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Abstract

In this paper, we are considering the transmuted Weibull distribution to investigate the role of oxidative stress markers
as indicators of risk of injury of the lower extremities in patients with type 2 diabetes mellitus. A group of patients
was studied until medical discharge assessing the following variables: glycated hemoglobin and three blood markers of
oxidative status. In face of explicative covariates, we are considering the regression approach of the transmuted model to
fit this real dataset. The inference was considere by using the method of maximum likelihood and the consistency of the
estimators were verified by a Monte Carlo simulation study presented in this manuscript. Some properties as the moment
generation function, median and the behaviors of the hazard and survival functions, are also included in this study.
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1. Introduction

Generally transmutation maps are a convenient way of constructing new distributions, in particular, survival ones. Accord-
ing to Shaw and Buckley (2007) transmutation maps comprise the functional composition of the cumulative distribution
function of one distribution with the inverse cumulative distribution (quantile) function of another one. After that, some
studies involving quadratic rank transmutation map can be seem in other application areas such as survival analysis and
reliability. Aryal and Tsokos (2009) proposed a generalization of the extreme value distribution by using the quadratic
rank transmutation map and applied such new distribution to analyzing the snow fall data in Midway Airport in the state
of Illinois, USA. Further, Aryal and Tsokos (2011) proposed the transmuted Weibull distribution as a generalization of the
Weibull probability distribution and the usefulness was illustrated using two published data sets. Granzotto and Louzada,
(2015); Louzada and Granzotto, (2016) proposed the transmuted log-logistic model and the regression one in the study of
the time until the first calve of a polled Tabapua race. Interested readers can refer to Ghitany (2001), Marshall and Olkin
(2007), Sarabia and Prieto (2009) and Lai (2013), and their references, whose discusses some common approaches for
construct lifetime distributions.

Although several studies involving quadratic rank transmutation map can be seen in any areas such as survival analysis
and reliability, limited are the numbers of papers that provide a regression approach. In this paper we proposed a regres-
sion approach for the transmuted Weibull model, called transmuted Weibull regression model, to investigate the role of
oxidative stress markers as indicators of risk of injury of the lower extremities in patients with type 2 diabetes mellitus.
For that, the sections are organized as follows. Section 2 we presented a background of the transmuted model including
the way of the model was constructed, the main properties and the regression approach showing the reliability functions
and their main properties. The likelihood function and estimation methods are be showed in Section 3. The numerical
experiments are being showed in Section 4 where we present a simulation study by using the Monte Carlo method and
the usefulness of the model is showed in the oxidative stress markers data, used as an indicator of risk of injury. Finally,
some conclusions and remarks are presented in Section 6 following references and appendix sections.

2. Transmuted Weibull Regression Distribution

2.1 Background

By using the quadratic rank transmutation map, Aryal and Tsokos (2011) proposed a new generalization of the Weibull
model called transmuted Weibull distribution. The author derive the Weibull distribution using the quadratic rank trans-
mutation map studied by Shaw and Buckley (2007). For that, let F1 and F2 be the cumulative distribution functions, of
two distributions with a common sample space. The general rank transmutation as given in Shaw and Buckley (2007) is
defined as

GR12(u) = F2(F−1
1 (u)) and GR21(u) = F1(F−1

2 (u)).
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The functions GR12(u) and GR21(u) both map the unit interval I = [0, 1] into itself, and under suitable assumptions are
mutual inverses and they satisfy GRi j(0) = 0 and GRi j(0) = 1. A Quadratic Rank Transmutation Map is defined as

GR12(u) = u + λu(1 − u), |λ| ≤ 1, (1)

from which it follows that the cdf’s satisfy the relationship

F2(x) = (1 + λ)F1(x) − λF1(x)2, (2)

which on differentiation yields,
f2(x) = f1(x) [(1 + λ) − 2λF1(x)] , (3)

where f1(x) and f2(x) are the corresponding pdfs associated with cdf F1(x) and F2(x) respectively (observe that at λ = 0
we have the distribution of the base random variable).

