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Abstract 

This paper introduces a new two-parameter lifetime distribution, called the exponential-generalized truncated geometric 

(EGTG) distribution, by compounding the exponential with the generalized truncated geometric distributions. The new 

distribution involves two important known distributions, i.e., the exponential-geometric (Adamidis and Loukas, 1998) 

and the extended (complementary) exponential-geometric distributions (Adamidis et al., 2005; Louzada et al., 2011) in 

the minimum and maximum lifetime cases, respectively. General forms of the probability distribution, the survival and 

the failure rate functions as well as their properties are presented for some special cases. The application study is 

illustrated based on two real data sets.  

Keywords: Lifetime distributions; exponential distribution; truncated geometric distribution; order statistics; failure rate; 

survival function. 

2010 Mathematics Subject Classification: 60E05; 62E15; 62F10. 

1. Introduction 

Lifetime distributions are widely used in reliability theory, survival analysis and several areas of studies, such as finance, 

manufacture, biological sciences, physics and engineering. The exponential distribution is the most commonly used in 

reliability and lifetime testing, assuming the failure rate is constant (Balakrishnan and Basu, 1995; Barlow and Proschan, 

1975). In recent years, some of research papers have been devoted to take into account data with increasing or decreasing 

failure rate functions. The motivation is to provide more convenient parametric fit for real data where the underlying 

hazard rates, arising on a latent complementary risk problem base, present monotone shapes (non-constant hazard rates). 

The genesis is stated on complementary risk scenarios with masked causes of failure (Basu and Klein, 1982; Cox and 

Oakes, 1984).  

Several families of compound lifetime distributions are introduced as extensions of the exponential distribution, 

following Adamidis and Loukas (1998), using a mixture of discrete and continuous distributions. Adamidis and Loukas 

(1998) introduced the exponential-geometric (EG) lifetime distribution with decreasing failure rate (DFR) arising by 

mixing power-series distributions. In the same way, Adamidis et al. (2005) and Louzada et al. (2011) proposed the 

complementary (or extended) exponential-geometric (CEG) distribution with increasing failure rate (IFR). Other families 

of lifetime distributions have been investigated by several authors. For example, Kus (2007), Tahmasbi and Rezaei (2008), 

Chahkandi and Ganjali (2009), Barreto-Souza and Cribari-Neto (2009), Silva et al. (2010), Barreto-Souza et al. (2011), 

Cancho et al. (2011), Louzada-Neto et al. (2011), Morais and Barreto-Souza (2011), Hemmati et al. (2011), Alkarni and 

Orabi (2012), Nadarajah et al. (2013), Bakouch et al. (2014), and others.  

The proposed distributions come from the idea of modelling the reliability of series and parallel systems based on the 

reliability of their components. They are carried out only for the first (minimum) or the last (maximum) order statistics. 
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The distributions of stochastic ordered statistics1 are very interesting in many fields of statistics, particularly, the 

detection of outliers, quality control, auction theory, reliability and life testing models. In this paper, we generalize the 

distributions modelling the time to the first (or the last) failure, to a distribution more appropriate for modelling any order 

statistic (second, third, or any 𝑘𝑡ℎ lifetime). For example, one may be interested in the period of time patients may spend 

in hospital during a month before they leave. Let's suppose that number of patients fill beds in a hospital and leave during 

a month. We suppose that 𝑇𝑖 is the period a patient spends before leaving and 𝑍 the random number of patients that leave 

the hospital. We may let 𝑋(1) < 𝑋(2) < …  < 𝑋(Z)  be the order statistics of 𝑧 independent observations of time 

T = (T1, T2, … , Tz). Maybe previous studies focused on the minimum, 𝑋(1) = min {𝑇𝑖}𝑖=1
𝑍 , or the maximum, 𝑋(𝑍) =

max {𝑇𝑖}𝑖=1
𝑍 , duration of filling beds. We are interested here in the duration 𝑋(𝑘) and then we determine the distribution 

for the observed 𝑘𝑡ℎ order statistic. Ordered random variables are already known for their ascending order. The concept 

of dual generalized ordered statistics, introduced by Burkschat et al. (2003), enables a common approach to the reverse (or 

descending) order statistics. Reverse order statistics have also wide range of applications in economics such as providing 

diverse distributive criteria in assessing welfare and inequalities of incomes and wealth (Weymark, 1981; 

Parrado-Gallardo et al., 2014).  

We propose the new family of lifetime distributions by compounding the exponential with the generalized truncated 

geometric distributions, named the exponential-generalized truncated geometric (EGTG) distribution. We show that the 

minimum lifetime (Adamidis and Loukas, 1998) and the maximum lifetime (Adamidis et al., 2005; Louzada et al., 2011) 

are special cases of our EGTG distribution.  

Finally, this paper is organized as follows: In section 2, we derive different statistical proprieties of our proposed 

distribution, including the probability density function (pdf), the moment generating function, the reliability and failure 

rate functions, the random number generation and the entropy function. The estimation of the parameters will be 

discussed in section 3. As an illustration of the estimation method, numerical computations will be performed in section 4. 

The application study is illustrated based on two real data sets in section 5. We conclude the paper in the last section.  

2. The New Lifetime Distribution 

2.1 The Distribution 

The derivation of the new family of lifetime distributions is obtained by mixing the exponential with generalized 

truncated geometric distributions as follows:  

Let 𝑇 = (T1, T2, … , Tz) be iid exponential random variables with scale parameter 𝜃 > 0 and pdf given by: 𝑓(𝑡) =
𝜃𝑒−𝜃𝑡 , for 𝑡 ≥ 0, where 𝑍 is a discrete random variable (the random number of unit in a system) following a truncated 

at 𝑘 − 1 geometric distribution with parameter 0 < 𝜂 < 1 . The probability mass function (pmf), 𝑃𝑘−1(𝑍 = 𝑧), is: 

𝑃𝑘−1(𝑍 = 𝑧) = (1 − η)𝜂
𝑧−𝑘  ; 0 < 𝜂 < 1 ;  𝑘 = 1, 2, … , 𝑧                                          (1) 

where the pmf of the geometric distribution is given by: 

