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Abstract

There are numerous statistical hypothesis tests for categorical data including Pearson’s Chi-Square goodness-of-fit test
and other discrete versions of goodness-of-fit tests. For these hypothesis tests, the null hypothesis is simple, and the
alternative hypothesis is composite which negates the simple null hypothesis. For power calculation, a researcher specifies
a significance level, a sample size, a simple null hypothesis, and a simple alternative hypothesis. In practice, there are
cases when an experienced researcher has deep and broad scientific knowledge, but the researcher may suffer from a lack
of statistical power due to a small sample size being available. In such a case, we may formulate hypothesis testing based
on a simple alternative hypothesis instead of the composite alternative hypothesis. In this article, we investigate how much
statistical power can be gained via a correctly specified simple alternative hypothesis and how much statistical power can
be lost under a misspecified alternative hypothesis, particularly when an available sample size is small.

Keywords: chi-square goodness-of-fit test, simple alternative hypothesis, statistical power, likelihood ratio test, Neyman-
Pearson Lemma, distractor analysis

1. Introduction

A researcher formulates a hypothesis based on scientific knowledge and then presents data to support the hypothesis. In
this article, we focus on categorical data with three or more levels. In an expensive experiment or an observational study
with a small sample size, despite researcher’s deep and broad knowledge, the researcher may fail to provide empirical
evidence due to a lack of statistical power. In such a case, many researchers may wish to increase statistical power without
increasing sample size.

There are numerous methods of hypothesis testing for categorical data. Some tests are based on statistics with null
sampling distributions following Chi-Square distributions (Pearson, 1900; Wilks, 1935; Neyman, 1949; Kullback, 1959),
and some tests are based on discrete versions of goodness-of-fit statistics (Cramer, 1928; Kolmogorov, 1933; Smirnov,
1939; Anderson & Darling, 1952). These methods are equipped in statistical computing tools and widely used in practice.

We can perform power analysis by specifying a sample size, a significance level, a simple null hypothesis (denoted by
H0), and a simple alternative hypothesis (denoted by H1). The power analysis can be done analytically (often based on
asymptotic theory) or numerically (simulation). The general operating characteristic is that statistical power increases for
a larger sample size, a larger significance level, and a larger degree of discrepancy between simple H0 and simple H1
(Cohen, 1988). Ampadu (2008) and Steel et al. (2009) compared various hypothesis tests for categorical data, and their
results showed that the best test (in terms of statistical power) depends on H1 when H1 is true. For example, the Pearson’s
goodness-of-fit (GOF) test is outperformed by other tests when H1 follows a monotonic trend, but it is competitive to the
other tests when H1 follows a triangular shape (Ampadu, 2008; Steel et al., 2009).

Suppose a researcher can afford a small sample size. When there are multiple hypothesis tests under consideration, it is
reasonable to choose the most powerful test under a specified H1. The objective of our study is to compare statistical
power when H1 is simple and when H1 is composite. For large sample sizes, we provide examples of power calculation
and sample size calculation based on asymptotic theory. For small sample sizes (n ≤ 50) we use simulation to study
how much statistical power can be gained via a correctly specified H1 and how much statistical power can be lost under a
misspecified H1 relative to the tests based on composite H1.

2. Method

We define the following notation. Let K denote the number of levels in the categorical data. Let π j denote the probability
of observing the j-th level, where

∑K
j=1 π j = 1. Let H0 denote the null hypothesis, H0: π j = p0 j for j = 1, . . . ,K. Let

H1 denote a simple alternative hypothesis, H1: π j = p1 j for j = 1, . . . ,K. The sample size is denoted by n, and the
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significance level is denoted by α. Let O j denote the random variable which counts the number of cases in the j-th level
for j = 1, . . . ,K, where

∑K
j=1 O j = n.

