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Abstract

This paper introduces a family of coupled semi Markov regime switching multidimensional non linear models for general
asset prices. Two particular instances of the models are explored. The first instance is one modeling commodity prices.
Estimation formulas for historical parameters are developed. The second instance of the family of models introduced is
one generalizing Heston model. It allows for semi Markov regime switching of Heston parameters. We develop a general
semi closed formula for vanilla option prices given the risk neutral option parameters.

Keywords: LLGMM, Semi Markov Process, Regime Switching, Heston Model, Commodity Market, Option pricing
1. Introduction

We introduce a family of coupled semi Markov regime switching multidimensional non linear models extending the
commodity model developed by Otunuga and Ladde (2014); Otunuga et al. (2016), most stochastic volatility models and
local volatility models, namely, Heston-type models discussed by Heston (1993); Da Fonseca et al. (2008); Papanicolaou
and Sircar (2014), Constant Elasticity of Volatility (CEV) type models, Garch models and Cox-Ingerson-Ross (CIR)
models discussed by Geman and Shih (2009); Cox et al. (1985); Duan et al. (1995) among others. Stochastic volatility
models are ubiquitous in financial modeling, as they are a significant upgrade over Black Scholes model introduces
by Black and Scholes (1973) both in derivative pricing and in asset return prediction. In derivative pricing, stochastic
volatility model provide an implied volatility surface in compliance with many empirical features of the market such as
smiles and smirks. As for historical parameter estimation, Stochastic volatility models provide a log return distribution
exhibiting many empirically observed features (skewness, fatness of tails and high peak). Despite the abundant literature
of Heston models and its well documented reproduction of many stylized empirical facts, a semi Markov switching market
has the potential of adding to the already well documented flexibility of the model. Semi Markov regime switching market
represent a non obvious generalization of the more common Markov regime switching models. Such models have been
studied recently by Assonken and G. Ladde (2016, 2015) who finds a Fourier methods through a characteristic function
formula, for pricing derivatives in Levy driven financial markets.

The families of models introduced also allow the modeling of multi-asset baskets. Financial portfolios are often divided in
sectors (technology, energy, commodity and so on) which are assumed to show significant intra-sector correlation and little
to no inter-sector correlation. Hence prediction of one specific asset price could be improved when accounting for prices
of assets in the same group. Otunuga and Ladde (2014); Otunuga et al. (2016) first developed a calibration technique
for such a class of model, namely the LLGMM method, accounting for a unique layer of interaction between asset prices
through their diffusion coefficients. We extend such a model to semi Markov markets and provide in the same token an
opportunity to assess the unpredictable jumps effects on the calibration results. The rest of the chapter is organized as
follows: Section 2 is an introduction to the general multidimensional non linear model. Section 3 is concerned with the
two main applications: the special case of a coupled multidimensional stochastic differential equation model describing
commodity prices and an extension of Heston model to account for semi Markov regime changes and a regime switching
Heston Model.

2. Preliminary Notation and Results

Let (Q,F) and m be the reference measurable space and a whole number, respectively. We denote 7, T and i the market
time horizon and the maturity time of some derivative contract, and a Poisson random measure, respectively. (6;)se(o,r+] 1S
a semi Markov process with state space E = {1, 2, ..., m}, state switching times (7T} )ren and (By)ren 1S a discrete sequence
of random non negative vector valued numbers with 8, = (,B,i ,B]%, BZ) and In(By) ~ b, where b is a n—dimensional
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probability density function. We will also use the notation 67, = 6 for simplicity. We consider n,¢q,/ € N* and x
an n—dimensional vector stochastic process, g € C[R; X Ry x E X R",R"], 0 € C[R; x R, x EXxR",R" x R/], Bis a
I-dimensional vector of independent Brownian motions, G, H € C[R, xR, XExXR"XR, R"] and R € B[RxRxR"xR", R"]
a bounded function.