𝑃(𝑍 = 𝑖) = (1 − η)𝜂𝑖−1 ; 0 < 𝜂 < 1 𝑎𝑛𝑑 𝑖 = 1, 2, … 

Let 𝑋(1) = min {𝑇𝑖}𝑖=1
𝑍  be the first order statistic (or the smallest order statistic) and 𝑋(𝑍) = max {𝑇𝑖}𝑖=1

𝑍  the last order 

statistic (or the largest order statistic). The pdf of the 𝑘𝑡ℎ order statistic 𝑋(𝑘) (the 𝑘𝑡ℎ-smallest value of the lifetime) is 

given by the equation (2) (David, 1981, p. 9; Balakrishnan and Cohen, 1991, p. 12):  
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The joint probability density function is obtained from equations (1) and (2) as follows: 
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1
 Order Statistics play a key role in lifetime-distribution studies and they are widely used in statistical models and 

inference. One may refer to Balakrishnan and Rao (1998, 1998a) for theory, methods and some applications on the 

order statistics of random variables. 
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where, 𝑥 is the lifetime of a system, z  is the last order statistic and 0,1,...m z  . Equation (3) gives two definitions2: 

the first is for the ascending order statistics and the second is for the descending order. If we consider the ascending order 

𝑋(1) < 𝑋(2) < …  < 𝑋(Z), the first part (I) of this joint probability density in equation (3) is reached by compounding a 

truncated at 𝑙 = 𝑘 − 1 geometric distribution and the pdf of the 𝑘𝑡ℎ order statistic (𝑘 = 1,2, … , 𝑧). The truncated at 

𝑘 − 1 geometric distribution is motivated by mathematical interest because we are interested in the 𝑘𝑡ℎ order statistic. 

There is a left-truncation scheme, where only (𝑧 − 𝑘 + 1) individuals who survive a sufficient time are included. In 

comparison with the formulation of Adamidis and Loukas (1998), we consider the 𝑘𝑡ℎ-smallest value of lifetime instead 

of the minimum lifetime (the first order statistic), 𝑋(1) = min {𝑇𝑖}𝑖=1
𝑍 . 

However, when we consider the reverse (descending) order 𝑋(Z) > 𝑋(Z−1) > … > 𝑋(1), we obtain the second definition 

(II) in equation (3) by compounding the pdf of the (𝑧 − 𝑚)𝑡ℎ order statistic and a truncated at 𝑚 geometric distribution. 

We include in the sample only (𝑧 − 𝑚) individuals who have experienced the event by the specified time 𝑚 = 𝑧 − 𝑘. In 

comparison with the formulation of Louzada et al. (2011), we consider the (𝑧 − 𝑘)𝑡ℎ-largest value of lifetime instead of 

the maximum lifetime (the last order statistics), 𝑋(𝑍) = max {𝑇𝑖}𝑖=1
𝑍 . 

So, our proposed new family of lifetime distributions (EGTG) is the marginal density function of 𝑥 given by: 

1
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where 0 1  is the shape parameter and 0  is the scale parameter. 

Our distribution is more appropriate for modelling any order statistic (2𝑛𝑑, 3𝑟𝑑 or any 𝑘𝑡ℎ lifetime). We show later that 

the minimum lifetime (Adamidis and Loukas, 1998) is a special case of the first part of the EGTG distribution, and that 

the maximum lifetime (Adamidis et al., 2005; Louzada et al., 2011) is a special case of the second part of the EGTG 

distribution. It should be noted that we have two separate definitions. The first case is a generalization of the minimum 

lifetime distribution using the ascending order of lifetime. The second case is a generalization of the maximum lifetime 

distribution using the descending order. Also, the cumulative distribution function (cdf) of 𝑥 corresponding to the pdf in 

equation (4) is given by: 
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In table (1), we present the pdf in equation (4) for some special cases at the first, second and third order statistics and at the 

last, last-1 and last-2 order statistics. Table (1) shows that the particular case of our EGTG density function, for 𝑘 = 1, is 

the EG distribution modelling the time to the first failure (Adamidis and Loukas, 1998). Figure (1) illustrates some 

possible shapes of the pdf for some selected cases of the order statistics (k=1,2; m=0,1) and some selected values of (𝜂, 𝜃). 

The pdf decreases strictly in 𝑥 and tends to zero as 𝑥 → ∞. Note that, for 𝑘 = 1 the EGTG distribution is strictly 

decreasing with modal value 𝜃(1 − η)−1 at 𝑥 = 0. The median is calculated to be 𝜃−1ln (2 − 𝜂) for 𝑘 = 1. As 𝜂 → 0 

and 𝑘 = 1, the EGTG distribution tends to an exponential distribution with parameter 𝜃. The graphs of the density 

resemble those of the exponential and Pareto II distributions. 

The particular case of the pdf for the last order statistic (𝑚 = 0) is the maximum lifetime distribution (Adamidis et al., 

2005; Louzada et al., 2011). As 𝜂 → 0 and 𝑚 = 0, the EGTG distribution converges to the exponential distribution with 

parameter 𝜃. The EGTG density function is decreasing and its mode is 𝜃(1 − 𝜂) at 𝑥 = 0 for 𝜂 ≤
1

2
 . It is increasing 

and uni-modal at −
1

𝜃
𝑙𝑜𝑔

1−𝜂

𝜂
 for 𝜂 >

1

2
. As noted by Louzada et al. (2011), the parameters 𝜂 and 𝜃 may be interpreted 

                                                        
2 The proofs of all steps and equations are available upon request. 
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directly in terms of complementary risk problems in presence of latent risks (see also, Louzada-Neto, 1999). In fact, 

(1 − 𝜂) and 𝜃 represent the mean of the number of complementary risks and the lifetime failure rate, respectively. A 

detailed presentation of the competing risks theory can be found in David and Moeschberger (1978) and Crowder (2001). 

Table 1. The probability density function for some special cases 

Order statistics k, m Probability density function 
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Figure 1. Density of the EGTG distribution for k=(1,2) and m=(0,1) 

2.2. Moment Generating Function and 𝒓𝒕𝒉 Moment 

The moment generating function (mgf) is an alternative specification of the probability distribution of a random variable. 

It allows for the study of the characteristics and the features of a distribution through its moments, such as the mean and 

variance.  