2.1. Pearson’s Chi-Square GOF Test

The Pearson’s Chi-Square GOF test is based on the test statistic

K∑
j=1

(O j − E j)2

E j
,

where E j = np0 j for j = 1, . . . ,K. The asymptotic null distribution is the Chi-Square distribution with K − 1 degrees of
freedom. Given simple H0: π j = p0 j and simple H1: π j = p1 j for j = 1, . . . ,K, Cohen (1988) defined the effect size as

w =

√√√ K∑
i= j

(p0 j − p1 j)2

p0 j
.

If H1 is true, the asymptotic distribution of the test statistic is the non-central Chi-Square distribution with K − 1 degrees
of freedom and the non-centrality parameter λ = nw2 (Ferguson, 1996).

Example 1. Suppose we have a sample of n = 100 randomly selected car accidents involving deaths. Let π1, π2, π3,
π4, π5, π6, and π7 denote the proportions of death-involved accidents on Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday, and Sunday, respectively. Let H0: π j = 1/7 for j = 1, . . . , 7 and H1: π1 = .15, π2 = π3 = π4 = .1, π5 = .15,
π6 = π7 = .2. Then the effect size for the Chi-Square GOF test is

w =

√
2(1/7 − .1)2

1/7
+

3(1/7 − .15)2

1/7
+

2(1/7 − .2)2

1/7
=
√
.085 .

The non-centrality parameter is λ = nw2 = 8.5, and the degrees of freedom is K − 1 = 6. At α = .05, the rejection of H0
occurs when the Chi-Square GOF test statistic exceeds 12.59, the 95-th percentile of χ2(6). We can approximate statistical
power .56, for example 1 - pchisq( 12.59, df=6, ncp=8.5 ) using R (R Core Team, 2016). If a researcher desires
statistical power of .95, the required sample size is n = 246 which can be calculated by numerical search using pchisq
or by using pwr package in R (Champely, 2017).

2.2. Log-Likelihood Ratio Test (Simple H0 vs. Simple H1)

For simple H0: π j = p0 j and simple H1: π j = p1 j for j = 1, . . . ,K, the log-likelihood ratio test statistic is given by

Λ = 2
K∑

j=1

O j · ln
(

p1 j

p0 j

)
. (1)

If we can find a constant such that Λ exceeds (or equal to) the constant with probability α, we can formulate the most
powerful test at significance level α (Neyman & Pearson, 1933). The K-variate random vector O⃗ = (O1, . . . ,OK)T follows
the multinomial distribution with parameter π⃗ = (π1, . . . , πK)T . When the sample size n is large, O⃗ ·∼ NK

(
nπ⃗, nΣ

)
,

where Σ = diag(π1, . . . , πK) − π⃗ π⃗T is the covariance matrix. The test statistic Λ can be written as a linear combination
Λ =

∑K
j=1 c jO j, where

c j = 2 · ln
(

p1 j

p0 j

)
.

Therefore, when n is large, Λ ·∼ N(nc⃗T π⃗, nc⃗TΣc⃗), where c⃗ = (c1, . . . , cK)T . This means that we can find λ which satisfies
P(Λ ≥ λ) ≈ α for large n. Let p⃗0 = (p01, . . . , p0K) and p⃗1 = (p11, . . . , p1K). Let Σm = diag(pm1, . . . , pmK) − p⃗m p⃗T

m be the
covariance matrix under simple Hm for m = 0, 1. Under H0, we can standardize the log-likelihood test statistic Λ as

Z0,Λ =
Λ − nc⃗T p⃗0√

nc⃗TΣ0c⃗
·∼ N(0, 1) . (2)
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Let zk denote the k-th percentile of N(0, 1). Under H1, the approximate statistical power is

1 − β = P

Λ − nc⃗T p⃗0√
nc⃗TΣ0c⃗

≥ z1−α


= P

(
Λ ≥ z1−α

√
nc⃗TΣ0c⃗ + nc⃗T p⃗0

)
= P

Λ − nc⃗T p⃗1√
nc⃗TΣ1c⃗

≥ z1−α
√

nc⃗TΣ0c⃗ + nc⃗T ( p⃗0 − p⃗1)√
nc⃗TΣ1c⃗


= 1 − Φ

 z1−α
√

c⃗TΣ0c⃗ +
√

nc⃗T (p⃗0 − p⃗1)√
c⃗TΣ1c⃗

 ,
(3)

where Φ denotes the cumulative distribution function (CDF) for N(0, 1). Given α, β, H0 and H1, the required sample size
is approximately

n =

 zβ
√

c⃗TΣ1c⃗ − z1−α
√

c⃗TΣ0c⃗
c⃗T ( p⃗0 − p⃗1)