In equation (2), consider F1(x) the cumulative distribution of the baseline model Weibull and F2(x), which will be called
just F(x), the generalization of this distribution or transmuted model.

Hence, the cdf and pdf of a transmuted generalized Weibull distribution are given respectively by

F (x) =

1 − exp
− (

x
µ

)β 1 + λ exp
− (

x
µ

)β
and

f (x) =
β

µ

(
x
µ

)β−1

exp
− (

x
µ

)β 1 − λ + 2λ exp
− (

x
µ

)β . (4)

Note that the transmuted Weibull distribution is an extended model to analyze more complex data and it generalizes some
of the widely used distributions. Figure 1 illustrates some of the possible shapes of the transmuted Weibull pdf and cdf
for selected values of β and λ and for µ = 1.
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Figure 1. The pdf and cdf curves of transmuted Weibull distribution for µ = 1 and different values of β and λ.

2.2 The Regression Model

Now, let T be a random variable denoting the lifetimes with a probability distribution and γ(x) as a parameter depending
on a covariate vector x = (1, x1, . . . , xp)′ given by

γ(x) = γ0 + γ1x1 + . . . + γpxp

Then, the hazard function of the transmuted Weibull regression model h(t | γ(x), β, λ) which denote the hazard function at
time t for an individual with covariate vector x is given by

h(t | γ(x), β, λ) =
βtβ−1

γ(x)β


1 − λ + 2λ exp

[
−

(
t
γ(x)

)β]
1 − λ + λ exp

[
−

(
t
γ(x)

)β]
 (5)
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where λ > 0, β > 0 and γ(x) is a regression defined above. Consequently, the reliability function may be written as

R(t | γ(x), β, λ) = exp
− (

t
γ(x)

)β 1 − λ + λ exp
− (

t
γ(x)

)β (6)

Some examples of behaviors of the hazard function are presented in Figure 2, right panel.
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Figure 2. Survival and hazard plot of transmuted Weibull distribution for µ = 1 and different values of β and λ.

2.3 Some Important Statistics

In this section we present some important statistics as moments and quantiles.

If X has the Transmuted Weibull distribution with µ, β > 0 and |λ| ≤ 1, then the the moment generating function of X is
given as follows.

MX(t) =
∫ ∞

0
etx f (x|µ, β)dx,

then,

MX(t) =
∫ ∞

0
etx β

µ

(
x
µ

)β−1

exp
− (

x
µ

)β 1 − λ + 2λ exp
− (

x
µ

)β dx

Substituting ω = µtβ and using Taylor expansion ex =
∑∞

i=0
xi

i! , the final function is expressed as

MX(t) =
∞∑

i=0

ti

i!
µ−i/βΓ

(
1 +

1
β

) [
1 − λ + λ2−i/β

]
. (7)

By using the expression (7), the expected value and variance of the model are given, respectively, by

E(X) = µΓ
(
β + 1
β

) [
1 − λ + 2−(1/β)λ

]
(8)

and

V(X) = µ2
{
Γ

(
β + 2
β

) [
1 − λ + 2−(2/β)λ

]
− Γ2

(
β + 1
β

) [
1 − λ + 2−(1/β)λ

]2
}
. (9)

The quantile qth quantile is given by

xq = µ

− ln

1 − 1 + λ −
√

(1 + λ)2 − 4λq
2λ




1/β

(10)

3



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 7, No. 2; 2018

3. Inference

The maximum likelihood estimates, MLEs, of the parameters that are inherent within the transmuted log-logistic proba-
bility distribution function is given by the following: Let y1, y2, . . . , yn be a sample of size n from a transmuted log-logistic
distribution; xi = (1, x1i, x2i, . . . , xpi) be an ith vector of covariates, i = 1, . . . , n. Also, consider the following relationship
between the vector of covariates and the parameters γ(x) = γ0 + γ1x1 + . . . + γpxp.