If 𝑥 has the pdf in equation (4), then the mgf is calculated to be: 
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The mgf in equation (6) generates the moments of 𝑋 by differentiation. In other words, the rth moment can be obtained by 

evaluating the rth order derivative of ( )xM t  at 𝑡 = 0 as follows: 
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The mean is the first order derivative, 𝜇 = 𝐸(𝑋) = 𝑀𝑋
(1)
(0), and the second order derivative is 𝐸(𝑋2) = 𝑀𝑋

(2)
(0). 

Hence, the variance is 𝜎2 = 𝐸(𝑋2) − 𝜇2. 

From equation (6), the 𝑟𝑡ℎ moment is given by: 
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Table (2) provides the explicit expressions in terms of the polylogarithm function for the first and second order moments 

of the random variable 𝑋 . 𝐿𝑖𝑠(𝜂)  is the generalization of Euler's dilogarithm function of 𝜂 . It is known as the 

polylogarithm function defined by the power series (Erdelyi et al., 1953, p. 31): 
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𝐿𝑖𝑠(𝜂) =∑
𝜂𝑡

𝑡𝑠

∞

𝑡=1

= 𝜂 +
𝜂2

𝑡𝑠
+
𝜂3

𝑡𝑠
+⋯ 

where, 𝐿𝑖0(𝜂) =
𝜂

1−𝜂
 and 𝐿𝑖1(𝜂) = −ln (1 − 𝜂) (Jodra, 2008; Adamidis and Loukas, 1998).  

 

Table 2. The first and second order moments for some special cases 

Order 

statistics 
k, m 𝑬(𝒙) 𝑬(𝒙𝟐) 

First k=1 
1 − 𝜂

𝜂𝜃
𝐿𝑖1(𝜂) 

2(1 − 𝜂)

𝜂𝜃2
𝐿𝑖2(𝜂) 

Second k=2 
1 − 𝜂2

𝜂2𝜃
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2.3. Reliability and Failure Rate Functions  

The reliability (or the survival) function is the probability of being alive just before a duration 𝑥, given by 𝑆(𝑥)  =
 𝑃𝑟{𝑋 >  𝑥}  =  1 −  𝐺(𝑥)  =  ∫ 𝑓(𝑡)𝑑𝑡

∞

𝑥
 which is the probability that the event under study has not occurred by duration 

𝑥. So the reliability function corresponding to the pdf in equation (4) is given by:  
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In other words, the reliability, 𝑆(𝑥), is the probability that a system operates properly in the interval from time 0 to time 

𝑥, where 𝑋 is a random variable denoting the time-to-failure or failure time. One may refer to the literature on the theory 

and applications of reliability (see Barlow and Proschan, 1975, 1981; Basu and Klein, 1982).  

The hazard rate ℎ(𝑥), known as failure rate function, is the instantaneous rate of occurrence of the event of interest at 

duration 𝑥 (i.e. the rate of event occurrence per unit of time). Mathematically, it equals the probability density ( )g x of 
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events at 𝑥, divided by the probability, ( ) 1 ( )S x G x  , of surviving to that duration without experiencing the event. 

Thus, we define a failure rate function as in Barlow and Proschan (1965) by ( ) ( ) / ( )h x g x S x . The failure rate 

function corresponding to the pdf in equation (4) is given by:  

1
1

1

(1 ) (1 ) 1
1 1,2,...,

[1 ] 1
( , ) (9)

( 1)(1 )
, 1,...,1

1 (1 )

k
x x k x

x k x

x

k e e e
k z

e e
h x

m
k z z and m z k

e

  

 



 

 
 

 




   

  



               
  

   
 

 

The hazard rate function is analytically related to the time-to-failure probability distribution. It leads to the examination of 

the IFR or the DFR properties of life-length distributions. 𝐺 is an IFR distribution, if ℎ(𝑥) increases for all 𝑋 such that 

𝐺(𝑋) <  1. The motivation of the EGTG lifetime distribution is the realistic features of the hazard rate in many real-life 

physical and non-physical systems, which is not a monotonically increasing, decreasing or constant failure rate. Note that 

for the first part of equation (9), if 𝑘 = 1, the hazard rate function is decreasing (Adamidis and Loukas, 1998). In fact, if 

𝑥 → 0 then ℎ𝑘(𝑥\𝜂, 𝜃) = 𝜃(1 − 𝜂)
−1 and if 𝑥 → ∞ then ℎ𝑘(𝑥\𝜂, 𝜃) → 𝜃.  

If k > 1, there is an IFR distribution. Indeed, if 𝑥 → 0 then ℎ𝑘(𝑥\𝜂, 𝜃) → 0. If 𝑥 → ∞ then ℎ𝑘(𝑥\𝜂, 𝜃) = 𝜃.  

In the second part of equation (9), the EGTG is an IFR distribution. The initial rate value is finite and given by ℎ𝑚(0\

𝜂, 𝜃) = θ(m + 1)(1 − η) . The long term hazard value is finite and given by 𝜃(𝑚 + 1) . Indeed, we have 

0
lim ( , ) lim ( , )m m
x x
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 . Figure (2) illustrates the shapes of the hazard rate function for some cases (k=1,2; 

m=0,1) and some selected values of (𝜂, 𝜃). 

1

0

(1 ) 1
lim ( , )

0 2,3,...,

lim ( , ) 1,2,3,...,

k
x

k
x

k
h x

k z

h x k z

 
 

  







  
 



 

 

0
lim ( , ) ( 1)(1 ) , 1,...,1 ;

lim ( , ) ( 1) , 1,...,1 ;

m
x

m
x

h x m k z z m z k

h x m k z z m z k

   

  





      

     
 

In table (3), we present the reliability and failure rate functions in equations (8) and (9) for some special cases at the first, 

second and third order statistics, and at the last, last-1 and last-2 order statistics.  