2

. (4)

Example 2. It is continued from Example 1. For given p⃗0 = (1/7, . . . , 1/7)T and p⃗1 = (.15, .1, .1, .1, .15, .2, .2)T , we can
obtain the constant vector c⃗ = (.09758,−0.71335,−0.71335,−0.71335, .09758, .67294, .67294)T . Then, we can calculate
statistical power 1 − β = 1 − Φ(−1.2839) = Φ(1.2839) = .90 from Equation (3). If a researcher desires statistical power
1 − β = .95 at significance level α = .05, we can calculate n = 126 from Equation (4), and it is nearly one half of n = 246
calculated in Example 1 for the Chi-Square GOF test.

2.3. Numeric Transformation

In this section, we discuss an alternative perspective of the standardized test statistic Z0,Λ of Equation (2). The standardized
statistic

Z0,Λ =
Λ − nc⃗T p⃗0√

nc⃗TΣ0c⃗
=

1
nΛ − c⃗T p⃗0√

c⃗TΣ0 c⃗
n

can be viewed as a test statistic for H0: µ = µ0, where µ0 =
∑K

j=1 c j p0 j, by transforming the j-th categorical value to the

numeric value c j = 2 · ln
(

p1 j

p0 j

)
. From this perspective, under H0, we have

Z0,Λ =
X̄ − µ0

σ0/
√

n
·∼ N(0, 1) ,

where X̄ = 1
nΛ =

1
n
∑K

j=1 c jO j and σ2
0 =

∑K
j=1(c j − µ0)2 p0 j. Under H1, when n is large, we have X̄ ·∼ N(µ1, σ1), where

µ1 =
∑K

j=1 c j p1 j and σ2
1 =

∑K
j=1(c j − µ1)2 p1 j.

Proposition. Let Φ denote the CDF of N(0, 1), and let zt be the percentile such that Φ(zt) = t. Assume µ = µ1 is true.
When n is large, in either case µ1 > µ0 or µ1 < µ0, the statistical power is approximately

1 − β = Φ
(
zα
σ0

σ1
+
| µ0 − µ1 |
σ1/
√

n

)
.

The proof of the proposition is provided in the appendix (Section 6). The proposition has three implications. First, the
statistical power depends on the distance between the null value µ0 and the alternative value µ1 when µ = µ1. (In Section
4, using simulation, we show that the statistical power is maintained closely even when the true value of µ is not exactly
equal to µ1.) Second, the statistical power also depends on the standard deviation σ1, and we shall prefer smaller σ1.
Third, assuming π⃗ = p⃗1 is true, consider replacing c j by another real number x j for j = 1, . . . ,K. Then, for given p⃗0 and
p⃗1, the means (µ0 and µ1) and the standard deviations (σ0 and σ1) depend on the choice of (x1, . . . , xK), so we write

h(x1, . . . , xK) = zα
σ0

σ1
+
| µ0 − µ1 |
σ1/
√

n
. (5)

Let x∗1, . . . , x
∗
K be the values which maximize h, and let µ∗0 =

∑K
j=1 x∗j p0 j and σ∗20 =

∑K
j=1(x∗j − µ0)2 p0 j. Then, the test

statistic

Z0,Λ∗ =
X̄∗ − µ∗0
σ∗0/
√

n
·∼ N(0, 1) , (6)
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must be more powerful than Z0,Λ asymptotically (at least not less powerful) at significance level α.