¥(Jj,), v(j,) and L; are respectively a Poisson process, its intensity measure, and the cadldg Levy processes with charac-
teristic triplets ((u)(Jj, ), 0(j, ), v(j,)) when the semi Markov process 6 is in the j—th state. We assume that the following
inequality holds:

T
f f ((1 + HT(t’yfa ja xt7Z)H(tayt7 j9 xl’ Z))1|z|>] + GT(t’ytaj’ th)G(t’yl‘aj’ xt,Z)I\Z\SI)V(j, dz) < OO’ v] € E (1)
0 zeR

. 14,0,G and H are assumed smooth enough to ensure existence of a solution of the following system of stochastic partial
differential equations:

dxt = ”(t’ Vs 6/{7 Xt')dt + 0-(t7 Vs gk’ xt')dBt + f G(t, Vs 0/{7 X, Z)J/(gks dt, dZ)

zl<1

+ H(t,)’r,ek,xu Z)lﬁ(gk’ dt? dZ)? (2)

lz/>1

xp = Bixy , Yk € I(1,00) = N, where x7, = x;, Yk € I(1,00) = N,Vt € [Ty, Tysr), In (Bi) ~ b(164-1,60) 3

(H)sero.r7, We)refo.r) and B, are filtration generated by the semi Markov process 6;, Levy processes L{, s € [0,7], Vj €
E ={1,2,3,...,m} and the discrete vector sequence (B)ien, respectively. We also denote L, = L, V By, G, = Hy V L,
and G, = H, v L,,Vt € [0,T*]. Let P and Q be the historical probability and an equivalent martingale measures
as specified by Assonken and G. Ladde (2015), respectively, associated with the price process (x(t)),., defined on the
reference space (Q,F). We present an extension of Ité’s lemma developed by Assonken and G. Ladde (2015), for a

. . . . 2
function V € CMO2[R* x R* x E x R", R?]. 2 denotes the ¢ x n first derivative matrix of V and Z¥% = (aii(‘a/ij Inxncg

represents a tensor of rank 3. We use the following notation: G = (G, ....G,)", H = (H,,...,H,)" and Tr[angT‘z/a] =

an TV N\ "« RP * - B2 (G i
Tr(a’ 57 a),...Tr(a’ 57a)) ,Ya € R" xR?, ¥p € N*. We define the following set E* = E* —{(i,i),i € E}. We denote

N(t, A, B) a marked point process on [0, 7] X B(R) X P(E™) into [0, o) as follows:
N(t,A,B) = Z l(zzT,,,ln (B.)EA(6,-1.0,)€B) )
n>1

N(t, A, B) is the number of regime switches in subset B of E* with corresponding log price jumps In (8,) € A C R by time
t. The compensator process

¥(t,A, B) = Z f f b(zli, j)Aij(ys)dzds 6)
ZEA

G.peB ™0

of N(¢, A, B) and It6 formula for a suitable function V are derived by Assonken and G. Ladde (2015). A multidimensional
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version of the formula can be summarized as follows:

av av av
dv(s,ys, 0, x5) = o dr + a—d vt oo —dx, + (d ‘)T—d ¢

+ f [V(S, ys"s QS—,xs— + G(Suys” H.Y” xs’9z)) - V(S,)’s*, 0S’9xs’)
lz1=1
ov -
- _G(ss ys_9 9_&‘_3 Xy Z)]lp(gs_s dZ, ds)
ox
+ f [V(S, y‘v’s QS—,xs— + H(Ss}’s*,gs*,xswz)) - V(S7 yx” 9S’3x‘&")
lz1>1
ov
— ——H(s,y5 0, X, D) |0(0,-, dz,ds)
ox

