathtub and reversed J shaped. The cdf and pdf are
given as

FNWG(x;α, β, ξ) = 1 − exp
{
−α [−log

[
G(x; ξ)

]]β} , (3)

and
fNWG(x;α, β, ξ) = αβ

g(x; ξ)
G(x; ξ)

[−log
[
G(x; ξ)

]]β−1 exp
{
−α [−log

[
G(x; ξ)

]]β} , (4)

respectively, where g(x; ξ) is the parent pdf.

3. The Beta Weibull-G Family of Distributions

A new generalization of the Weibull-G family of distributions referred to as the beta Weibull-G (BWG) family of distri-
butions is proposed and studied with the aim of attracting wider application in reliability, survival analysis, biology and
other areas of research. This generalization contains several new sub-models such as the beta Exponentiated-G (BEG),
beta Rayleigh-G (BRG), Lehmann-G, Exponentiated Weibull-G (EWG), Exponentiated Rayleigh-G (ERG), Exponenti-
ated Exponential-G (EEG), Weibull-G (WG), Rayleigh-G (RG), Exponential-G (EG) distributions, along with several
others. The proposed BWG distribution seems to be an important distribution that can be used in modeling reliability and
survival data due to its flexibility in accommodating all forms of hazard functions. Special cases of BWG distribution
are useful for modeling bathtub-shaped failure rate data and testing goodness-of-fit of some special sub-models like the
exponential-uniform (EU), exponential-exponential (EE), exponentiated modified Weibull (EMW), and a host of other
sub-distributions.

A general class of distributions called the beta-G family of distributions is defined by

F(x) =
BG(x)(a, b)

B(a, b)
, (5)

where G(x) denote a cdf of a continuous random variable X, BG(x)(a, b) =
∫ G(x)

0 ta−1(1 − t)b−1dt, and 1
B(a,b) =

Γ(a+b)
Γ(a)Γ(b) . The

above generalized class of distributions was motivated by the work of Eugene, Famoye & Lee (2002). The authors studied
the beta-normal distribution. Other discussed beta-G distributions include the work by Lee, Famoye & Olumolade (2007).
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By taking the baseline cdf G(x) in equation (5) to be the cdf of the Gumbel, Frechet, exponential, and exponentiated expo-
nential distributions, Nadarajah and Kotz (2004) proposed beta Gumbel distribution, Nadarajah and Gupta (2004) studied
the beta Frechet distribution, Nadarajah and Kotz (2005) proposed beta exponential distribution and Barreto-Souza, San-
tos & Cordeiro (2010) developed the beta exponentiated exponential distribution. Pescim, Demetrio, Cordeiro, Ortega
& Urbano (2010) proposed and studied the beta generalized half-normal distribution, with half-normal and generalized
half-normal distributions as special cases. Recently, Carrasco, Cordeiro & Ortega (2008) studied the generalized modified
Weibull distribution and more recently, Oluyede and Yang (2015) developed a new class of distributions called the beta
generalized Lindley distribution.

Therefore, by choosing G(x) as the Weibull-G distribution, a larger and readily applicable class of distributions is obtained.
Recall, the Weibull-G distribution has the pdf given by

fWG(x) = αβg(x; θ)
G(x; θ)β−1

Ḡ(x; θ)β+1
exp

−α
[
G(x; θ)
Ḡ(x; θ)

]β
for x, α, β > 0. The cdf of BWG distribution is given by

FBWG(x; a, b, α, β, θ) =
1

B(a, b)

∫ 1−exp
{
−α

[
G(x;θ)
Ḡ(x;θ)

]β}
0

ta−1(1 − t)b−1dt

= I[
1−exp

{
−α

[
G(x;θ)
Ḡ(x;θ)

]β}](a, b). (6)

If |t| < 1 and b > 0 is a real non-integer, we apply the series representation

(1 − t)b−1 =

∞∑
j=0

(−1) jΓ(b)
j!Γ(b − j)

t j, (7)

to the BWG distribution to obtain

FBWG(x; a, b, α, β, θ) =
1

B(a, b)

∞∑
j=0

(−1) jΓ(b)
j!Γ(b − j)

∫ 1−exp
{
−α

[
G(x;θ)
Ḡ(x;θ)

]β}
0

ta+ j−1dt

=
1

B(a, b)

∞∑
j=0

(−1) jΓ(b)
[
1 − exp

{
−α

[
G(x;θ)
Ḡ(x;θ)

]β}]a+ j

j!(a + j)Γ(b − j)
,

where B(a, b) =
∫ ∞

0 ta−1(1 − t)b−1dt = Γ(a)Γ(b)
Γ(a+b) and a > 0, b > 0. The pdf of BWG distribution is given by

fBWG(x; a, b, α, β, θ) =
αβ

B(a, b)
g(x; θ)

G(x; θ)β−1

Ḡ(x; θ)β+1
exp

−αb
[
G(x; θ)
Ḡ(x; θ)

]β
1 − exp

−α
[
G(x; θ)
Ḡ(x; θ)

]β
a−1

, (8)

for a, b, α, β > 0. In order to avoid issues or problems with over parametrization, only cases in which the parent distribution
G(x; θ) has one parameter and cases in which the Weibull distribution of the BWG model is replaced by the exponential
distribution leading to the beta exponential-G distribution are considered. Several sub-models can be obtained when the
parameter vector θ is changed and some of these sub-models or special cases are presented in Table 3.1 below:

Table 1. Some Sub-Models of the BWG Family of Distributions

Distribution G(x; θ)/
[
1 −G(x; θ)

]
θ

Uniform (0 < x < θ) x/(θ − x) θ
Exponential (x > 0) eλx − 1 λ

Weibull (x > 0) eλxγ − 1 (λ, γ)
Fréchet (x > 0) (eλxγ − 1)−1 (λ, γ)

Half-logistic (x > 0) (ex − 1)/2 ∅
Power function (0 < x < 1/θ) [(θx)−k − 1]−1 (θ, k)

Pareto (x ≥ θ) (x/θ)k − 1 (θ, k)
Log-logistic (x > 0) (x/s)c (s, c)
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3.1 Some Sub-Models

1. When β = 1, we have the beta exponential-G (BEG) distribution with pdf given as

fBEG(x; a, b, α, θ) =
α

B(a, b)
g(x; θ)

1
Ḡ(x; θ)2

exp
{
−αb

[
G(x; θ)
Ḡ(x; θ)

]} [
1 − exp

{
−α

[
G(x; θ)
Ḡ(x; θ)

]}]a−1

.

2. When β = 2, the resulting distribution is the beta Rayleigh-G (BRG) distribution with pdf given by

fBRG(x; a, b, α, θ) =
2α

B(a, b)
g(x; θ)

G(x; θ)
Ḡ(x; θ)3

exp

−αb
[
G(x; θ)
Ḡ(x; θ)

]2

1 − exp

−α
[
G(x; θ)
Ḡ(x; θ)

]2

a−1

.

3. If a = 1, we obtain the Lehmann-G distribution, where the pdf is given by

fLehmann (x; b, α, β, θ) = bαβ
G(x; θ)β−1

Ḡ(x; θ)β+1
g(x; θ)

exp

−α
[
G(x; θ)
Ḡ(x; θ)

]β
b−1

.

4. Setting b = 1, we obtain the exponentiated Weibull-G (EWG) distribution. The EWG pdf is

fEWG(x; a, α, β, θ) = αβg(x; θ)
G(x; θ)β−1

Ḡ(x; θ)β+1

exp

−α
[
G(x; θ)
Ḡ(x; θ)

]β
 a

1 − exp

−α
[
G(x; θ)
Ḡ(x; θ)

]β
a−1

.

5. When a = 1 and β = 2, we obtain the exponentiated Rayleigh-G (ERG) distribution with the pdf

fERG(x;α, b, θ) = 2αg(x; θ)
G(x; θ)
Ḡ(x; θ)3

exp

−α
[
G(x; θ)
Ḡ(x; θ)

]2
 b

exp

−α
[
G(x; θ)
Ḡ(x; θ)

]2

b−1

.