Example 3. Continuing from Example 2, under the same p⃗0 = (1/7, . . . , 1/7)T , p⃗1 = (.15, .1, .1, .1, .15, .2, .2)T , α = .05
and n = 100, our goal is to find a set of maximizers for the objective function h(x1, . . . , xK) in Equation (5). There
is no closed-form solution, and we can use a numerical method (e.g., optim function in R). We find x∗1 = 4.416653,
x∗2 = x∗3 = x∗4 = 7.474607, and x∗6 = x∗7 = 2.164017 are a set of maximizers. The transformation from categorical data to
numeric data (e.g., Monday→ 4.416653) leads to µ0 = 5.083594, σ0 = 2.238887, µ1 = 4.432985, and σ1 = 2.198819.
Therefore, we can formulate the hypothesis testing as H0: µ = 5.083594 versus H1: µ < 5.083594 according to the
numeric transformation. Note that

h(x∗1, . . . , x
∗
K) = −1.644854

(
2.238887
2.198819

)
+
| 5.083594 − 4.432985 |

2.198819/
√

100
= 1.2841 .

If π⃗ = p⃗1 is the truth (i.e., µ = 4.432985), the approximate statistical power is Φ(1.2841) = .90 which is substantially
greater than .56 from the Chi-Square GOF test (Example 1) and fairly similar to Φ(1.2839) = .90 from the log-likelihood
ratio test (Example 2).

Figure 1 presents the statistical power of the Chi-Square GOF, the log-likelihood ratio and the numeric transformation
methods using the asymptotic calculations. There is nearly no difference between the log-likelihood ratio and the numeric
transformation, while both methods yield significantly greater power than the Chi-Square GOF when the specified H1:
π⃗ = p⃗1 is true.

Comparing Statistical Power (Asymptotic)

Sample Size
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Figure 1. Comparing statistical power among Chi-Square GOF, log-likelihood ratio and numeric transformation

From practical perspective, our interest should be when the specified H1 is not true and when n is small. It will be
investigated numerically in the following section.

3. Simulation

We observed a remarkable increase in statistical power by the use of simple alternative hypothesis, and the log-likelihood
ratio and the numeric transformation yielded nearly same statistical power according to the asymptotic calculations. For
practical purpose, we considered scenarios when we have discrepancy between alternative p⃗1 and true π⃗, particularly in
small samples. We simulated data and approximated statistical power to investigate the impact of wrongly assumed H1
in the numeric transformation (NT) and the simple-versus-simple log-likelihood ratio test (S-LR) for n ≤ 50. We also
compared NT and S-LR to other hypothesis tests studied in Ampadu (2008) and Steel et al. (2009) including Chi-Square
GOF (χ2 GOF), discrete Kolmogorov-Smirnov (DKS), log-likelihood ratio (LR), Freeman-Tukey (FT), power divergence
(PD), discrete Cramer-von Mises (DCM), and discrete Anderson-Darling (DAD). The test statistics are as follow:

• χ2 GOF:
∑K

j=1
(O j−E j)2

E j
, where E j = np0 j is the expected count under H0.

• DKS: maxK
j=1|Z j|, where Z j =

∑ j
i=1(Oi − Ei).

• LR: 2
∑K

j=1 O j · ln
(

O j

E j

)
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• FT: 4
∑K

j=1

( √
O j −

√
E j

)2

• PD: 2
λ(1+λ)

∑K
j=1 O j

[(
O j

E j

)λ
− 1

]
with λ = 2/3 (Cressie and Read, 1984)

• DCM:
∑K

j=1 O jZ2
j

• DAD: 1
n
∑K

j=1
Z2

j p0 j

Hi(1−Hi)
, where H j =

∑ j
i=1 Ei.

• S-LR: 2
∑K

j=1 O j · ln
(

p1 j

p0 j

)
as defined in Equation (1).

• NT: X̄∗−µ∗0
σ∗0/
√

n as defined in Equation (6).

3.1. Simulation Design

For simulation designs, we fixed K = 5 levels with the uniform null hypothesis H0: π j = 1/5 for j = 1, . . . , 5. We
considered n = 10, 20, 30 and 50 for sample sizes and α = .05 for significance level, we generated data under four
scenarios (Scenarios A to D). The true probabilities were set at π⃗ = (.45, .19, .14, .12, .10) in Scenario A (monotonically
decreasing), π⃗ = (.15, .15, .20, .25, .25) in Scenario B (step), π⃗ = (.27, .18, .10, .18, .27) in Scenario C (triangular), and
π⃗ = (.095, .27, .27, .27, .095) in Scenario D (platykurtic). These designs were used by Steel et al. (2009).