f [V(s. 35,00 X5 + G575, 05, %5, 2) = V(5. Y5, 05, %,)
<1

ov
= ——G(5,y5 0y, X, ) V0, d2)ds

ox
+ Z f V(s, Yy, Js X5 €) = V(s y5, 05, X5 [N(dz, ds, (B, ) (6)
Jj=1,j#0,-
ov v v 1 o*v
= ods + oody+ ot Oy, 1 )ds + Tr| 507 (5,30 00, X0 ) 25 05,y -, x0) ds
as ay
ov
+ _O-(S’ ek’ys”xs’)st
ox
+ f (V.30 05 %0 + %G5,y 05, X5,2)) = V(s.Y,, 05, %) [0, dz, ds)
lz1<1
+ f [V(S7 y‘v’s 9S’7xs’ + H(S, }’r, es’vxs’vz)) - V(S7 y‘r’ 9S’7xx’)]l//(9s” dZ, dS)
lzI>1
f [V(S’ )’r, 65”xs’ + xS’G(S’yS”es’5xs’»Z)) - V(S’ys’,es’»xs’)
<1
ov
= 560y 0 x. ) 0:-, d2)ds
- f V(S350 €)= V(s O x,)|N(dz, ds. 10, D) ()
Jj=1,j#0
2%
= LV(s, gs,ys, xg)ds + ao-(s’ gksys‘,xs‘)st
+ f [V(S, ys"s QS—,xs— + G(S3 yS’s H.Y” xs’9z)) - V(S, )’s*, 0s’9xs’):|lzl(gs’9dz, ds)
lzI<1
f I:V(s’ )’s*, es”xd" + H(S,yr, 9s’7xs’,z)) - V(S’ )’s*, gs”xs’)]!p(gs”dza dS)
z]>1
+ Z f V(s, Y5, Xs-€%) = V(s y5, Os, X, ) |N(dz, ds, (B, D), ®)

Jj=1,j#0

where,
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ov. oV 9V

+— + t707 ST AsT
as T oy ot xs)

1 &
+ ETV[O'T(S, Vs, 05, X))

LV(s,0p,y5, %) =

Vv
WO'(S,YW Gs’,xs’)]

+f [V(S,)’s-,es-,xs- +G(Ss)’s-,9s-,xs-,Z))— V(Svys"gs'sxs') (9)
lzI<1
ov
- _G(S’ ys’ £ 6.&" » xs’ ) Z)]V(GS’ » dz)
ox
+ f [V, 05 %5 + H(s.yy .00, X.2)) = V(5. Y5, 00, X)) W0y, d2)
z1>1
+ f Z [V(s, Vss Js Xs-€) = V($, Y5, 05, xs—)]y(dz, ds, {(0s-, DD (10)
R jeE=(0,-)

We denote P, = {1 }k ~0° 0=ty <t <..<ty, =T apartition of the time interval [0, T']. Using the notations

Vie = V(i 045 Ya, X4, G = Gk, Yy U1, X405 2),

Hy = H(tx, y1,, 6, X4, 2),

VL1 @) = V(i1 Vi Oy Xy + GOt Yoy Oy X110 2),
V(@) = V(o1 Vi Oy X+ Ho1, Y5 iy Xy 2)).

The first and second moments are presented below:

E[AVi|G,_,] = LVic1An

[AVk - E[AVYG,_, ]][AVi - E[AVY|G,,_ I]] G, ]] (11)
T

:_O-(S Vs ,9; s Xg- )0- (S Vs ’ev 7xr) Al‘k 1

ox
¥ f [VE 1@ = Vit [[VE 1@ - Vier| w6, do)v
lzI<1

+ j; . [V @) = Vi [[VE @) = Vi | 0, A,

. . Vé T
+ Z f [V(fk—l,ya,pj,xrk,,ez)—Vk—l][V(fk—l,yzk,l,J,xzk,le“)—Vk—l]
JeE—(6,_) VR

X y(dz, Aty {(6y_,» DY 12)

3. INlustrations
In the following, we examine two particular cases of the model in (2).
3.1 Modeling of a Basket of Interdependent Assets