6. When a = β = 1, we obtain the exponentiated exponential-G (EEG) distribution, where the pdf is given by

fEEG(x;α, b, θ) = αg(x; θ)
1

Ḡ(x; θ)2
exp

{
−α

[
G(x; θ)
Ḡ(x; θ)

]}
b
[
1 − exp

{
−α

[
G(x; θ)
Ḡ(x; θ)

]}]b−1

.

7. When a = b = 1, we obtain the Weibull-G (WG) distribution (Bourguignon et al. (2014)). The WG pdf is given by

fWG(x;α, β, θ) = αβg(x; θ)
G(x; θ)β−1

Ḡ(x; θ)β+1
exp

−α
[
G(x; θ)
Ḡ(x; θ)

]β .
8. When a = b = 1 and β = 2, we obtain the Rayleigh-G (RG) distribution, where the pdf is given by

fRG(x;α, θ) = 2αg(x; θ)
G(x; θ)
Ḡ(x; θ)3

exp

−α
[
G(x; θ)
Ḡ(x; θ)

]2
 .

9. When a = b = β = 1, we obtain the exponential-G (EG) distribution, where the pdf is given by

fEG(x;α, θ) = αg(x; θ)
G(x; θ)
Ḡ(x; θ)2

exp
{
−α

[
G(x; θ)
Ḡ(x; θ)

]}
.

3.2 Expansion of the BWG Density Function

Considering the binomial series expansion given by

(1 − z)b−1 =

∞∑
i=0

(−1)iΓ(b)
i!Γ(b − i)

zi,
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for b > 0 and |z| < 1, we have1 − exp

−α
[
G(x; θ)
Ḡ(x; θ)

]β
a−1

=

∞∑
i=0

(−1)iΓ(a)
i!Γ(a − i)

exp

−αi
[
G(x; θ)
Ḡ(x; θ)

]β
 .

Inserting this into the pdf of the BWG distribution, we obtain

fBWG(x) =
αβ

B(a, b)
g(x; θ)

G(x; θ)β−1

Ḡ(x; θ)β+1

∞∑
i=0

(−1)iΓ(a)
i!Γ(a − i)

exp

−α(b + i)
[
G(x; θ)
Ḡ(x; θ)

]β
 . (9)

Considering the series expansion of the exponential function below

exp

−α(b + i)
[
G(x; θ)
Ḡ(x; θ)

]β = ∞∑
j=0

(−1) j [α(b + i)] j

j!

[
G(x; θ)
Ḡ(xθ)

]β j

, (10)

and inserting equation (10) into the pdf of the BWG distribution, we obtain

fBWG(x) =
αβ

B(a, b)
g(x; θ)

G(x; θ)β−1

Ḡ(x; θ)β+1

∞∑
i, j=0

(−1)i+ j [α(b + i)] j Γ(a)
i! j!Γ(a − i)

G(x; θ)β j

Ḡ(x; θ)β j

=
αβ

B(a, b)
g(x; θ)

∞∑
i, j=0

(−1)i+ j [α(b + i)] j Γ(a)
i! j!Γ(a − i)

G(x; θ)β j+β−1

Ḡ(x; θ)β j+β+1
. (11)

Note that

[Ḡ(x; θ)]−(β j+β+1) =

∞∑
k=0

Γ(β j + β + k + 1)
k!Γ(β j + β + 1)

[
G(x; θ)

]k
,

so that the BWG pdf can be written as:

fBWG(x) =
αβ

B(a, b)

∞∑
i, j,k=0

(−1)i+ j [α(b + i)] j Γ(a)Γ(β j + β + k + 1)
i! j!k!Γ(a − i)Γ(β j + β + 1)

g(x; θ)
[
G(x; θ)

]β j+β+k−1

=

∞∑
i, j,k=0

αβ

B(a, b)
(−1)i+ j [α(b + i)] j Γ(a)Γ(β j + β + k + 1)
i! j!k!Γ(a − i)Γ(β j + β + 1)(β j + β + k)

(β j + β + k)g(x; θ)
[
G(x; θ)

]β j+β+k−1

=

∞∑
i, j,k=0

w∗(i, j, k)(β j + β + k)g(x; θ)
[
G(x; θ)

]β j+β+k−1
, (12)

where

w∗(i, j, k) =
αβ

B(a, b)
(−1)i+ j [α(b + i)] j Γ(a)Γ(β j + β + k + 1)
i! j!k!Γ(a − i)Γ(β j + β + 1)(β j + β + k)

, (13)

are the weights functions. The BWG pdf can be written as an infinite mixture of the exponentiated-G (EG) densities
(Cordeiro, da Cunha & Ortega, 2013) with power parameter β(1 + j) + k > 0 and parameter vector θ. It follows therefore
that the BWG density is a linear combination of exponential-G (EG) densities. Thus, the mathematical and statistical
properties of the BWG distribution can be readily obtained from those of the EG distribution.

3.3 Hazard and Reverse Hazard Functions

The hazard and reverse hazard functions of the BWG distribution are given by

hBWG(x) =
fBWG(x)

1 − FBWG(x)

=

αβg(x; θ)
[
G(x; θ)

]β−1
exp

{
−αb

[
G(x;θ)
Ḡ(x;θ)

]β}
B(a, b)

[
Ḡ(x; θ)

]β+1
1 − I[

1−exp
{
−α

[
G(x;θ)
Ḡ(x;θ)

]β}](a, b)


1 − exp

−α
[
G(x; θ)
Ḡ(x; θ)

]β
a−1
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and

τBWG(x) =
fBWG(x)
FBWG(x)

=

αβg(x; θ)
[
G(x; θ)

]β−1
exp

{
−αb

[
G(x;θ)
Ḡ(x;θ)

]β}
B(a, b)

[
Ḡ(x; θ)

]β+1
I[

1−exp
{
−α

[
G(x;θ)
Ḡ(x;θ)

]β}](a, b)

1 − exp

−α
[
G(x; θ)
Ḡ(x; θ)

]β
a−1

,

respectively.

3.4 Quantile Function

The quantile function of the beta Weibull-G family of distributions is obtained by inverting FBWG(x) = u, where FBWG(x)
is given by equation (6), and u to be a uniform variate on the interval [0, 1]. That is, we solve

I[
1−exp

{
−α

[
G(x;θ)
Ḡ(x;θ)

]β}](a, b) = u,

that is,

exp

−α
[
G(x; θ)
Ḡ(x; θ)

]β = 1 − I−1
u (a, b).

By taking logarithm on both sides, we have

G(x; θ)
Ḡ(x; θ)

=

(
− 1
α

ln
[
1 − I−1

u (a, b)
]) 1

β

,

so that

G(x; θ) =

(
− 1
α

ln
[
1 − I−1

u (a, b)
]) 1

β

−G(x; θ)
(
− 1
α

ln
[
1 − I−1

u (a, b)
]) 1

β

,

and

G(x; θ) =

(
− 1
α

ln
[
1 − I−1

u (a, b)
]) 1

β

1 +
(
− 1
α

ln
[
1 − I−1

u (a, b)
]) 1

β

=: q. (14)

Consequently,

xq = G−1


(
− 1
α

ln
[
1 − I−1

u (a, b)
]) 1

β

1 +
(
− 1
α

ln
[
1 − I−1

u (a, b)
]) 1

β

 , (15)

where I−1
u (a, b) is the inverse of the incomplete beta function ratio.

3.5 Moments, Conditional Moments and Mean Deviations

There are several characteristics and features of a distribution that can be studied through its moments. Moments are often
used to obtain important features of distributions such as measures of central tendency, dispersion, skewness and kurtosis.
In this section, we present the moments, conditional moments and mean deviations of the BWG family of distributions.