The statistical power for S-LR and NT depends on the choice of simple alternative hypothesis H1. For each scenario, we
considered four cases for H1. In Case 1, p⃗1 was between p⃗0 and π⃗. In Case 2, π⃗ was equal to p⃗1. In Case 3, p⃗1 had a
stronger trend than π⃗ in the scenario. In Case 4, p⃗1 was completely misspecified with an opposite trend of π⃗. Table 1
presents the four cases in each scenario.

Table 1. Four simulation scenarios (A, B, C and D) and four cases (1, 2, 3 and 4) in each scenario

Scenario A: Decreasing Scenario B: Step Scenario C: Triangular Scenario D: Platykurtic

π⃗ (truth) (.45, .19, .14, .12, .10) (.15, .15, .20, .25, .25) (.27, .18, .10, .18, .27) (.095, .27, .27, .27, .095)

p⃗1 (Case 1) (.325, .195, .17, .16, .15) (.175, .175, .20, .225, .225) (.235, .19, .15, .19, .235) (.1475, .235, .235, .235, .1475)

p⃗1 (Case 2) (.45, .19, .14, .12, .10) (.15, .15, .20, .25, .25) (.27, .18, .10, .18, .27) (.095, .27, .27, .27, .095)

p⃗1 (Case 3) (.55, .17, .13, .10, .05) (.10, .10, .20, .30, .30) (.30, .16, .08, .16, .30) (.08, .28, .28, .28, .08)

p⃗1 (Case 4) (.10, .12, .14, .19, .45) (.25, .25, .20, .15, .15) (.13, .22, .30, .22, .13) (.305, .13, .13, .13, .305)

To account for the discreteness of test statistics due to small sample size, we generated the null sampling distribution and
the alternative sampling distribution of each test statistic by m = 100, 000 repetitions. By letting q.95 be the simulated 95-
th percentile of the null sampling distribution and si be the i-th simulated value for the alternative sampling distribution,
the statistical power was approximated by 1

m
∑m

i=1 1si ≥ q.95 . By doing so, the probability of Type I error is at or below
α = .05 for any test statistic.

3.2. Simulation Result

Table 2 presents simulation results, and it addresses three key points. First, we could increase statistical power by the
S-LR or the NT even when the specified H1 was not exactly equal to the truth (Cases 1 to 3 under all Scenarios A to D).
An increase in statistical power was sometimes more than double when compared to the other seven tests (χ2GOF, DKS,
LR, FT, PD, DCM and DAD). Second, when the specified H1 was in an opposite trend of the truth, statistical power was
close to zero (Case 4 under all Scenarios A to D). Third, NT and S-LR showed similar statistical power in many cases
(with a difference less than .05), but they showed significantly different statistical power in some cases (e.g., Cases 1 to 3
under Scenario D with n = 20). The discreteness of test statistic in small samples could play a role in such a remarkable
difference. We could not generalize the outperformance of NT over S-LR in Scenario D because we have not exhausted
all simple alternative hypotheses.
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Table 2. Simulation results (statistical power)

Scenario A: Decreasing Scenario B: Step Scenario C: Triangular Scenario D: Platykurtic
n 10 20 30 50 10 20 30 50 10 20 30 50 10 20 30 50

χ2 GOF .294 .577 .754 .939 .060 .085 .128 .196 .083 .139 .231 .397 .115 .249 .436 .708
DKS .370 .537 .767 .940 .083 .086 .151 .236 .097 .076 .120 .168 .032 .020 .035 .118
LR .291 .538 .720 .927 .061 .097 .130 .210 .081 .168 .254 .409 .115 .287 .483 .738
FT .215 .284 .660 .912 .066 .084 .127 .201 .091 .144 .248 .426 .142 .252 .463 .741
PD .281 .573 .748 .939 .057 .100 .135 .206 .079 .163 .247 .412 .111 .291 .452 .725