Table 3. The reliability and failure functions for some special cases 

Order statistics k, m Survival function Hazard rate 

First k=1 
1

1
1

x

x

e

e









 
  

   
1 xe 



 
 

Second k=2 

2

1
1

1

x

x

e

e









 
  

   

1
2

3

2 (1 ) (1 ) 1
1

[1 ] 1

x x x

x x

e e e

e e
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Third k=3 
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1
3

2

4

3 (1 ) (1 ) 1
1

[1 ] 1

x x x

x x

e e e

e e

  

 

 

 


  

 

    
  

    

 

Last m=0 

1 (1 )

x

x

e

e







 
 

(1 )

1 (1 )xe 

 

 



 
 

Last -1 m=1 

2

1 (1 )

x

x

e

e









 
 
  

 

2 (1 )

1 (1 )xe 

 

 



 
 

Last-2 m=2 

3

1 (1 )

x

x

e

e









 
 
  

 

3 (1 )

1 (1 )xe 

 

 



 
 

 

  

  

Figure 2. Hazard rate of the EGTG distribution for k=(1,2) and m=(0,1) 
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2.4. Random Number Generation 

We can generate a random variable from the cdf of x in equation (5) using the following steps: 

 Generate a random variable 𝑈 from the standard uniform distribution. 

 Calculate the values of 𝑋 such as: 

1

1

1

1

1

1

1 1
ln 1,2,...,

1
(10)

1 1 (1 )
ln , 1,...,1

(1 )(1 )

k

k

m

m

U
k z

U
X

U
k z z and m z k

U














  
   

  
    

 
 

      
 

    

 

We can determine the quantiles by dividing the set of observations into equal sized groups. The median is computed by 

letting 𝑈 = 0.5. The equation (10) can be used for a simulation study of the EGTG distribution. 

2.5. Entropy 

Entropy  is a measure of the uncertainty that was introduced by Shannon (1948) as a basic concept in information and 

communication theory, measuring the average missing information on a random source (Lesne, 2014). Shannon defined 

the entropy as:  

𝐻𝑏(𝑋) = 𝐸 [𝑙𝑜𝑔𝑏 (
1

𝑔(𝑥)
)] = ∫ 𝑔(𝑥)

∞

0

𝑙𝑜𝑔𝑏 (
1

𝑔(𝑥)
) 𝑑𝑥 = −∫ 𝑔(𝑥)

∞

0

[𝑙𝑜𝑔𝑏𝑔(𝑥)]          (11) 

𝑙𝑜𝑔𝑏 (
1

𝑔(𝑥)
) is also called an uncertainty. The probability distribution already describes the probability characteristics of a 

random variable. However, if we have two or more probability distributions we do not know exactly which variable is 

more random than the other. In this case, a comparison between probability distributions is possible thanks to entropy 

whereas a probability distribution describes the randomness of one random variable. The entropy appears as the average 

information required to specify the outcome 𝑋 when the distribution 𝑔(𝑥) is known. It equivalently measures the 

amount of uncertainty represented by a probability distribution (Jaynes, 1957). When the entropy is large this means that 

the uncertainty associated to the random variable is large, and vice versa. Let the entropy of a random variable 𝑋1 be 0.8 

and that of another variable 𝑋2 be 0.1. It is observed that the first random variable is more uncertain than the second.  

From equation (11), the entropy for the new family distribution is given by:  

1 0

1 0

1 0

( )!
- log[ (1- )] ( -1)(1- ) ( 1, )

! !

( )!
- ( 1)(1- ) ( 1, ) ; 1, 2,...,

! !

( )

- log[ ( 1)(1- )] ( 1) - ( 1)( 2)(1- )

( 1)!
(

!( 1)!

j

i j

i j

i j

i j

i j

k j
k k k B i j k

i j k

k j
k k B i j k k z

i j k

H x

m m m m

m j
B i j

i j m


  




   



 

 

 

 

 

 


  


   



    

 
 







 1, 1) , , -1,...,1 -

(12)

m for k z z and m z k  














  

where 𝜇 = 𝐸(𝑋) 

Equation (12) expresses the mathematical expectation of uncertainty. Similar to the mean and variance of a random 

variable, entropy is a derived quantity from probability distribution, but it has a value of its own (Zong, 2006). If we are 
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seeking a pdf subject to certain constraints (𝑟𝑡ℎmoment), we choose the density satisfying the constraints and having 

entropy as large as possible. The principle of maximum entropy states that we should choose the probability distribution 

that maximizes the uncertainty subject to some constrains about the random variable 𝑋. This distribution should be least 

surprising in terms of the predictions it makes. 

Entropy can also be used to produce a model for data-generating distribution in terms of information constraints. Given 

the prior information about the pdf 𝑔(𝑥, 𝜂, 𝜃), one may estimate the parameters by maximizing the entropy index 𝐻(𝑋) 
or equivalently, minimizing the log-loss. 

In the application examples, we will use the entropy as a statistic in assessment of distribution, by testing the hypothesis 

that the data follow a specific distribution. Indeed, it measures how well a probability distribution fits a set of observed 

data (measure of the inherent randomness). Given the estimated parameters �̂� and θ̂, we can calculate the entropy 𝐻(𝑋).  

3. Estimation 

In this section, we will determine the estimated parameters �̂� and θ̂ for the EGTG new family of lifetime distributions. 

Let (𝑋1, 𝑋2, … , 𝑋𝑛) be a random sample with observed values (𝑥1, 𝑥2, … , 𝑥𝑛) from the EGTG distribution with the pdf in 

equation (4). The log–likelihood function given the observed values, 𝑥𝑜𝑏𝑠 = (𝑥1, … , 𝑥𝑛), is: 

1

1 1

1

1

ln( ) ln(1 ) ln( ) ( 1) ln(1 )

( 1) ln(1 ) 1,2,...,

ln ( , / )

ln( 1) ln(1 ) ln( ) ( 1)

( 2) ln[1 (1 )] , 1,...,1

i

i

i

n
x

i

n n
x

i

i i

obs

n

i

i

n
x

i

n k n n k e

x k e k z

L x

n m n n m x

m e k z z and m z k







 

 

 

  









 








     



    


 

      


       





 





(13)




  

We subsequently derive the associated gradients:  

1

1

( 1) 1,2,...,
(1 ) 1

ln ( , / ) (14)
1

( 2) ; , 1,...,1
(1 ) 1 (1 )

i

i

i

i

xn

x
i

xn

x
i

n e
k k z

e
L x

n e
m k z z and m z k

e









 
 



 











 
  

  
 

        
   