Then the likelihood function is given by

L(γ0, . . . , γp, β, λ|y, x) = exp

− n∑
i=1

 yi∑p
j=1 γ jxi j

β
 (11)

n∏
i=1

 βyβ−1
i(∑p

j=1 γ jxi j

)β
1 − λ + 2λ exp

 yi∑p
j=1 γ jxi j

β



Hence, the log-likelihood function l(γ0, . . . , γp, β, λ|y, x) = ln L(γ0, . . . , γp, β, λ|y, x) becomes

l(γ0, . . . , γp, β, λ|y, x) = −
n∑

i=1

 yi∑p
j=1 γ jxi j

β + n log β + (β − 1)
n∑

i=1

log yi (12)

−β
n∑

i=1

log

 p∑
j=1

γ jxi j

 + n∑
i=1

log

1 − λ + 2λ exp

−
 yi∑p

j=1 γ jxi j

β



Therefore, the maximum likelihood estimates of γ j, λ and β which maximize (12) must satisfy the following normal
equations

∂l
∂γ j

=

n∑
i=1


2λβ

(∑p
j=1 xi j

) (
yi∑p

j=1 γ j xi j

)β
exp

[
−

(
yi∑p

j=1 γ j xi j

)β]
(∑p

j=1 γ jxi j

) [
1 − λ + 2λ exp

[
−

(
yi∑p

j=1 γ j xi j

)β]]


+

n∑
i=1


β
(∑p

j=1 xi j

) (
yi∑p

j=1 γ j xi j

)β
∑p

j=1 γ jxi j

 − β
n∑

i=1

p∑
j=1

xi j

γ jxi j
= 0

∂l
∂λ

=

n∑
i=1


2 exp

[
−

(
yi∑p

j=1 γ j xi j

)β]
− 1

1 − λ + 2λ exp
[
−

(
yi∑p

j=1 γ j xi j

)β]
 = 0

∂l
∂β

=
n
β
+

n∑
i=1

log yi −
n∑

i=1

log

 p∑
j=1

γ jxi j

 − n∑
i=1

 yi∑p
j=1 γ jxi j

β log

 yi∑p
j=1 γ jxi j


−

n∑
i=1


2λ

(
yi∑p

j=1 γ j xi j

)β
log

(
yi∑p

j=1 γ j xi j

)
exp

[
−

(
yi∑p

j=1 γ j xi j

)β]
1 − λ + 2λ exp

[
−

(
yi∑p

j=1 γ j xi j

)β]
 = 0

The maximum likelihood estimator θ̂ = (γ̂0, . . . , γ̂p, β̂, λ̂)′ is obtained by solving the above nonlinear system of equations,
Lawless (2003); Marshall and Olkin (2007). It is usually more convenient to use nonlinear optimization algorithms such
as quasi-Newton or Newton-Raphson algorithms to numerically maximize the log-likelihood function given in (12). In
order to compute the standard error and asymptotic confidence interval we use the usual large sample approximation in
which the maximum likelihood estimators of θ can be treated as being approximately (p + 3) variate normal. Hence as
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n→ ∞ the asymptotic distribution of the MLE (γ̂0, . . . , γ̂p, β̂, λ̂) is given by,

γ̂0
γ̂1
...
γ̂p

β̂

λ̂


∼ N





γ̂0
γ̂1
...
γ̂p

β̂

λ̂


,


V̂11 V̂12 . . . V̂1(p+3)

V̂21 V̂22 . . . V̂2(p+3)
...

...
. . .

...

V̂(p+3)1 V̂(p+3)2 . . . V̂(p+3)(p+3)




(13)

where, V̂i j = Vi j |θ=θ̂ and it is determined by the inverse of Hessian matrix.

Thereby, an approximate 100(1 − α)% two sided confidence intervals for γ j, β and λ are, respectively, given by

γ̂ j ± zα/2
√

V̂( j+1)( j+1), β̂ ± zα/2
√

V̂(p+2)(p+2) and λ̂ ± zα/2
√

V̂(p+3)(p+3),

where j = 0, . . . , p, zα is the upper α − th percentiles of the standard normal distribution.