DCM .401 .692 .851 .973 .089 .155 .213 .329 .088 .107 .135 .198 .027 .054 .096 .257
DAD .534 .771 .901 .985 .062 .081 .131 .217 .120 .154 .177 .245 .019 .138 .224 .418
S-LR .587 .833 .939 .992 .151 .256 .327 .477 .248 .426 .569 .765 .407 .458 .805 .952(Case 1)
NT .584 .828 .936 .992 .164 .258 .332 .477 .241 .389 .552 .749 .413 .666 .812 .954(Case 1)

S-LR .589 .833 .940 .993 .170 .257 .330 .481 .248 .426 .556 .768 .407 .520 .803 .953(Case 2)
NT .587 .833 .939 .993 .165 .259 .333 .478 .241 .423 .566 .768 .413 .666 .810 .954(Case 2)

S-LR .582 .826 .934 .991 .152 .261 .331 .477 .248 .419 .563 .766 .407 .511 .809 .949(Case 3)
NT .587 .826 .929 .988 .168 .261 .334 .478 .241 .423 .565 .767 .412 .665 .811 .953(Case 3)

S-LR .001 .000 .000 .000 .006 .004 .002 .001 .002 .001 .000 .000 .000 .000 .000 .000(Case 4)
NT .002 .000 .000 .000 .009 .003 .002 .001 .002 .001 .000 .000 .000 .000 .000 .000(Case 4)

4. Examples

4.1. Multiple-Choice Questions

An exam writer often designs multiple-choice questions to reduce the burden of grading. For a four-choice question (one
correct answer and three distractors), let πA, πB, πC and πD denote the probability that each letter (A, B, C, and D) is
a correct answer. Let H0: πA = πB = πC = πD = .25 which is an ideal distribution. Students’ common conception is
that “C” is the most common answer for four-choice questions. Based on their common conception, let H1: πA = .1,
πB = .25, πC = .4, πD = .25. We analyzed a mathematics test written by a college professor which consists of n = 40
four-choice questions (one correct answer and three distractors). In the answer key, there were 5 A’s, 11 B’s, 13 C’s,
and 11 D’s. The significance level of hypothesis testing was fixed at α = .05, and we implemented each hypothesis test
discussed in Section 3. As done in the simulation study, we generated the null sampling distribution of each test statistic
and then calculated the p-value. The resulting p-values are given in Table 4. The two tests based on the simple alternative
hypothesis (S-LR and NT) achieved the statistical significance, while the other tests could not.

Table 3. Resulting p-values

χ2 GOF DKS LR FT PD DCM DAD S-LR NT
.324 .264 .278 .242 .293 .171 .074 .030 .028

Varying alternative hypothesis (H1) after the calculation of p-value is not allowed in practice. For illustration purpose
only, we considered another alternative hypotheses H1: πA = .1, πB = .2, πC = .5, πD = .2. The resulting p-values
were .045 for S-LR and .044 for NT. This example illustrates that S-LR and NT serve as an efficient test when we have a
plausible alternative hypothesis based on accumulated experiences before observing data.

4.2. Distractor Analysis

A multiple choice question can be an effective method to assess students conceptual thinking (if well designed), and it
reduces the burden of grading. The effectiveness of a multiple-choice question depends on its distractors, choices which
serve as wrong answers (University of Wisconsin Oshkosh Testing Services, 2017). For example, in a four-choice question
(one correct answer and three distractors), if two distractors are easily identified by students as wrong answers, the four-
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choice question may seem to be a true-or-false question. An ideal (conditional) distribution of students choices on three
distractors would be one-third for each distractor.