 

1 1 1

1 1

( 1) ( 1)
1

1,2,...,
ln ( , / ) (15)

( 1) ( 2)
(1 )

, 1,...,1

i i

i

n n n
i i

i x x
i i i

n n
i

i x
i i

x xn
x k k

e e

k z
L x

xn
m x m

e

k z z and m z k

 





 

 
 

  

  

 


      




 
     

  


   

  

 
 

We need the Fisher information matrix for interval estimation and tests of hypotheses on the parameters. It can be 

expressed in terms of the second derivatives of the log-likelihood function: 
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𝐼 =

(

 
 
𝐼11 = 𝐸 (−

𝜕2𝑙𝑛𝐿

𝜕𝜂2
) 𝐼12 = 𝐸 (−

𝜕2𝑙𝑛𝐿

𝜕𝜂 𝜕𝜃
)

𝐼21 = 𝐸 (−
𝜕2𝑙𝑛𝐿

𝜕𝜃 𝜕𝜂 
) 𝐼22 = 𝐸 (−

𝜕2𝑙𝑛𝐿

𝜕𝜃2
)
)

 
 

 

For the first definition, 

𝜕2𝑙𝑛𝐿

𝜕𝜂2
=

−𝑛

(1 − 𝜂)2
− (𝑘 + 1)∑

𝑒−2𝜃𝑥𝑖

(1 − 𝜂𝑒−𝜃𝑥𝑖)2
𝑖=1

 

𝜕2𝑙𝑛𝐿

𝜕𝜃2
=
−𝑛

𝜃2
+ (𝑘 − 1)∑

𝑥𝑖
2𝑒𝜃𝑥𝑖

(𝑒𝜃𝑥𝑖 − 1)2
𝑖=1

− (𝑘 + 1)∑
𝜂𝑥𝑖

2𝑒𝜃𝑥𝑖

(𝑒𝜃𝑥𝑖 − 𝜂)2
𝑖=1

 

𝜕2𝑙𝑛𝐿

𝜕𝜂 𝜕𝜃
= (𝑘 + 1)∑

−𝑥𝑖𝑒
−𝜃𝑥𝑖

(1 − 𝜂𝑒−𝜃𝑥𝑖)2
𝑖=1

 

For the second definition, 

𝜕2𝑙𝑛𝐿

𝜕𝜂2
=

−𝑛

(1 − 𝜂)2
− (𝑚 + 2)∑

1 − 𝑒−𝜃𝑥𝑖

[1 − 𝜂(1 − 𝑒−𝜃𝑥𝑖)]2
𝑖=1

 

𝜕2𝑙𝑛𝐿

𝜕𝜃2
=
−𝑛

𝜃2
− (𝑚 + 2)∑

𝜂(1 − 𝜂)𝑥𝑖
2𝑒𝜃𝑥𝑖

[𝑒𝜃𝑥𝑖(1 − 𝜂) + 𝜂]2
𝑖=1

 

𝜕2𝑙𝑛𝐿

𝜕𝜂 𝜕𝜃
= (𝑚 + 2)∑

𝑥𝑖𝑒
−𝜃𝑥𝑖

[𝑒𝜃𝑥𝑖(1 − 𝜂) + 𝜂]2
𝑖=1

 

The maximum likelihood estimates (MLEs) �̂� and θ̂ of the EGTG parameters 𝜂 and 𝜃, respectively, can be determined 

numerically by solving the nonlinear equations (14) and (15) of the associated gradients, using a statistical software (it can 

be easily done using R, Mathcad and Matlab packages, among others). The choice of a good set of initial values is 

essential. The MLEs can also be found analytically using the iterative EM algorithm to handle the incomplete data 

problems (Dempster et al., 1977; McLachlan and Krishnan, 1997). The iterative method consists on repeatedly updating 

the parameter estimates by replacing the "missing data" with the new estimated values. The standard method used to 

determine the MLEs is the Newton-Raphson algorithm that requires second derivatives of the log-likelihood function for 

all iterations. The main drawback of the EM algorithm is its rather slow convergence, compared to the Newton-Raphson 

method, when the "missing data" contain relatively large amount of information (Little and Rubin, 1983). Recently, 

several researchers have used the EM method such as Adamidis et al. (2005), Karlis (2003), Ng et al. (2002), Adamidis 

and Loukas (1998), Adamidis (1999), among others. Newton-Raphson is required for the M-step of the EM algorithm. 

To start the EM algorithm, we define a hypothetical distribution of complete-data with the joint density function in 

equation (3). We drive the conditional mass function as:  

( ) 1

2 1
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1,2,...,
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M-step: 
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4. Simulation Study 

As an illustration of the MLEs, numerical computations have been performed using the steps presented in section 2.4 for 

random number generation. The numerical study was based on 1000 random samples of the sizes 20, 50 and 100 from the 

EGTG distribution for the ascending and descending order statistics with cases 𝑘 = (1; 2) and 𝑚 = (0; 1), respectively. 

We have considered the initial values of (𝜂, 𝜃) : (0.1 , 0.5) , (0.3 , 0.5) , (0.5 ,1) , (0.1 , 1.5) ,  (0.7 , 1.5) . After 

determining the parameter estimates �̂� = (�̂�, �̂�) we compute the biases, variances and mean square errors (MSEs), where 

𝑀𝑆𝐸(�̂�) = 𝐸(�̂� − 𝜆)2 = 𝐵𝑖𝑎𝑠2(�̂�) + 𝑣𝑎𝑟(�̂�) and 𝐵𝑖𝑎𝑠(�̂�) = 𝐸(�̂�) − 𝜆. An estimator �̂� is said to be efficient if its 

mean square error (𝑀𝑆𝐸) is minimum among all competitors. In fact, �̂�1 is more efficient than �̂�2 if 𝑀𝑆𝐸(�̂�1) <
𝑀𝑆𝐸(�̂�2). 