3.5.1 Moments

The sth moment of the BWG family of distributions can be obtained as follows:

E(Xs) =

∫ ∞

0
xs fBWG(x)dx

=

∞∑
i, j,k=0

w∗(i, j, k)
∫ ∞

0
xs(β j + β + k)g(x; θ)

[
G(x; θ)

]β j+β+k−1
dx

=

∞∑
i, j,k=0

w∗(i, j, k)
∫ ∞

0
xs fβ j+β+k(x)dx

=

∞∑
i, j,k=0

w∗(i, j, k)I(β j + β + k), (16)
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where w∗(i, j, k) is given by equation (13), and I(β j+β+ k) =
∫ ∞

0 xs fβ j+β+k(x)dx is the sth moment of the exponentiated-G
(EG) distribution with exponential parameter β j + β + k.

3.5.2 Conditional Moments

The sth conditional moments of the BWG family of distributions is given by

E(Xs|X > t) =
1

F̄BWG(t)

∫ ∞

t
xs fBWG(x)dx

=
1

F̄BWG(x)

∞∑
i, j,k=0

w∗(i, j, k)I(β j + β + k, s; t),

where w∗(i, j, k) is given by equation (13) and I(β j + β + k, s, t) =
∫ ∞

t xs fβ j+β+k(x)dx is the sth incomplete moment of the
exponentiated-G (EG) distribution with exponential parameters β j + β + k > 0.

3.5.3 Mean Deviation

The mean deviation about the mean and the mean deviation about the median have been applied to a wide variety of fields,
such as studying of income and property in economics. The mean deviation about the mean and mean deviation about the
median are defined as

δ1(X) =
∫ ∞

0
|x − µ| fBWG(x)dx, and δ2(X) =

∫ ∞

0
|x − M| fBWG(x)dx,

respectively, where µ = E(X) and M=Median(X) denotes the mean and median. These quantities can be expressed as

δ1(X) = 2µFBWG(µ) − 2µ + 2
∞∑

i, j,k=0

w∗(i, j, k)I(β j + β + k, 1; µ),

and

δ2(X) = −µ + 2
∞∑

i, j,k=0

w∗(i, j, k)I(β j + β + k, 1; M),

respectively.

3.5.4 Bonferroni and Lorenz Curves

Bonferroni and Lorenz curves of the BWG distribution are defined as

B(p) =
1
pµ

∫ ∞

q
x fBWG(x)dx, and L(p) =

1
µ

∫ ∞

q
x fBWG(x)dx,

respectively, where ∫ ∞

q
x fBWG(x)dx =

∞∑
i, j,k=0

w∗(i, j, k)I(β j + β + k, 1; q).

3.6 Order Statistics

In order to derive the distribution of the ith order statistics from the BWG distribution, let X1, ......, Xn to be independent
identically distributed (iid) random variables from the BWG pdf, fBWG (x) and X1:n < .... < Xn:n to denote the corresponding
order statistics. The pdf fi:n(x) of the ith order statistic is given by

fi:n(x) =
n!

(i − 1)!(n − i)!
fBWG(x) [FBWG(x)]i−1 [1 − FBWG(x)]n−i . (17)

That is,

fi:n(x) =

n−i∑
p=0

(−1)pn!
(i − 1)!(n − i − p)!p!

fBWG(x) [FBWG(x)]p+i−1

=

n−i∑
p=0

(−1)pn!
(i − 1)!(n − i − p)!p!

αβ

B(a, b)
g(x; θ)

G(x; θ)β−1

Ḡ(x; θ)β+1

×
I1−exp

{
−α

[
G(x;θ)
Ḡ(x;θ)

]β}(a, b)

p+i−1

exp

−αb
[
G(x; θ)
Ḡ(x; θ)

]β
1 − exp

−α
[
G(x; θ)
Ḡ(x; θ)

]β
a−1

. (18)
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Applying the binomial expansion, we obtain1 − exp

−α
[
G(x; θ)
Ḡ(x; θ)

]β
a−1

=

∞∑
i=0

(−1)iΓ(a)
i!Γ(a − i)

exp

−αi
[
G(x; θ)
Ḡ(x; θ)

]β , (19)

and substituting equation (19) into equation (18), we obtain

fi:n(x) =

n−i∑
p=0

(−1)pn!
(i − 1)!(n − i − p)!p!

αβ

B(a, b)
g(x; θ)

G(x; θ)β−1

Ḡ(x; θ)β+1

×
I1−exp

{
−α

[
G(x;θ)
Ḡ(x;θ)

]β}(a, b)

p+i−1

exp

−αb
[
G(x; θ)
Ḡ(x; θ)

]β ∞∑
i=0

(−1)iΓ(a)
i!Γ(a − i)

exp

−αi
[
G(x; θ)
Ḡ(x; θ)

]β
=

n−i∑
p=0

∞∑
i=0

(−1)iΓ(a)
i!Γ(a − i)

(−1)pn!
(i − 1)!(n − i − p)!p!

αβ

B(a, b)
g(x; θ)

G(x; θ)β−1

Ḡ(x; θ)β+1

×
I1−exp

{
−α

[
G(x;θ)
Ḡ(x;θ)

]β}(a, b)

p+i−1

exp

−α(b + i)
[
G(x; θ)
Ḡ(x; θ)

]β . (20)

Substituting the exponential series expansion

exp

−α(b + i)
[
G(x; θ)
Ḡ(x; θ)

]β = ∞∑
j=0

(−1) j[α(b + i)] j

j!

[
G(x; θ)
Ḡ(x; θ)

]β j

(21)

into (20), we have

fi:n(x) =

n−i∑
p=0

∞∑
i, j=0

(−1)pn!
(i − 1)!(n − i − p)!p!

(−1)i+ j[α(b + i)] jΓ(a)
i! j!Γ(a − i)

αβ

B(a, b)
g(x; θ)

G(x; θ)β j+β−1

Ḡ(x; θ)β j+β+1

I1−exp
{
−α

[
G(x;θ)
Ḡ(x;θ)

]β}(a, b)

p+i−1

.

Note that

Ḡ(x; θ)−(β j+β+1) =

∞∑
k=0

Γ(β j + β + k + 1)
k!Γ(β j + β + 1)

[
G(x; θ)

]k
, (22)

therefore the pdf of the ith order statistic from the BWG distribution reduces to:

fi:n(x) =

n−i∑
p=0

∞∑
i, j,k=0

(−1)pn!
(i − 1)!(n − i − p)!p!

(−1)i+ j[α(b + i)] jΓ(a)
i! j!Γ(a − i)

× αβ

B(a, b)
g(x; θ)G(x; θ)β j+β+k−1

I1−exp
{
−α

[
G(x;θ)
Ḡ(x;θ)

]β}(a, b)

p+i−1

=

n−i∑
p=0

∞∑
i, j,k=0

w∗(i, j, k)
(−1)pn!

(i − 1)!(n − i − p)!p!
g(x; θ)G(x; θ)β j+β+k−1

I1−exp
{
−α

[
G(x;θ)
Ḡ(x;θ)

]β}(a, b)

p+i−1

=

n−i∑
p=0

∞∑
i, j,k=0

w∗(i, j, k, p)g(x; θ)G(x; θ)β j+β+k−1

I1−exp
{
−α

[
G(x;θ)
Ḡ(x;θ)

]β}(a, b)

p+i−1

,

where

w∗(i, j, k, p) =
αβ

B(a, b)
(−1)i+ j+p [α(b + i)] j Γ(a)Γ(β j + β + k + 1)

i! j!k!p!(i − 1)!(n − i − p)!Γ(a − i)Γ(β j + β + 1)(β j + β + k)
. (23)

3.7 Rényi Entropy

The concept of entropy plays an essential role in information theory. In statistics it is used as indices of diversity and
quantify the uncertainty or randomness of a system. In this subsection, we present Rényi entropy for the BWG family of
distributions. Rényi entropy is defined by

IR(v) = (1 − v)−1log
[∫ ∞

−∞
f v(x)d(x)

]
, (24)
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for v > 0 and v , 1. Note that

f v
BWG(x) =

(αβ)v

B(a, b)v gv(x; θ)
G(x; θ)βv−v

Ḡ(x; θ)βv+v
exp

−αbv
[
G(x; θ)
Ḡ(x; θ)

]β
1 − exp

−α
[
G(x; θ)
Ḡ(x; θ)

]β
av−v

.