To assess students’ understanding for the interpretation of a confidence interval, the following sentence was given in a
quiz. “Based on a sample of size 132, a 95% confidence interval is calculated as (.48, .72) for the proportion of female
students in the campus.” Students were asked to select the correct interpretation among the following four choices: (A)
95% of 132 students in the sample were female, (B) Before collecting the sample, a 5% chance was allowed for missing
the population proportion of female students, and an estimated proportion of female students is from .48 to .72 based on
the collected sample, (C) There is a 95% chance that the true proportion of female students is between .48 and .72, and
(D) If we take a sample from the population a large number of times, the true population proportion will fall between .48
and .72. If the three distractors (A), (C) and (D) are plausible, the null hypothesis H0: πA = πC = πD = 1/3 could be a
reasonable assumption. Assuming (C) is the most common misconception and (A) is not as a strong distractor, the simple
alternative hypothesis was specified as H1: πA = .1, πC = .6, πD = .3. Among the 68 students who took the test, n = 26
students selected one of the three distractors; 4 selected (A), 13 selected (C), and 9 selected (D), where the respective
observed proportions are .154, .500, and .346.

The significance level of hypothesis testing was fixed at α = .05, and we implemented each hypothesis test discussed
in Section 3. As done in the simulation study, we generated the null sampling distribution of each test statistic and
then calculated the p-value. The resulting p-values are given in Table 4. The two tests based on the simple alternative
hypothesis (S-LR and NT) achieved the statistical significance, while the other tests could not.

Table 4. Resulting p-values

χ2 GOF DKS LR FT PD DCM DAD S-LR NT
0.111 0.109 0.082 0.082 0.111 0.150 0.073 0.015 0.015

For illustration purpose only, we considered other alternative hypotheses. When H1: πA = .25, πC = .5, πD = .25, the
resulting p-values were .047 for S-LR and .033 for NT. When H1: πA = .3, πC = .4, πD = .3, the resulting p-values were
.056 for S-LR and .028 for NT. When H1: πA = .4, πC = .3, πD = .4, which is not supported by the observed data, the
resulting p-values were .947 for S-LR and .946 for NT. This example illustrates the benefit of using S-LR and NT for
experienced and knowledgeable researchers, but not for any researchers.

5. Discussion

It is difficult to reject H0 with composite H1 when n is small and particularly when K is large. When a researcher has
specific scientific rationale and/or experience to argue a simple alternative hypothesis, statistical power can be significantly
increased by the use of simple H1 instead of composite H1. The simulation results show that we can gain statistical power
when a researcher specifies a correct trend such as decreasing, step, triangular, platykurtic or etc. For NT and S-LR, a
simple H1: π⃗ = p⃗1 does not have to be exactly the truth, and a loss of statistical power due to a small degree of discrepancy
between simple alternative p⃗1 and the truth π⃗ was negligible. In particular, a researcher can gain statistical power (relative
to other tests based on composite H1) when the direction of one-sided H1 in terms of µ is consistent with the true value
of µ. In other words, if we denote the null, alternative and true values of µ by µ0, µ1 and mT , respectively, NT and S-LR
have consistently shown higher statistical power than the other tests when (µ1 − µ0)(mT − µ0) > 0. On the other hand,
when (µ1 − µ0)(mT − µ0) < 0, NT and S-LR have resulted in nearly zero power. The benefit of using a simple alternative
hypothesis is (i) for those who know their scientific problems reasonably well and/or (ii) for those who have practically
meaningful simple H1 to be tested.
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Appendix

The proof of the proposition in Section 2.3 is provided below.

Proof. When µ1 > µ0, the approximate statistical power for one-sided right tail test, H0: µ = µ0 and H1: µ > µ0, is

P(Z ≥ z1−α) = P
(

X̄ − µ0

σ0/
√

n
≥ z1−α

)
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(
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σ0√
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(
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σ1/
√
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)
.

(7)

Similarly, when µ1 < µ0, the approximate power for one-sided left tail test, H0: µ = µ0 and H1: µ < µ0, is

P(Z ≤ zα) = P
(

X̄ − µ0

σ0/
√

n
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)
= P
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(8)

To this end, we can express both Equations (7) and (8) as

1 − β = Φ
(
zα
σ0

σ1
+
| µ0 − µ1 |
σ1/
√

n

)
. (9)
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