Table 4 reports the results from the simulated data where the variances and the MSEs of the estimated parameters are 

given. The results show that, for each case, the convergence has been achieved. Indeed, the estimated parameters 

�̂� = (�̂�, �̂�) approach to their real values when the size of the sample increases. the variances and the MSEs decrease and 

converge to zero when the sample size increases, which may suggest that the MLEs are performed consistently. 
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Table 4. Results from the simulation study 

n (𝜼, 𝜽) 

Order statistics Reverse order statistics 

k �̂� �̂� 𝒗𝒂𝒓(�̂�) 𝒗𝒂𝒓(�̂�) 𝑴𝑺𝑬(�̂�) 𝑴𝑺𝑬(�̂�) m �̂� �̂� 𝒗𝒂𝒓(�̂�) 𝒗𝒂𝒓(�̂�) 𝑴𝑺𝑬(�̂�) 𝑴𝑺𝑬(�̂�) 

20 (0.1, 0.5)  0.1678 0.5035 0.0587 0.0233 0.0633 0.0233 m=0 0.3142 0.6515 0.0875 0.0511 0.1334 0.074 

 

(0.3, 0.5) k=1 0.2422 0.5472 0.0754 0.0365 0.0788 0.0387  0.4017 0.6195 0.0909 0.0449 0.1013 0.0592 

 

(0.5, 1)  0.3500 1.2167 0.0915 0.2634 0.1140 0.3103  0.5248 1.1845 0.0811 0.1515 0.0817 0.1855 

 

(0.1, 1.5)  0.1835 1.4525 0.0670 0.2053 0.0740 0.2075  0.3036 1.9180 0.0891 0.5230 0.1305 0.6977 

 

(0.7, 1.5)  0.5175 2.0487 0.0985 1.4007 0.1318 1.7018  0.6864 1.6633 0.0560 0.3062 0.0562 0.3328 

  

 

      

       

50 (0.1, 0.5) k=1 0.1638 0.4824 0.0441 0.0106 0.0482 0.0109 m=0 0.2239 0.5629 0.0526 0.0171 0.0679 0.0211 

 

(0.3, 0.5)  0.2532 0.5217 0.0561 0.017 0.0583 0.0175  0.3338 0.5414 0.0606 0.0165 0.0618 0.0183 

 

(0.5, 1)  0.4076 1.1051 0.0609 0.1228 0.0694 0.1339  0.4890 1.0550 0.0534 0.0601 0.0535 0.0631 

 

(0.1, 1.5)  0.1545 1.4721 0.0407 0.0949 0.0436 0.0957  0.2272 1.6973 0.0526 0.1543 0.0688 0.1932 

 

(0.7, 1.5)  0.6043 1.7898 0.046 0.5401 0.0552 0.6241  0.6839 1.5597 0.0266 0.1067 0.0269 0.1102 

  

 

      

       

100 (0.1, 0.5) k=1 0.1341 0.4917 0.0270 0.0052 0.0282 0.0053 m=0 0.1769 0.5363 0.0304 0.0064 0.0363 0.0077 

 

(0.3, 0.5)  0.2657 0.5109 0.0419 0.0098 0.0431 0.0099  0.3128 0.5214 0.0369 0.0069 0.0371 0.0074 

 

(0.5, 1)  0.4412 1.0558 0.0418 0.0680 0.0452 0.0711  0.4954 1.0306 0.0266 0.0252 0.0267 0.0262 

 

(0.1, 1.5)  0.1437 1.4636 0.028 0.0474 0.0300 0.0488  0.1792 1.6108 0.0349 0.0653 0.0412 0.0776 

 

(0.7, 1.5)  0.6543 1.6344 0.0191 0.2342 0.0212 0.2523  0.6960 1.5368 0.0108 0.0480 0.0108 0.0493 

  

 

      

       

20 (0.1, 0.5) k=2 0.1573 0.4945 0.0500 0.0134 0.0533 0.0134 m=1 0.3455 0.7500 0.0964 0.138 0.1566 0.2005 

 

(0.3, 0.5)  0.2359 0.5293 0.0649 0.0210 0.0690 0.0218  0.4212 0.6930 0.0971 0.1098 0.1117 0.1471 

 

(0.5, 1)  0.3637 1.1446 0.0785 0.1533 0.0971 0.1742  0.5310 1.2839 0.0868 0.3306 0.0878 0.4112 

 

(0.1, 1.5)  0.1526 1.4825 0.0476 0.1151 0.0504 0.1154  0.3342 2.1769 0.0923 1.0073 0.1472 1.4654 

 

(0.7, 1.5)  0.5510 1.8997 0.0732 0.7110 0.0954 0.8708  0.6845 1.7542 0.0525 0.4238 0.0528 0.4884 

  

 

      

       

50 (0.1, 0.5) k=2 0.1444 0.4900 0.0336 0.0065 0.0355 0.0066 m=1 0.2496 0.6056 0.0606 0.0306 0.083 0.0418 

 

(0.3, 0.5)  0.2592 0.5133 0.0482 0.0107 0.0499 0.0108  0.3500 0.5713 0.0659 0.0284 0.0684 0.0335 

 

(0.5, 1)  0.4270 1.0669 0.0489 0.0735 0.0543 0.0780  0.4958 1.0940 0.0569 0.0970 0.0569 0.1059 

 

(0.1, 1.5)  0.148 1.4667 0.0335 0.0554 0.0358 0.0565  0.2496 1.8167 0.0606 0.2756 0.0830 0.3758 

 

(0.7, 1.5)  0.6354 1.6692 0.0286 0.282 0.0328 0.3106  0.6896 1.5972 0.0251 0.1537 0.0252 0.1632 

  

 

      

       

100 (0.1, 0.5) k=2 0.1256 0.4936 0.0223 0.0034 0.0230 0.0034 m=1 0.1962 0.5605 0.0380 0.0135 0.0472 0.0172 

 

(0.3, 0.5)  0.2783 0.5040 0.0340 0.0065 0.0345 0.0066  0.3180 0.5352 0.0441 0.0138 0.0444 0.0150 

 

(0.5, 1)  0.4695 1.0223 0.0262 0.0393 0.0271 0.0398  0.4917 1.0449 0.0334 0.0475 0.0334 0.0495 

 

(0.1, 1.5)  0.1402 1.4633 0.0256 0.0335 0.0272 0.0348  0.1962 1.6815 0.0380 0.1215 0.0472 0.1545 

 

(0.7, 1.5)  0.6699 1.5811 0.0113 0.1229 0.0122 0.1294  0.6943 1.5485 0.0117 0.0735 0.0118 0.0759 
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4. Application Examples 

In this section, we fit the EGTG distribution to two real data sets using the MLEs determined numerically by direct 

integration using Mathcad 14.0. The first set (table A in appendix) consists of "107 failure times for right rear brakes on 

D9G-66A caterpillar tractors", reproduced from Barlow and Campo (1975) and used also by Chang and Rao (1993). 