Now, by using the binomial series expansion1 − exp

−α
[
G(x; θ)
Ḡ(x; θ)

]β
(av−v+1)−1

=

∞∑
i=0

(−1)iΓ(av − v + 1)
i!Γ(av − v + 1 − i)

exp

−αi
[
G(x; θ)
Ḡ(x; θ)

]β
 ,

we have

f v
BWG(x) =

(αβ)v

B(a, b)v gv(x; θ)
G(x; θ)βv−v

Ḡ(x; θ)βv+v

∞∑
i=0

(−1)iΓ(av − v + 1)
i!Γ(av − v + 1 − i)

exp

−α(bv + i)
[
G(x; θ)
Ḡ(x; θ)

]β . (25)

Applying the exponential series expansion

exp

−α(bv + i)
[
G(x; θ)
Ḡ(x; θ)

]β = ∞∑
j=0

(−1) j [α(bv + i)] j

j!

[
G(x; θ)
Ḡ(x; θ)

]β j

,

and inserting this back into equation (25), we have

f v
BWG(x) =

(αβ)v

B(a, b)v

∞∑
i, j,k=0

(−1)i+ j [α(bv + i)] j Γ(av − v + 1)Γ(β j + βv + k + v)
i! j!k!Γ(av − v + 1 − i)Γ(β j + βv + v)

[
g(x; θ)

[
G(x; θ)

] β j+βv+k−v
v

]v

=
(αβ)v

B(a, b)v

∞∑
i, j,k=0

(−1)i+ j [α(bv + i)] j Γ(av − v + 1)Γ(β j + βv + k + v)
i! j!k!Γ(av − v + 1 − i)Γ(β j + βv + v)

×
[

v
β j + βv + k + v − v

] [
β j + βv + k + v − v

v
g(x; θ)

[
G(x; θ)

] β j+βv+k−v
v

]v

.

Consequently, the Rényi entropy of the BWG distribution is given by

IR(v) = (1 − v)−1log
{ (αβ)v

B(a, b)v

∞∑
i, j,k=0

(−1)i+ j [α(bv + i)] j Γ(av − v + 1)Γ(β j + βv + k + v)
i! j!k!Γ(av − v + 1 − i)Γ(β j + βv + v)

×
[

v
β j + βv + k + v − v

]v

exp
(
(1 − v)IREG (v)

) }
,

where v , 1, v > 0, IREG (v) denote Rényi entropy of the exponentiated-G (EG) distribution with parameters β∗ = β j+βv+k
v

and θ. It follows therefore that Rényi entropy of the exponentiated-G distribution can be used to obtain that of the BWG
distribution.

3.8 Maximum Likelihood Estimation

In this section, the estimates of the parameters of the BWG family of distributions are presented through the method of
maximum likelihood estimation (MLE). Let ∆ = (a, b, α, β, θ)T be the parameter vector and x = (x1, ....., xn)T be a random
sample from the BWG distribution, then the log-likelihood function for ∆ can be written as

ℓ(∆) = n
[
ln(α) + ln(β) − ln(B(a, b))

]
+

n∑
i=0

ln
(
g(xi; θ)

)
+ (β − 1)

n∑
i=0

ln
(
G(xi; θ)

)
− (β + 1)

n∑
i=0

ln
(
Ḡ(xi; θ)

)
− αb

n∑
i=0

[
G(xi; θ)
Ḡ(xi; θ)

]β
+ (a − 1)

n∑
i=0

ln

1 − exp

−α
[
G(xi; θ)
Ḡ(xi; θ)

]β
 .

The elements of the score vector, that is, the partial derivatives of ℓ(∆) with respect to the parameters are

∂ℓ

∂a
= −n

[
ψ(a) − ψ(a + b)

]
+

n∑
i=0

ln

1 − exp

−α
[
G(xi; θ)
Ḡ(xi; θ)

]β
 ,

20



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 7, No. 2; 2018

∂ℓ

∂b
= −n

[
ψ(b) − ψ(a + b)

] − α n∑
i=0

[
G(xi; θ)
Ḡ(xi; θ)

]β
,

∂ℓ

∂α
=

n
α
− b

n∑
i=0

[
G(xi; θ)
Ḡ(xi; θ)

]β
+ (a − 1)

n∑
i=0

1 − exp

−α
[
G(xi; θ)
Ḡ(xi; θ)

]β
−1

exp

−α
[
G(xi; θ)
Ḡ(xi; θ)

]β
[
G(xi; θ)
Ḡ(xi; θ)

]β
,

∂ℓ

∂β
=

n
β
+

n∑
i=0

ln
(
G(xi; θ)

)
−

n∑
i=0

ln
(
G(xi; θ)

)
− αb

n∑
i=0

[
G(xi; θ)
Ḡ(xi; θ)

]β

× ln
[
G(xi; θ)
Ḡ(xi; θ)

]
+ (a − 1)α

n∑
i=0

1 − exp

−α
[
G(xi; θ)
Ḡ(xi; θ)

]β
−1

exp

−α
[
G(xi; θ)
Ḡ(xi; θ)

]β
[
G(xi; θ)
Ḡ(xi; θ)

]β
ln

[
G(xi; θ)
Ḡ(xi; θ)

]
,

and

∂ℓ

∂θk
=

n∑
i=0

1
g(xi; θ)

∂

∂θk
g(xi; θ) − (β − 1)

n∑
i=0

1
G(xi; θ)

∂

∂θk
G(xi; θ) − (β + 1)

n∑
i=0

1
Ḡ(xi; θ)

∂

∂θk
Ḡ(xi; θ) − αβb

n∑
i=0

[
G(xi; θ)
Ḡ(xi; θ)

]β−1

× ∂

∂θk

[
G(xi; θ)
Ḡ(xi; θ)

]
+ (a − 1)αβ

n∑
i=0

1 − exp

−α
[
G(xi; θ)
Ḡ(xi; θ)

]β
−1

exp

−α
[
G(xi; θ)
Ḡ(xi; θ)

]β
[
G(xi; θ)
Ḡ(xi; θ)

]β−1
∂

∂θk

[
G(xi; θ)
Ḡ(xi; θ)

]
,

respectively, where ψ(x) is the di-gamma function, and θk is the kth element of the vector of parameters θ.

4. Some Examples of the BWG Distributions

We present three special cases of the BWG family of distributions, namely the beta Weibull-Uniform (BWU) distribution,
beta Weibull-exponential (BWE) distribution and the beta Weibull-log logistic (BWLLoG) distribution in this section.
The BWLLoG distribution is discussed in detail.

4.1 Beta Weibull-Uniform (BWU) Distribution

Consider the uniform distribution on the interval (0, θ) with pdf g(x) = 1
θ
, 0 < x < θ < ∞ and cdf G(x) = x

θ
. The beta

Weibull-Uniform (BWU) cdf is given by

FBWU(x; a, b, α, β, θ) =
1

B(a, b)

∫ 1−exp
{
−α[ x

θ−x ]β
}

0
ta−1(1 − t)b−1dt

= I1−exp
{
−α[ x

θ−x ]β
}(a, b),

and the corresponding pdf is

fBWU(x; a, b, α, β, θ) =
αβθ

B(a, b)
xβ−1

(θ − x)β+1 exp
{
−αb

[ x
θ − x

]β} [
1 − exp

{
−α

[ x
θ − x

]β}]a−1

,

where a, b, α, β, θ > 0 and x ∈ (0, θ).

The density plot of the BWU distribution is given in Figure 1 which suggests that for some selected values of the param-
eters, the BWU pdf can be L-shaped or decreasing, and left skewed.