Different models can be compared by penalizing over-fitting by using the Akaike information criterion (Akaike, 1973),
which intends to minimize the Kullback-Leibler divergence between the true distribution and the estimate from a candidate
model. It is given by AIC = −2l(θ̂) + 2 size(θ), where l(θ̂) denotes the log likelihood function evaluated at the maximum
and size(θ) is the number of model parameters. The model with the lowest value of each of this criterion (among all
considered models) is regarded as the preferred model for describing the given dataset.

The Hessian matrix is showed in Appendix A.

4. Numerical Experiments

4.1 Simulation

This section presents the results of a Monte Carlo experiment on the finite sample behavior of the MLEs. All results were
obtained from 1, 000 Monte Carlo replications. The sample sizes n range from 30 to 500, generated by using the inversion
method according to a transmuted Weibull regression distribution for each combination of the parameter values (β, λ) and
fixed values of α0 = −1, α1 = −2. Table 4.1 shows the estimates of parameters and their variances and Table 4.1 shows
that the mean square error (mse) become smaller when the sample size increases beyond the coverage probability to the
confidence interval converge to 95% as it was generated.

Table 1. MLEs of the parameters and variance estimated for each combination of the parameters.

Sample Generated Parameters Variance
Size β λ α̂0 α̂1 β̂ λ̂ V(α̂0) V(α̂1) V(β̂) V(λ̂)
30 0.5 −0.6 −1.1352 −2.1858 0.5140 −0.5138 1.0175 1.1751 0.1310 0.2930

1.0 −0.5 −1.0476 −2.0800 1.0413 −0.4378 0.4660 0.5607 0.2433 0.3102
1.5 −0.4 −1.0387 −2.0607 1.5770 −0.3568 0.3331 0.3877 0.3346 0.3266
0.5 0.6 −1.0609 −2.1653 0.5302 0.4889 1.1265 1.3358 0.0840 0.2987
1.0 0.5 −1.0423 −2.0912 1.0610 0.4169 0.5558 0.6647 0.1670 0.3240
1.5 0.4 −1.0343 −2.0653 1.5934 0.3390 0.3647 0.4374 0.2556 0.3425

50 0.5 −0.6 −1.0465 −2.0803 0.5183 −0.5568 0.5901 0.7392 0.0764 0.2375
1.0 −0.5 −1.0300 −2.0483 1.0382 −0.4767 0.3248 0.3996 0.1493 0.2587
1.5 −0.4 −1.0192 −2.0315 1.5596 −0.3884 0.2099 0.2561 0.2135 0.2732
0.5 0.6 −1.0494 −2.0951 0.5166 0.5478 0.7905 0.9436 0.0607 0.2483
1.0 0.5 −1.0333 −2.0545 1.0343 0.4650 0.3878 0.4688 0.1208 0.2694
1.5 0.4 −1.0261 −2.0397 1.5532 0.3745 0.2532 0.3089 0.1817 0.2779

100 0.5 −0.6 −1.0122 −2.0275 0.5115 −0.5915 0.4126 0.4829 0.0453 0.1843
1.0 −0.5 −1.0077 −2.0159 1.0231 −0.4976 0.2112 0.2490 0.0901 0.1957
1.5 −0.4 −1.0066 −2.0123 1.5340 −0.4002 0.1448 0.1710 0.1346 0.2017
0.5 0.6 −1.0260 −2.0445 0.5092 0.5907 0.5386 0.6336 0.0414 0.1874
1.0 0.5 −1.0164 −2.0251 1.0191 0.4954 0.2660 0.3143 0.0832 0.2004
1.5 0.4 −1.0123 −2.0181 1.5295 0.3945 0.1744 0.2069 0.1256 0.2055
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200 0.5 −0.6 −0.9987 −2.0088 0.5066 −0.5952 0.2823 0.3309 0.0301 0.1325
1.0 −0.5 −0.9998 −2.0053 1.0131 −0.4952 0.1457 0.1708 0.0601 0.1382
1.5 −0.4 −1.0002 −2.0042 1.5194 −0.3952 0.1002 0.1175 0.0899 0.1427
0.5 0.6 −1.0041 −2.0154 0.5048 0.6046 0.3702 0.4351 0.0280 0.1346
1.0 0.5 −1.0034 −2.0093 1.0101 0.5042 0.1837 0.2162 0.0558 0.1406
1.5 0.4 −1.0027 −2.0069 1.5158 0.4035 0.1212 0.1427 0.0840 0.1445