These data are used in many applications in reliability (Adamidis et al., 2005; Tsokos, 2012; Shahsanaei et al., 2012). 

The second set of data involves 100 observations (table B in appendix) of the results from an experiment concerning "the 

tensile fatigue characteristics of a polyester/viscose yarn". These data were presented by Picciotto (1970) to study the 

problem of warp breakage during weaving. The “observations were obtained on the cycles to failure of a 100 cm yarn 

sample put to test under 2.3% strain level”. The sample is used in Quesenberry and Kent (1982) as an example to illustrate 

selection procedure among probability distributions used in reliability. The reliability function of these two data sets 

belongs to the increasing failure rate class (Doksum and Yandell, 1984; Adamidis et al., 2005).  

We use different statistical tests to assess the agreement between the EGTG distribution and the data sets. In addition to 

our class of distributions, the gamma and Weibull distributions fitted these data sets. The respective densities of gamma 

and Weibull distributions are:  

𝑓1(𝑥, 𝜆1, 𝛽1) = 𝜆1
𝛽1𝑥𝛽1−1exp (−𝜆1𝑥)Γ(𝛽1)

−1 and 𝑓2(𝑥, 𝜆2, 𝛽2) = 𝛽2𝜆2
𝛽2𝑥𝛽2−1exp (−𝜆2𝑥)

𝛽2. 

Tables 5 and 6 show the fitted parameters, calculated values of Kolmogorov–Smirnov (K-S) and their respective p-values 

for the two data sets. It should be noted that the K-S test compares an empirical distribution with a known (not estimated) 

one. It is used to decide if a sample comes from a population with a specific distribution (H0: the data follow a specified 

distribution). We estimate some special cases of the EGTG distribution at 5% significant level. The tables report also the 

AIC and BIC information criteria and the Shannon’s entropy (H) for model selection. Table (7) gives the means and the 

standard errors for some special cases of the EGTG distribution, compared to their empirical values. 

In order to identify empirical behaviors that the failure rate function can take, we shall consider the graphical method 

based on the total test on time (TTT-plot) proposed by Aarset (1987). In its empirical version the TTT-plot is constructed 

by values 𝑟|𝑛 and 𝐺(𝑟|𝑛), where 

𝐺(𝑟|𝑛) =
∑ 𝑋𝑖:𝑛 + (𝑛 − 𝑟)𝑋𝑟:𝑛
𝑟
𝑖=1

∑ 𝑋𝑖:𝑛
𝑛
𝑖=1

  

where 𝑟 = 1,… , 𝑛 and 𝑋𝑖:𝑛 represents the order statistics of the sample. The graphic TTT may have various forms. It 

resembles to the Gini index and it is used as a crude indicative of the shape of the failure rate function. Indeed, when the 

curve approaches a straight diagonal function, constant failure rate is adequate and the data are from an exponential 

distribution. When the curve is approximately concave or convex, the data are from IFR distribution or DFR distribution, 

respectively.  

Figure (3) shows concave tendencies indicating that the two data sets exhibit IFR distributions. This result is in agreement 

with the MLEs of the shape parameters and the K-S test. The p-values are only significant for the case 𝑘 = 1 for the two 

data sets. As shown in section 2.3, If k = 1, the EGTG is DFR, but here the data exhibit an increasing hazard rate. Tables (5) 

and (6) show smallest values of K-S statistics for the last order statistics (𝑘 = 𝑧) with largest associated p-values equal to 

0.9899 and 0.9538, respectively. The K-S distances between the empirical distribution function of the two samples and 

the cdf of the corresponding distribution are respectively 0.0426 and 0.0515. We can see that the new lifetime family 

provides good fit to the data sets. The K-S test shows that the EGTG distribution is an attractive alternative to the popular 

gamma and Weibull distributions.  
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Table 5. The goodness of fit for some special cases, for the first data set (107 obs.) 

 

Table 6. The goodness of fit for some special cases, for the second data set (100 obs). 

Distributions 

ML Estimates 

K-S p-value Log-lik AIC BIC H 

̂  ̂  

EGTG:         

 First order (𝑘 = 1) 4.51 × 10−3 0.0002 0.1905 0.0000 −640.2614 1284.5228 1284.5815 6.401 

 Second order (𝑘 = 2) 6.47 × 10−3 0.0521 0.1050 0.2197 −626.6579 1257.3158 1257.3745 6.329 

 Third order (𝑘 = 3) 7.86 × 10−3 0.1124 0.0856 0.4557 −626.5988 1257.1976 1257.2563 6.216 

 Fourth order (𝑘 = 4) 9.09 × 10−3 0.1134 0.0785 0.5680 −630.6498 1265.2996 1265.3583 6.123 

 Last order (𝑘 = 𝑧) 10.59 × 10−3 0.8657 0.0515 0.9538 −625.1210 1254.242 1254.3007 6.236 

 Last order-1 (𝑘 = 𝑧 − 1) 6.92 × 10−3 0.8627 0.0669 0.7610 −627.0645 1258.129 1258.1877 6.257 

 Last order-2 (𝑘 = 𝑧 − 2) 5.52 × 10−3 0.8702 0.0742 0.6398 −628.1569 1260.3138 1260.3725 6.273 

 Last order-3 (𝑘 = 𝑧 − 3) 4.78 × 10−3 0.8797 0.0779 0.5787 −628.8036 1261.6072 1261.6659 6.281 

 �̂� �̂�       

Gamma 10.8 × 10−3 2.2383 0.1326 0.0594 −625.2443 1254.4890 1259.6990 6.184 

Weibull 4.02 × 10−3 1.6060 0.0738 0.6468 −625.2000 1254.4000 1259.7460 2.260 

Distributions 

ML Estimates 

K-S p-value Log-lik AIC BIC H 

̂  ̂  

EGTG:         