4.2 Beta Weibull-Exponential (BWE) Distribution

Consider the exponential distribution with pdf g(x; λ) = λe−λx and cdf G(x) = 1 − e−λx, λ > 0. The beta Weibull-
Exponential (BWE) distribution has cdf and pdf given by

FBWE(x; a, b, α, β, λ) =
1

B(a, b)

∫ 1−exp
{
−α[eλx−1]β

}
0

ta−1(1 − t)b−1dt

= I1−exp
{
−α[eλx−1]β

}(a, b),
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Figure 1. Density plots of the BWU distribution for selected parameter values

and

fBWE(x; a, b, α, β, λ) =
αβλ

B(a, b)

(
1 − e−λx

)β−1
exp

{
−αb

[
eλx − 1

]β
+ λβx

} [
1 − exp

{
−α

[
eλx − 1

]β}]a−1

with a, b, α, β, λ > 0 and x > 0, respectively. The plots of the pdf for some selected parameter values is given in Figure 2.
The plots suggests that the shape of the pdf of the BWE distribution can be L-shaped or right skewed.

Figure 2. Density plots of the BWE distribution for selected parameter values

5. Beta Weibull-log logistic (BWLLoG) Distribution

Consider a log-logistic random variable X with pdf g(x; c) = cxc−1(1 + xc)−2 and cdf G(x; c) =
[
1 − (1 + xc)−1

]
, c > 0.

The cdf of the beta Weibull-log logistic (BWLLoG) distribution is given by

FBWLLoG(x; a, b, c, α, β) =
1

B(a, b)

∫ 1−exp{−α[xc]β}

0
ta−1(1 − t)b−1dt

= I1−exp{−αxcβ}(a, b).

for a, b, c, α, β > 0 and x > 0. The corresponding BWLLoG pdf is

fBWLLoG(x; a, b, c, α, β) =
αβc

B(a, b)
xc−1(1 + xc)−2

[
1 − (1 + xc)−1

]β−1[
(1 + xc)−1]β+1 exp

{
−αbxcβ

} [
1 − exp

{
−αxcβ

}]a−1
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for a, b, c, α, β > 0 and x > 0. The density plot of the BWLLoG distribution for some selected parameter values is given
in Figure 3. The plot shows that the BWLLoG pdf can be L-shaped, left skewed or right skewed depending on the values
of the selected parameters.

Figure 3. Density plot for the BWLLoG distribution for selected parameter values

5.1 Some Sub-Models of the BWLLoG Distribution

Some sub-models of the BWLLoG distribution are presented in this subsection.

1. When β=1, we obtain the beta exponential-log logistic (BELLoG) distribution. The pdf is given as

fBELLoG(x; c, a, b, α) =
αc

B(a, b)
xc−1 exp {−αbxc} [1 − exp {−αxc}]a−1 .

2. When b=1, we obtain the exponentiated Weibull-log logistic (EWLLoG) distribution. The pdf is given as

fEWLLoG(x; c, a, α, β) = αβcxc−1(1 + xc)−2

[
1 − (1 + xc)−1

]β−1[
(1 + xc)−1]β+1 exp

{
−αxcβ

} [
1 − exp

{
−αxcβ

}]a−1
.

3. When a = b = 1, we obtain the Weibull-log logistic (WLLoG) distribution. The pdf is given as

fWLLoG(x; c, α, β) = αβcxc−1(1 + xc)−2

[
1 − (1 + xc)−1

]β−1[
(1 + xc)−1]β+1 exp

{
−αxcβ

}
.

4. When b = β = 1, we obtain the exponentiated exponential-log logistic (EELLoG) distribution. The pdf is

fEELLoG(x; c, a, α) = αcxc−1 exp {−αxc} [1 − exp {−αxc}]a−1 .

5.2 Expansion of the BWLLoG Density Function

From the derived expansion of the BWG distribution given in equation (12), the expansion of the BWLLoG distribution
is given as

fBWLLoG(x) =

∞∑
i, j,k=0

w∗(i, j, k)(β j + β + k)cxc−1 (1 + xc)−2
[
1 − (1 + xc)−1

]β j+β+k−1
,
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where w∗(i, j, k) is given in equation (13).

5.3 Hazard and Reverse Hazard Functions

The hazard and reverse hazard functions of the BWLLoG distribution are given by

hBWLLoG(x) =
αβxc−1

[
1 − (1 + xc)−1

]β−1
exp

{
−αbxcβ

}
B(a, b)

[
(1 + xc)−1]β+1

[
1 − I1−exp{−αxcβ}(a, b)

] [
1 − exp

{
−αxcβ

}]a−1
,

and

τBWLLoG(x) =
αβxc−1

[
1 − (1 + xc)−1

]β−1
exp

{
−αbxcβ

}
B(a, b)

[
(1 + xc)−1]β+1

[
I1−exp{−αxcβ}(a, b)

] [
1 − exp

{
−αxcβ

}]a−1
,

respectively. The plot of the BWLLoG hazard function for selected parameter values is given in Figure 4. The plots
exhibit unimodal, decreasing and upside down bathtub shapes.

Figure 4. The hazard plot of the BWLLoG distribution for some selected parameter values

5.4 Quantile Function

From the quantile function of the BWG distribution given in equation (15), the quantile function of the BWLLoG distri-
bution is obtained from the solution of

−αxcβ − log
[
1 − I−1

u (a, b)
]
= 0. (26)

Table 2 lists the quantiles of the BWLLoG distribution for selected values of the parameters (a, b, c, α, β).

Table 2. The BWLLoG quantiles for some selected model parameter values

(a, b, c, α, β)
u (1.0,2.0,4.0,3.0,2.0) (1.0,1.0,2.0,4.0,1.0) (1.0,3.0,1.0,5.0,0.8) (4.0,3.0,1.0,1.0,0.5)

0.1 0.3061057 0.1622961 0.008780043 0.8105134
0.2 0.3692741 0.2361854 0.018595296 1.0709395
0.3 0.4152169 0.2986107 0.029722912 1.2927493
0.4 0.4542297 0.3573601 0.042568802 1.5067108
0.5 0.4902414 0.4162502 0.057762265 1.7283114
0.6 0.5256638 0.4786064 0.076357561 1.9719262
0.7 0.5627976 0.5486256 0.100331067 2.2582014
0.8 0.6051595 0.6343162 0.134119826 2.6286980
0.9 0.6618487 0.7587133 0.191882091 3.2098076
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5.5 Moments and Conditional Moments

Let X∼ BWLLoG(a, b, c, α, β), then the sth moment of X is derived as follows:

E(Xs) = c
∞∑

i, j,k=0

w∗(i, j, k)(β j + β + k)
∫ ∞

0
xs+c−1 (1 + xc)−2

[
1 − (1 + xc)−1

]β j+β+k−1
dx.

Using the binomial series expansion

[
1 − (1 + xc)−1

]β j+β+k−1
=

∞∑
m=0

(−1)mΓ(β j + β + k)
m!Γ(β j + β + k − m)

[
(1 + xc)−m]

,

and inserting this into the moment of the BWLLoG distribution, we obtain

E(Xs) = c
∞∑

i, j,k,m=0

w∗(i, j, k)
(−1)mΓ(β j + β + k)
m!Γ(β j + β + k − m)

(β j + β + k)
∫ ∞

0
xs+c−1

[
(1 + xc)−1

](m+2)
dx.

Let u = (1 + xc)−1, then x =
(

1−u
u

) 1
c and dx = − u−2(1−u)

1
c −1u1− 1

c

c du, so that

E(Xs) = c
∞∑

i, j,k,m=0

w∗(i, j, k)
(−1)mΓ(β j + β + k)
m!Γ(β j + β + k − m)

(β j + β + k)
∫ 1

0
um− s

c−
1
c−1(1 − u)

s
c+

1
c−1du

= c
∞∑

i, j,k,m=0

w∗(i, j, k)
(−1)mΓ(β j + β + k)
m!Γ(β j + β + k − m)

(β j + β + k)B
(
m − s

c
− 1

c
,

s
c
+

1
c

)
,

where B(a, b) =
∫ 1

0 ta−1(1 − t)b−1dt is the complete beta function. Table 3 lists the first six moments, standard deviation
(SD), coefficients of variation (CV), skewness (CS) and kurtosis (CK) of the BWLLoG distribution for selected values of
the parameters (a, b, c, α, β).