500 0.5 −0.6 −0.9956 −2.0024 0.5027 −0.5973 0.1757 0.2058 0.0183 0.0817
1.0 −0.5 −0.9979 −2.0015 1.0053 −0.4972 0.0908 0.1062 0.0368 0.0856
1.5 −0.4 −0.9987 −2.0013 1.5079 −0.3972 0.0625 0.0730 0.0553 0.0885
0.5 0.6 −0.9988 −2.0068 0.5019 0.6018 0.2322 0.2690 0.0176 0.0825
1.0 0.5 −0.9998 −2.0038 1.0041 0.5016 0.1157 0.1337 0.0351 0.0864
1.5 0.4 −1.0000 −2.0027 1.5064 0.4014 0.0763 0.0881 0.0528 0.0892

Table 2. Mean square error (mse) and coverage probability of the MLEs.

Sample Generated Mean Square Error Coverage Probability 95%
Size β λ α0 α1 β λ α0 α1 β λ

30 0.5 −0.6 1.036 1.210 0.131 0.300 0.861 0.872 0.874 0.884
1.0 −0.5 0.468 0.567 0.245 0.314 0.877 0.891 0.895 0.896
1.5 −0.4 0.335 0.391 0.341 0.328 0.884 0.896 0.911 0.903
0.5 0.6 1.130 1.363 0.085 0.311 0.869 0.888 0.940 0.817
1.0 0.5 0.558 0.673 0.171 0.331 0.880 0.889 0.943 0.852
1.5 0.4 0.366 0.442 0.264 0.346 0.887 0.894 0.942 0.865

50 0.5 −0.6 0.592 0.746 0.077 0.239 0.923 0.932 0.934 0.913
1.0 −0.5 0.326 0.402 0.151 0.259 0.924 0.932 0.934 0.909
1.5 −0.4 0.210 0.257 0.217 0.273 0.928 0.935 0.936 0.914
0.5 0.6 0.793 0.953 0.061 0.251 0.908 0.921 0.945 0.879
1.0 0.5 0.389 0.472 0.122 0.271 0.920 0.927 0.946 0.898
1.5 0.4 0.254 0.310 0.185 0.279 0.920 0.928 0.945 0.907

100 0.5 −0.6 0.413 0.484 0.045 0.184 0.922 0.944 0.929 0.927
1.0 −0.5 0.211 0.249 0.091 0.196 0.925 0.947 0.926 0.931
1.5 −0.4 0.145 0.171 0.136 0.202 0.927 0.948 0.926 0.942
0.5 0.6 0.539 0.636 0.041 0.187 0.927 0.941 0.945 0.911
1.0 0.5 0.266 0.315 0.084 0.200 0.929 0.944 0.939 0.917
1.5 0.4 0.175 0.207 0.126 0.206 0.928 0.950 0.936 0.923

200 0.5 −0.6 0.282 0.331 0.030 0.133 0.939 0.954 0.950 0.935
1.0 −0.5 0.146 0.171 0.060 0.138 0.939 0.953 0.950 0.938
1.5 −0.4 0.100 0.117 0.090 0.143 0.943 0.953 0.946 0.940
0.5 0.6 0.370 0.435 0.028 0.135 0.944 0.954 0.957 0.923
1.0 0.5 0.184 0.216 0.056 0.141 0.946 0.955 0.955 0.929
1.5 0.4 0.121 0.143 0.084 0.144 0.949 0.956 0.950 0.931