 First order (𝑘 = 1) 5.00 × 10−4 0.0001 0.1572 0.0101 −921.5867 1847.1734 1847.2321 8.601 

 Second order (𝑘 = 2) 6.69 × 10−4 0.1738 0.0662 0.6850 −911.7965 1827.593 1827.6517 8.550 

 Third order (𝑘 = 3) 7.56 × 10−4 0.3485 0.0707 0.6582 −913.9317 1831.8634 1831.9221 8.467 

 Fourth order (𝑘 = 4) 8.57 × 10−4 0.3970 0.0765 0.5575 −918.7038 1841.4076 1841.4663 8.390 

 Last order (k = z) 1.03 × 10−3 0.8146 0.0426 0.9899 −909.7043 1823.4086 1823.4673 8.495 

 Last order-1 (k = z − 1) 6.56 × 10−4 0.8137 0.0537 0.5559 −911.2673 1826.5346 1826.5933 8.507 

 Last order-2 (k = z − 2) 5.25 × 10−4 0.8310 0.0625 0.7971 −912.0977 1828.1954 1828.2541 8.516 

 Last order-3 (k = z − 3) 4.54 × 10−4 0.8461 0.0680 0.7046 −912.5824 1829.1648 1829.2235 8.524 

 �̂� �̂�       

Gamma 9.43 × 10−4 1.9084 0.0680 0.7343 −910.6056 1825.211 1830.557 8.510 

Weibull 4.32 × 10−4 1.5006 0.0599 0.8363 −910.1225 1824.245 1829.591 8.534 
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Barlow and Campo (1975) data set 

 

Quesenberry and Kent (1982) data set 

Figure 3. Empirical TTT-plot 

For models’ comparison, we compute the Akaike’s information criterion (𝐴𝐼𝐶 = −2𝑙𝑛𝐿 + 2 𝑝) and Schawarz’s Bayesian 

information criterion (𝐵𝐼𝐶 = −2𝑙𝑛𝐿 + 𝑝 𝑙𝑜𝑔(𝑛)), where 𝑛 is the size of the sample and 𝑝 is the number of parameters. 

The results indicate that the last order statistic (𝑘 = 𝑧) has the smallest AIC and BIC values. Then, the maximum 

lifetime distribution could be commonly chosen as the preferred model for describing the two data sets. The entropy 

index shows that our distribution is a good alternative in estimating lifetime data. 

Figure (4) illustrates the fitted models and the observed histograms and figure (5) shows the probability-probability plots 

for the two data sets. The plots corroborate the previous results and confirm the good performance of our distribution. The 

diagonal is the reference line in the PP-plot. 

 

  

  

Figure 4. Fitted models and observed histograms 
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Figure 5. The probability-probability plots for the data sets  

 

Table 7. Means and standard errors for some special cases 

 

  

 

Barlow & Campo (1975) data set 

(107 obs.)  

Quesenberry & Kent (1982) data set 

(100 obs.) 

𝑬(𝑿) 𝝈(𝑿) 𝑬(𝑿) 𝝈(𝑿) 

EGTG distribution     

 First order (𝑘 = 1) 1999.9 1.99 × 103 221.7 221.7 × 103 

 Second order (𝑘 = 2) 2056.5 1.61 × 103 226.3 171.4 × 103 

 Third order (𝑘 = 3) 2019.0 1.44 × 103 222.0 145.9 × 103 

 Fourth order (𝑘 = 4) 1981.0 1.31 × 103 218.7 129.4 × 103 

 Last order (𝑘 = 𝑧) 2008.5 1.35 × 103 219.0 136.4 × 103 

 Last order-1 (𝑘 = 𝑧 − 1) 1994.3 1.37 × 103 218.0 139.6 × 103 

 Last order-2 (𝑘 = 𝑧 − 2) 1993.9 1.39 × 103 218.0 143.0 × 103 

 Last order-3 (𝑘 = 𝑧 − 3) 1994.5 1.41 × 103 213.5 151.1 × 103 

Empirical values 2024.3 1.39 × 103 221.9 143.89 × 103 
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6. Conclusion  

In this paper we proposed the EGTG distribution, that generalizes the exponential-geometric (Adamidis and Loukas, 1998) 

and the extended (or complementary) exponential-geometric distribution (Adamidis et al., 2005; Louzada et al., 2011) in 

the minimum and maximum cases, respectively. The application study was illustrated based on two sets of real data used 

in many applications of reliability. We have shown that our proposed distribution is suitable for modelling the lifetime of 

any order statistics.  Future research, that should be considered, includes the Bayesian approach with censored data.   
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Appendix 

Table (A): “Ordered Failure Times (in hours) of 107 Right Rear Brakes on D9G-66A Caterpillar Tractors” (Barlow and 

Campo, 1975; Chang and Rao, 1993) 

56 753 1153 1586 2150 2624 3826 83 763 1154 1599 2156 2675 3995 104 

806 1193 1608 2160 2701 4007 116 834 1201 1723 2190 2755 4159 244 838 

1253 1769 2210 2877 4300 305 862 1313 1795 2220 2879 4487 429 897 1329 

1927 2248 2922 5074 452 904 1347 1957 2285 2986 5579 453 981 1454 2005 

2325 3092 5623 503 1007 1464 2010 2337 3160 6869 552 1008 1490 2016 2351 

3185 7739 614 1049 1491 2022 2437 3191 661 1069 1532 2037 2454 3439 673 

1107 1549 2065 2546 3617 683 1125 1568 2096 2565 3685 685 1141 1574 2139 

2584 3756 

             

 

Table (B): “Results of Model Selection Program on Yarn Data” (Quesenberry and Kent, 1982) 

86 146 251 653 98 249 400 292 131 169 

175 176 76 264 15 364 195 262 88 264 

157 220 42 321 180 198 38 20 61 121 

282 224 149 180 325 250 196 90 229 166 

38 337 65 151 341 40 40 135 597 246 

211 180 93 315 353 571 124 279 81 186 

497 182 423 185 229 400 338 290 398 71 

246 185 188 568 55 55 61 244 20 284 

393 396 203 829 239 286 194 277 143 198 

264 105 203 124 137 135 350 193 188 236 
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