Table 3. The BWLLoG Moments for some selected model parameter values

(a, b, c, α, β)
Moments (1.0,2.0,4.0,3.0,2.0) (1.0,1.0,2.0,4.0,1.0) (1.0,3.0,1.0,5.0,0.8) (4.0,3.0,1.0,1.0,0.5)

EX 0.050728788 0.4431135 0.1275803 1.3337918
EX2 0.031978954 0.2500000 0.0191371 2.8708133
EX3 0.020788149 0.1661675 0.0044653 7.6577971
EX4 0.013888884 0.1250000 0.0014140 24.4774222
EX5 0.009511645 0.1038547 0.0005656 91.5224404
EX6 0.006662280 0.0937500 0.0002734 393.0969530
SD 0.171480448 0.2316257 0.0534818 1.0448984
CV 3.380337936 0.5227232 0.4192009 0.7834044
CS 3.209233007 0.6311107 8.4587080 0.8031220
CK 11.732069076 3.2450893 20.559573 4.0017753

The sth conditional moment for the BWLLoG distribution is given as

E(Xs|X > t) =
1

F̄BWLLoG(t)
c

∞∑
i, j,k,m=0

w∗(i, j, k)
(−1)mΓ(β j + β + k)
m!Γ(β j + β + k − m)

(β j + β + k)B[1+tc]−1

(
m − s

c
− 1

c
,

s
c
+

1
c

)
,

where Bu(a, b) =
∫ u

0 ta−1(1 − t)b−1dt is the incomplete beta function.

5.6 Mean Deviations, Bonferroni and Lorenz Curves

The mean deviation about the mean and the median are expressed as

δ1(x) = 2µFBWLLoG(µ) − 2µ + 2T (µ), and δ2(x) = −µ + 2T (M),
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where

T (µ) =

∫ ∞

µ

x fBWLLoG(x)dx

= c
∞∑

i, j,k,m=0

w∗(i, j, k)
(−1)mΓ(β j + β + k)
m!Γ(β j + β + k − m)

(β j + β + k)B[1+µc]−1

(
m − s

c
− 1

c
,

s
c
+

1
c

)
.

Bonferroni and Lorenz curves are given as

B(p) =
1
pµ

∫ q

0
x fBWLLoG(x)dx =

1
pµ

[
µ − T (q)

]
, and L(p) =

1
µ

∫ q

0
x fBWLLoG(x)dx =

1
µ

[
µ − T (q)

]
,

where

T (q) = c
∞∑

i, j,k,m=0

w∗(i, j, k)
(−1)mΓ(β j + β + k)
m!Γ(β j + β + k − m)

(β j + β + k)B[1+qc]−1

(
m − s

c
− 1

c
,

s
c
+

1
c

)
.

5.7 Order Statistics

The density fi:n(x) of the ith order statistics from the BWLLoG distribution is given as

fi:n(x) =
n!

(i − 1)!(n − i)!
fBWLLoG(x)F−1

BWLLoG(x) [1 − FBWLLoG(x)]n−i . (27)

That is,

fi:n(x) =

n−i∑
p=0

n!(−1)p

(i − 1)!(n − i − p)!p!
fBWLLoG(x)

[
FBWLLoG(x)n+i−1

]

=

n−i∑
p=0

n!(−1)p

(i − 1)!(n − i − p)!p!
αβc

B(a, b)
xc−1(1 + xc)−2

[
1 − (1 + xc)−1

]β−1[
(1 + xc)−1]β+1 exp

{
−αbxcβ

}
×

[
1 − exp

{
−αxcβ

}]a−1 [
I1−exp{−αxcβ}(a, b)

]n+i−1
. (28)

Using the Binomial series expansion

[
1 − exp

{
−αxcβ

}]a−1
=

∞∑
i=0

(−1)iΓ(a)
i!Γ(a − i)

exp
{
−αixcβ

}
and inserting this back into the pdf of the ith order statistic from the BWLLoG distribution, we have

fi:n(x) =

n−i∑
p=0

∞∑
i=0

n!(−1)i+pΓ(a)
i!p!(i − 1)!(n − i − p)!Γ(a − i)

αβc
B(a, b)

xc−1(1 + xc)−2

×

[
1 − (1 + xc)−1

]β−1[
(1 + xc)−1]β+1 exp

{
−αbxcβ

}
exp

{
−αixcβ

} [
I1−exp{−αxcβ}(a, b)

]n+i−1

=

n−i∑
p=0

∞∑
i=0

n!(−1)i+pΓ(a)
i!p!(i − 1)!(n − i − p)!Γ(a − i)

αβc
B(a, b)

xc−1(1 + xc)−2

×

[
1 − (1 + xc)−1

]β−1[
(1 + xc)−1]β+1 exp

{
−α(b + i)xcβ

} [
I1−exp{−αxcβ}(a, b)

]n+i−1
.

Using the exponential series expansion

exp
{
−α(b + i)xcβ

}
=

∞∑
j=0

(−1) j [α(b + i)] j

j!
xcβ j,
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and inserting this back into the pdf of the ith order statistic from the BWLLoG distribution, we have

fi:n(x) =

n−i∑
p=0

∞∑
i, j=0

n!(−1)i+ j+p [α(b + i)] j Γ(a)
i! j!p!(i − 1)!(n − i − p)!Γ(a − i)

αβc
B(a, b)

xcβ j+c−1(1 + xc)−2

×

[
1 − (1 + xc)−1

]β−1[
(1 + xc)−1]β+1

[
I1−exp{−αxcβ}(a, b)

]n+i−1

=

n−i∑
p=0

∞∑
i, j=0

w∗(i, j, p)

[
1 − (1 + xc)−1

]β−1
xcβ j+c−1(1 + xc)−2[

(1 + xc)−1]β+1

[
I1−exp{−αxcβ}(a, b)

]n+i−1
,

where

w∗∗(i, j, p) =
n!(−1)i+ j+p [α(b + i)] j Γ(a)

i! j!p!(i − 1)!(n − i − p)!Γ(a − i)
αβc

B(a, b)
.

5.8 Rényi Entropy

Rényi entropy of the BWLLoG distribution is defined as

IR(υ) = (1 − υ)−1log
(∫ ∞

−∞
f υBWLLoG(x)dx

)
,

for υ > 0 and υ , 1, that is,

IR(υ) = (1 − υ)−1log
( (βαc)υ

Bυ(a, b)

∫ ∞

0
xcυ−υ [1 + xc]−2υ

[
1 − (1 + xc)−1

]βυ−υ[
(1 + xc)−1]βυ+υ

× exp
{
−αbυxcβ

} [
1 − exp

{
−αxcβ

}]aυ−υ
dx

)
. (29)

Applying the binomial series expansion to obtain the following,[
1 − exp

{
−αxcβ

}](aυ−υ+1)−1
=

∞∑
i=0

(−1)iΓ(aυ − υ + 1)
i!Γ(aυ − υ − i)

exp
{
−αixcβ

}
.

and inserting this into Rényi entropy of the BWLLoG distribution in equation (29), we obtain

IR(υ) = (1 − υ)−1log
( (βαc)υ

Bυ(a, b)

∞∑
i=0

(−1)iΓ(aυ − υ + 1)
i!Γ(aυ − υ + 1 − i)

×
∫ ∞

0

xcυ−υ

[1 + xc]2υ

[
1 − (1 + xc)−1

]βυ−υ[
(1 + xc)−1]βυ+υ exp

{
−α(bυ + i)xcβ

}
dx

)
. (30)

By using the exponential series expansion,

exp
{
−α(bυ + i)xcβ

}
=

∞∑
j=0

(−1) j [α(bυ + i)] j

j!
xcβ j.

and inserting this into equation (30), we obtain

IR(υ) = (1 − υ)−1log
( (βαc)υ

Bυ(a, b)

∞∑
i, j=0

(−1)i+ j [α(bυ + i)] j Γ(aυ − υ + 1)
i! j!Γ(aυ − υ + 1 − i)

×
∫ ∞

0
xcυ+cβ j−υ [1 + xc]−2υ

[
1 − (1 + xc)−1

]βυ−υ[
(1 + xc)−1]βυ+υ dx

)
.