500 0.5 −0.6 0.176 0.206 0.018 0.082 0.936 0.952 0.942 0.948
1.0 −0.5 0.091 0.106 0.037 0.086 0.940 0.952 0.942 0.949
1.5 −0.4 0.062 0.073 0.055 0.088 0.937 0.953 0.943 0.946
0.5 0.6 0.232 0.269 0.018 0.083 0.943 0.948 0.944 0.947
1.0 0.5 0.116 0.134 0.035 0.086 0.943 0.950 0.941 0.950
1.5 0.4 0.076 0.088 0.053 0.089 0.943 0.950 0.944 0.950

Also, in Figure 3 we can clearly see that the mean square error (mse) become smaller when the sample size increases for
all parameters (α0, α1, β, λ).
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Figure 3. MSE from the estimators for different samples.

5. Application

Oxidative stress, caused by an imbalance between production of reactive oxygen species and endogenous antioxidant
capacity is a major determinant of diabetic complications. In order to illustrate the usefulness of the transmuted Weibull
regression model, we investigated the role of oxidative stress markers as indicators of risk of injury of the lower extremities
in patients with type 2 diabetes mellitus (PPDMT2). For that, three groups of 29 patients was studied until medical
discharge and we assessed the following parameters: glycated hemoglobin (HbA1c); three blood markers of oxidative
status (total antioxidant capacity - TAC, reduced proteins thiol groups and reduced levels of protein carbonyls). Its
important to emphasize that we are interested in study only the first group which one 28 patients actually initiated the
treatment, i.e., one patient withdrew before the tests have been done.

Firstly, a brief descriptive analyze is made. The minimum observed time was about half month; the maximum observed
was 40 months. The median time observed was 12.5 months and even the first and third quantiles are, 5 and 16.25 months,
respectively. Figures 4, left and right panels, show the TTTPlot and the histogram of the observed times. In the first one
we can observe that indicate increasing hazard, which can be fitted by a transmuted Weibull model.

After the initial analysis, the models transmuted Weibull, Weibull and exponential regression were fitted. The estimates
of the parameters, standard errors and confidence intervals are be showed in Table 3. Note that, we considere γ(x) =
γ1Protein + γ2Albumin + γ3GJ + γ4HbA1C (the albumin and protein are measure in mg per mol).

We observed the −2 log Likelihood estimated values for all fitted models. By using this criteria, we observe 52% in favor
of transmuted model against 47% in favor of Weibull and 1% in favor of exponential model. Although there is no large
difference between the transmuted and the Weibull model, we will consider the setting and description of transmuted
Weibull. Also, the proximity between the parametric and nonparametric survival curves can be seem in the Figure 5, left
panel (we are estimating the scale parameter by setting the covariates in the mean point).
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Figure 4. TTTPlot, survival curve and histogram of the observed times, respectively.

Table 3. Estimates of transmuted Weibull regression, Weibull regression and exponential regression parameters.

Model Parameter Estimate Standard P-Value Confidence Interval (95%)
Error Lower Upper

γ1 −6.160 1.594 0.001 −9.425 −2.896
γ2 9.272 2.992 0.004 3.144 15.400

Transmuted γ3 −0.249 0.063 0.001 −0.378 −0.119
γ4 7.258 1.894 0.001 3.378 11.139
λ −0.254 0.243 0.044 −1.367 −0.085
β 1.499 0.323 < .0001 0.839 2.160
γ1 −6.707 1.151 < .0001 −9.065 −4.350

Weibull γ2 9.984 2.738 0.001 4.376 15.592
γ3 −0.270 0.046 < .0001 −0.364 −0.175
γ4 7.926 1.354 < .0001 5.152 10.700
β 1.584 0.251 < .0001 1.071 2.098
γ1 −5.862 1.583 0.001 −9.105 −2.619

Exponential γ2 8.149 3.849 0.043 0.265 16.033
γ3 −0.232 0.063 0.001 −0.360 −0.104
γ4 7.119 1.947 0.001 3.131 11.108
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Figure 5. The transmuted Weibull, Weibull and exponential estimated survival curves versus the Kaplan-Meier, left panel,
and the estimated hazard curve, right panel.