Let u = (1+ xc)−1, then x =
(

1−u
u

) 1
c and dx = u−2(1−u)

1
c −1u1− 1

c

c du, so that Rényi entropy for the BWLLoG distribution reduces
to

IR(υ) = (1 − υ)−1log
( (βαc)υ

Bυ(a, b)

∞∑
i, j=0

(−1)i+ j [α(bυ + i)] j Γ(aυ − υ + 1)
i! j!Γ(aυ − υ + 1 − i)

1
c

∫ 1

0
u

υ
c −β j−βυ− 1

c −1(1 − u)β j+βυ− υ
c +

1
c −υ−1du

)
= (1 − υ)−1log

( (βαc)υ

Bυ(a, b)

∞∑
i, j=0

(−1)i+ j [α(bυ + i)] j Γ(aυ − υ + 1)
i! j!Γ(aυ − υ + 1 − i)

B
(
υ

c
− β j − βυ − 1

c
, β j + βυ − υ

c
+

1
c
− υ

) )
.
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5.9 Maximum Likelihood Estimation

The log-likelihood function ℓ(∆) = log(L(∆)) of the BWLLoG distribution is given by

ℓ(∆) = n
[
ln(α) + ln(β) + ln(c) − ln(B(a, b))

]
+ (c − 1)

n∑
i=0

ln(xi) − 2
n∑

i=0

ln(1 + xc
i )

+ (β − 1)
n∑

i=0

[
1 − (1 + xc

i )−1
]
− (β + 1)

n∑
i=0

[
(1 + xc

i )−1
]
− αb

n∑
i=0

xcβ
i + (a − 1)

n∑
i=0

ln
[
1 − exp

{
−αxcβ

i

}]
. (31)

The partial derivatives of the log-likelihood function with respect to the model parameters are obtained as

∂ℓ

∂a
= −n

[
ψ(a) − ψ(a + b)

]
+

n∑
i=0

[
1 − exp

{
−αxcβ

i

}]
,

∂ℓ

∂b
= −n

[
ψ(b) − ψ(a + b)

] − αxcβ
i ,

∂ℓ

∂c
=

n
c
+ ln(xi) + (β − 1)

n∑
i=0

[
(1 + xc

i )−2
]

xc
i ln(xi) − 2

n∑
i=0

xc
i ln(xi)

(1 + xc
i )

− (a − 1)
n∑

i=0

exp
{
−αxcβ

i

}
αβxcβ

i ln(xi)[
1 − exp

{
−αxcβ

i

}] − αβb
n∑

i=0

xcβ
i ln(xi) + (β + 1)

n∑
i=0

xc
i ln(xi)

(1 + xc
i )2 ,

∂ℓ

∂α
=

n
α
+ b

n∑
i=0

xcβ
i − (a − 1)

n∑
i=0

[
1 − exp

{
−αxcβ

i

}]−1
exp

{
−αxcβ

i

}
xcβ

i ,

and

∂ℓ

∂β
=

n
β
+

n∑
i=0

[
1 − (1 + xc

i )−1
]
−
∞∑

i=0

(1 + xc
i )−1 − αbc

n∑
i=0

xcβ
i ln(xi) − αc(a − 1)

n∑
i=0

exp
{
−αxcβ

i

}
xcβ

i ln(xi)[
1 − exp

{
−αxcβ

i

}] ,

respectively. The equations obtained by setting the above partial derivatives to zero are not in closed form and the values of
the parameters a, b, c, α, βmust be found by using iterative methods. The maximum likelihood estimates of the parameters,
denoted by ∆̂ is obtained by solving the nonlinear equation ( ∂ℓ

∂a ,
∂ℓ
∂b ,

∂ℓ
∂c ,

∂ℓ
∂α
, ∂ℓ
∂β

)T = 0, using a numerical method such as

Newton-Raphson procedure. The Fisher information matrix is given by I(∆) = [Iθi,θ j ]5X5 = E(− ∂2ℓ
∂θi∂θ j

), i, j = 1, 2, 3, 4, 5,
can be numerically obtained by MATLAB or R software. The total Fisher information matrix nI(∆) can be approximated
by

J(∆̂) ≈
[
− ∂2ℓ

∂θi∂θ j

∣∣∣∣∣
∆=∆̂

]
5X5
, i, j = 1, 2, 3, 4, 5. (32)

For a given set of observations, the matrix given in equation (32) is obtained after convergence of the Newton-Raphson
procedure in MATLAB or R software.

5.10 Asymptotic Confidence Intervals

The asymptotic confidence intervals for the parameters of the BWLLoG distribution are presented. Similar results can be
obtained for any other models under the class of BWG distributions. Numerically, expectations in the Fisher Information
Matrix (FIM) can be obtained. Let ∆̂ = (â, b̂, ĉ, α̂, β̂) be the maximum likelihood estimates of ∆ = (α, β, c, a, b). Under

satisfying conditions for parameters in the interior parameter space, but not on the boundary, we have:
√

n(∆̂ − ∆)
d−→

N5(0, I−1(∆)), with I(∆) as the expected Fisher information matrix. Replacing the expected Fisher information matrix
with the observed information matrix, the asymptotic behavior remains valid. The multivariate normal distribution
N5(0, J(∆̂)−1), with mean vector 0 = (0, 0, 0, 0, 0)T , can be used to construct the confidence intervals and confidence
regions for the individual model parameters and for the survival and hazard rate functions. That is, the approximate
100(1 − η)% two-sided confidence intervals for α, β, c, a and b are given by:

α̂ ± Z η
2

√
I−1
αα(∆̂), β̂ ± Z η

2

√
I−1
ββ (∆̂), ĉ ± Z η

2

√
I−1
cc (∆̂), â ± Z η

2

√
I−1
aa (∆̂), and b̂ ± Z η

2

√
I−1
bb (∆̂),

respectively, where I−1
αα(∆̂), I−1

ββ (∆̂), I−1
cc (∆̂), I−1

aa (∆̂) and I−1
bb (∆̂) are the diagonal elements of I−1

n (∆̂), and Z η
2

is the upper η
2

th

percentile of the distribution of the standard normal.
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5.11 The Likelihood Ratio Test

The likelihood ratio (LR) test statistic can be used to compare the BWLLoG distribution with its sub-models. The
unrestricted estimates α̂, β̂, ĉ, â and b̂, and restricted estimates α̃, β̃, and c̃ can be computed in order to construct the LR
statistics for testing hypotheses concerning the sub models of the BWLLoG distribution. For example, to test a = b = 1,
(WLLoG against BWLLoG) the LR test statistic reduces to ω = 2[ln(L(α̂, β̂, ĉ, â, b̂)) − ln(L(α̃, β̃, c̃, 1, 1))], and the LR test
rejects the null hypothesis, when ω > χ2

ϵ
, where χ2

ϵ
denote the upper 100ϵ% point of the χ2 distribution with 2 degrees of

freedom.

6. Simulation

The performance of the BWLLoG distribution is examined by conducting various simulations with different sample sizes
n = 50, n = 100, n = 200, n = 400 and n = 800. The parameter values are set at: I : a = 1.0, b = 1.0, c = 1.0, α = 0.1, β =
2.3 and II : a = 0.9, b = 0.9, c = 1.0, α = 0.1, β = 2.3, where each sample is replicated 1000 times. Table 4 lists the mean
estimates (MLEs), root mean squared errors (RMSEs) and Average Bias (ABias) of the BWLLoG model parameters. The
ABias and RMSE of the MLE ∆̂ are given by

RMS E =

√∑N
i=1(∆̂i − ∆)2

N
and ABias(∆̂) =

∑N
i=1(∆̂i − ∆)

N
, (33)

respectively. According to the simulation results given in Table 4, as the sample size n increases, the RMSEs decay
towards zero, the mean estimates tend to be closer to the true parameter values and biases decreases overall, however for
the parameter b, the mean mean estimate fluctuates around the true parameter values and the average biases are very small
and negative.