Also, the estimate of β is coherent with the TTT-Plot that indicates an increasing hazard (β is larger than 1). Figure 5, right
panel, presents the estimated increasing hazard. Figure 6 presents the perspective curves of the estimated hazards for each
covariates protein, albumin, GJ and HbA1C, ranging from the minimum to the maximum observed values, respectively,
and the others covariates fixed at the mean observed value.
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Figure 6. Perspective curves of the estimated hazards for each covariates protein, albumin, GJ and HbA1C, ranging from
the minimum to the maximum observed values, respectively, and the others covariates fixed at the mean observed value.

The perspective plots are showing the behaviors of the hazard rate and, in all cases, we can clearly see the increasing
behavior of the curves with respect all covariates, except for the HbA1C that present a decreasing hazard behavior.
However, we can clearly see that if the covariate albumin increase in value, the hazard rate curves is being dominated by
the others which is the opposite that occurs with the covariates protein and GJ.

Furthermore, some estimates of the fitted model were done. The estimated mean and respective confidence interval of
95% of the discharge time of the patients are, respectively, 16.40 and 9.20; 23.60 months. The estimated median and the
first and third quantiles are given by: 14.62, 8.43 and 22.43 months, respectively.

6. Concluding Remarks

In this paper we presented the transmuted Weibull regression model in order to investigate the role of oxidative stress
markers as indicators of risk of injury of the lower extremities in patients with type 2 diabetes mellitus. For that, we
reviewed the transmuted Weibull model adding covariates on that model. The numerical experiment showed us the
increasing behavior of the hazard curve and the shapes of the hazard for plenty of values of the covariates.

Also, some new properties as the moment generation function were presented for the transmuted Weibull model. The
consistence of the model was showed in a simulation study by applying the Monte Carlos method for sample sizes range
from 30 to 500 and different combinations of the parameters values.
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A. Hessian Matrix

The Hessian matrix is given by

A =


A11 . . . A1(p+3)
A21 . . . A2(p+3)
...

. . .
...

A(p+3)1 . . . A(p+3)(p+3)


where


V̂11 . . . V̂13

V̂21 . . . V̂23
...

. . .
...

V̂(p+3)1 . . . V̂(p+3)(p+3)

 =


A11 . . . A1(p+3)
A21 . . . A2(p+3)
...

. . .
...

A(p+3)1 . . . A(p+3)(p+3)


−1

and

A( j+1)( j+1) = − ∂
2l
∂γ2

j

=

n∑
i=1

 2λβCβi, j exp
(
−Cβi, j

)
(∑p

j=1 γ jxi, j

)2 (
1 − λ + 2λ exp

(
−Cβi, j

))
 ×Cβi, j

1 − 2λ

1 − λ + 2λ exp
(
−Cβi, j

)  − (1 + β)

 + β n∑
i=1

p∑
j=1

(
xi, j

γ jxi, j

)2

−
n∑

i=1

Cβi, jβ
(∑p

j=1 xi, j

)2(∑p
j=1 γ jxi, j

)2 (β + 1)
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A(p+2)(p+2) = − ∂
2l
∂β2 = −

n
β2 −

n∑
i=1

(
Cβi, j log C2

i, j

)
+

n∑
i=1

2λCβi, j log C2
i, j exp

(
−Cβi, j

)
1 − λ + 2λ exp

(
−Cβi, j

) Cβi, j − 1 −
2λCβi, j exp

(
−Cβi, j

)
1 − λ + 2λ exp

(
−Cβi, j

) 

A(p+3)(p+3) = − ∂
2l
∂λ2 = −

n∑
i=1

 2 exp
(
−Cβi, j

)
− 1

1 − λ + 2λ exp
(
−Cβi, j

) 
2

where Ci j =
yi∑p

j=1 γ j xi, j
and Al×m (l , m) are the partial derivates.
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