7. Application

In this section, a dataset is used to compare the fit of the BWLLoG distribution with three sub-models: WLLoG, EL-
LoG, RLLoG distributions and the non-nested beta Weibull Poisson (BWP) distribution (Percontini, Blas & Cordeiro
(2013)). The data set used is taken from Shanker, Fasshaye & Selvaraj (2015), correspond to the time-to-failure of
a polyester/viscose yarn in a textile experiment for testing the tensile fatigue characteristics of yarn. It consists of a
sample of 100 cm yarn at 2.3% strain level. The initial values that were used in R software to get the estimates are
a = 2.0, b = 2.0, c = 0.01, α = 3.0 and β = 1.0. The estimated values of the model parameters (standard error in
parenthesis), -2log-likelihood statistic, Akaike Information Criterion, AIC = 2p−2 ln(L) Bayesian Information Criterion,
BIC = p ln(n) − 2 ln(L), where L = L(∆̂) is the value of the likelihood function evaluated at the parameter estimates, n
is the number of observations, and p is the number of estimated parameters are presented in Table 6. The goodness-of-
fit statistics (Cramér-von Mises statistic W∗) and (Anderson-Darling statistic A∗), as well as Kolmogorov Smirnov (KS)
statistics are also presented in the table. These statistics can be used to verify which distribution fits better to the data. In
general, the smaller the values of W∗ and A∗, the better the fit. The AdequacyModel package was used to evaluate the
statistics stated above.

The estimated asymptotic covariance matrix of the MLE’s which is the inverse of the Fisher Information Matrix (FIM)
I−1

n (∆̂), is given by:
0.001179 0.0002159 0.0000126 −0.00001384 0.0001996
0.0002156 0.00003954 0.00000231 −0.00000253 0.0000366
0.0000126 0.00000231 0.000000135 −0.000000148 0.00000213
−0.00001384 −0.00000253 −0.000000148 0.000000166 −0.00000234

0.0001996 0.0000366 0.00000213 −0.00000234 0.0000338

 , (34)

and the 95% asymptotic confidence intervals for the parameters are given by: a ∈ (0.47630167 ± 1.96 × 0.03408149), b ∈
(1.36232254 ± 1.96 × 0.00618560), c ∈ (0.97617533 ± 1.96 × 0.00036084), α ∈ (0.00070914 ± 1.96 × 0.00040809), β ∈
(2.86455102 ± 1.96 × 0.00566690), respectively.

The likelihood ratio (LR) statistics for testing the hypothesis H0: WLLoG versus Ha: BWLLoG, H0: ELLoG versus Ha:
BWLLoG, and H0: RLLoG versus Ha: BWLLoG are 28.223 (p-value< 0.0001), 17.131 (p-value=0.0007 < 0.01), and
157.176 (p-value< 0.0001), respectively. In all the three LR tests, we reject the null hypothesis and conclude that there
are significant differences between the BWLLoG and each of the nested WLLoG, ELLoG, RLLoG distributions.

The fitted densities given in Figure 5 shows that the BWLLoG distribution is a very good fit for the yarn data. The
statistics: AIC and BIC as well as the goodness-of-fit statistics W∗ and A∗ clearly show that the BWLLoG distribution is
a better fit than the nested WLLoG, ELLoG, and RLLoG distributions and non-nested BWP distribution for the Yarn data
set.
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Table 4. Monte Carlo Simulation Results: Mean Estimates, ABias and RMSEs

I II

Parameter n Mean ABias RMSE Mean ABias RMSE

a 50 1.3011 0.3011 4.9600 1.1195 0.2195 2.9325
100 0.9979 -0.0021 0.4688 0.9325 0.0325 0.4671
200 0.9924 -0.0076 0.3121 0.9101 0.0101 0.2837
400 0.9859 -0.0141 0.2327 0.8913 -0.0087 0.2016
800 0.9866 -0.0134 0.1658 0.8911 -0.0089 0.1418

b 50 0.9217 -0.0783 2.8513 0.8380 -0.0620 1.1623
100 0.8710 -0.1290 0.6001 0.8565 -0.0435 0.5630
200 0.8897 -0.1103 0.5631 0.8964 -0.0036 0.5630
400 0.8769 -0.1231 0.5521 0.8651 -0.0349 0.5220
800 0.9006 -0.0994 0.4913 0.8635 -0.0365 0.4671

c 50 1.0920 0.0920 0.2212 1.0883 0.0883 0.2170
100 1.0553 0.0553 0.1585 1.0480 0.0480 0.1631
200 1.0313 0.0313 0.1133 1.0241 0.0241 0.1148
400 1.0220 0.0220 0.0847 1.0184 0.0184 0.0855
800 1.0140 0.0140 0.0661 1.0113 0.0113 0.0643

α 50 0.2774 0.1774 0.8214 0.3438 0.2438 1.2298
100 0.2474 0.1474 0.6991 0.3183 0.2183 1.6994
200 0.2170 0.1170 0.5640 0.2233 0.1233 0.5508
400 0.1944 0.0944 0.2489 0.2035 0.1035 0.3668
800 0.1682 0.0682 0.2303 0.1943 0.0943 0.3686

β 50 2.4333 0.1333 0.3834 2.4232 0.1232 0.3783
100 2.3801 0.0801 0.2525 2.3616 0.0616 0.2621
200 2.3432 0.0432 0.1721 2.3314 0.0314 0.1617
400 2.3283 0.0283 0.1206 2.3218 0.0218 0.1151
800 2.3164 0.0164 0.0860 2.3071 0.0071 0.0799

Table 5. Yarn Dataset at 2.3% Strain Level

86 146 251 653 98 249 400 292 131 169
175 176 76 264 15 364 195 262 88 264
157 220 42 321 180 198 38 20 61 121
282 224 149 180 325 250 196 90 229 166
38 337 65 151 341 40 40 135 597 246
211 180 93 315 353 571 124 279 81 186
497 182 423 185 229 400 338 290 398 71
246 185 188 568 55 55 61 244 20 284
393 396 203 829 239 236 286 194 277 143
198 264 105 203 124 137 135 350 193 188
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Table 6. Estimation of BWLLoG model for Yarn Dataset

Estimates Statistics
Model â b̂ ĉ α̂ β̂ −2 log L W∗ A∗ AIC BIC KS

BWLLoG 0.47630167 1.36232254 0.97617533 0.00070914 2.86455102 1249.825 0.09596863 0.5397216 1259.825 1272.8511 0.082306
(0.03408149) (0.00618560) (0.00036084) (0.00040809) (0.00566690)

WLLoG − − 0.5343284 0.0040360 1.9143012 1278.048 0.1219875 0.6650875 1284.048 1291.864 0.20013
− − (0.0680358) (0.0032991) (0.2437472)

ELLoG − − 1.1446091 0.0020622 − 1266.956 0.108994 0.6008626 1270.956 1276.167 0.17309
− − (0.6466751) (0.0077794) −

RLLoG − − 0.5632383 0.0022730 − 1407.001 0.110811 0.6096597 1411.001 1416.211 0.17616
− − (0.1051231) (0.0027792) −
â b̂ α̂ β̂ λ̂

BWP 1.34424491 0.89290911 1.38113954 0.00069060 0.02442390 1254.732 0.09608055 0.5406132 1264.732 1277.758 0.082144
(0.5730770) (0.0877171) (0.2068545) (0.0018668) (0.0182989)

Figure 5. Fitted pdf plot of the BWLLoG distribution for Yarn dataset

8. Concluding Remarks

A new generalization of the Weibull distribution, namely the beta Weibull-G family of distributions was introduced and
studied. Statistical properties of the BWG family such as expansion of density function, hazard and reverse hazard func-
tions, quantile function, moments, incomplete moments, mean deviations, Bonferroni and Lorenz curves, order statistics,
Rényi entropy and maximum likelihood estimation for the parameters were developed. Also, three special cases of the
BWG family of distributions were discussed, namely the BWU, BWE and BWLLoG distributions along with an applica-
tion to real life data. The application of the special case of the BWLLoG distribution show that it perform better than the
nested distributions and the non-nested BWP distribution.
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