We extend the system of interconnected commodity price process network in Otunuga and Ladde (2014) by considering
Levy jumps representing shocks specific to each member of the network. We assume that each asset in the network is
affected by independent unpredictable shocks/informations. If the network considered is a network of financial assets,
unpredictable shocks may originate from sudden information affecting investors views of the particular financial sector
of interest or other unpredictable change affecting parameters playing a preeminent role on the asset price. Unlike and
Ladde (2014); Otunuga et al. (2016), we assume two layers of interactions of asset prices in the network. We assume asset
price interactions in the diffusion coefficient and in the price jumps. Similarly to Otunuga and Ladde (2014); Otunuga
et al. (2016), the i-th asset price impacts the j-th asset price through cross diffusion coefficients of order (i,j). A second
layer of interaction introduced in this paper is achieved by assuming that a jump of the i-th asset price impacts the j-th
asset price through an appropriately modeled cross dependence parameter of order (i,j). Let us assume that the network
entails n > 1 assets. We model these shocks with a family of Lévy-It6 processes with Poisson measures ¢ = (4, ...y™)T
having intensity processes v" = (V/,..vi)" and ¢? = (¥, ..¢5)" having intensity processes v/ = (v/,..v;)". We also
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denote Y™ = ", .@™T = Y™ —v" and P = (', ..¢H)T with intensity processes vF = (V/,..vh)T. We assume
that the vector mean process m™ = (mY',...m)') and vector price process p” = (p7',...p;) potentially react differently to
market shocks through Poisson integrands (G;”);‘zl,(H{”);’zl,(Gf )i, and (Hf ). We introduce the following matrices:
G" = (G’}’)_iSH,G” = (Gf)_an,Hm = (H;”)jg,,,G” = (Hf)jgn,W = (Wi ))ij<n and andZ = (Z; ;); j<, are real numbers
Yi,j € I(1,n). W;; and Z;; are independent Brownian motion processes. A coupled system of Levy type stochastic

differential equations under regime changes and subjected to structural perturbations can be expressed as follows:

dmj = (u; = mp| L1y k(O ym(e)de + 6, dWi (0 + Sy 1 61mi(e)dW(0)]
[y GO, e, DT O dt, d2) + [, HIGE O, iy, DY O dt, d2), 1 € [T, Tear), mlto) = mjo,
m(Ty) = m’; and m’;. = 7r’J‘.m(Tk‘, Ty_1,m), Yk € I(1, 00),

n N n _ (13)
dpj = Pj[[?’jj(mj =P+ B+ Xy e v O)piO)]dt + 07 j;dZ; (1) + Xy 1 oot )dZI,j(t)]
+ \Z\<1 Gf(ta gt”yt’9 Pt*, Z)‘L?(Gt’, dt, dZ) + ~[|‘Z|>1 Hf(h 01”yt’3 pt, Z)(J/?(Gt’, dts dZ)7 re [Tk7 Tk+1), Pj(t()) = pj,09
pi(Ty) = p and p = WS p(T;, Tier, p,m), Yk € 1(1, ).
We define the following matrices:
Kit  «+. Kin Y .-+ Yin
k=0 b=l o)
Kn1 coo Kun Ynl cee T VYmn
011 ... O (511 61nm1
Z = P T = B
OnlPn .- Onn 6n1mn .. 6nn
W11 Wln ZU Zln
w= - LZ=
W ... Wy Zn oo Zm
This coupled system in matrix form becomes:
dmt = a(tsyh 9}5 m)dt + T(ﬁ)’z’ 9], m)dW(t) + f Gm(t7yt’ 9}5 m, Z)lzm(gjs dts dZ)
lzl<1
+ H"(t,y;,60,, m,2)y(0;,dt, dz), where m(ty) = my, if t € [T}, T}.)
zI>1
dp, = b(t,y,0;, p, m)dt + X(1,y,6;, p)dZ(1) + f G’(t,y,0;, p, ) ,(0),dt,dz)
ldl<1
+ HP(1, 1,0}, p, 20}, dt, dz), where p(to) = po, ift € [T}, T}j+1) (14)
zI>1
m' =™ (T}, Tioy, m™"), (15)
P =T, T, P, (16)
with
Il = diag(my, ..., m,), where In () ~ g(16;,6;-1), Yk € I(1,n),i € I(1, 00), (17
Q' = diag(wy, ...w,), where In (wy) ~ h(|0;,6i-1), Yk € I(1,n),i € I(1, ), (18)

where a(t,y,6;,m) and b(t,y,0;, p, m) are n dimensional vectors with a(t,y,0;, p, m) = KT(t‘)p(t‘) and b(t,y,60;, p,m) =
—ydiag(my, ...,m,) + B + yp; We consider the particular case of (13) where,

H[p(tsyt’ gtspt’z) = Glp(tsyt’ gtspt’z) =z
H"(t,y:,6;,m;,2) = G (t, Y1, 6, p1, 2) = z.

We also consider the following families of Lyapunov functions: V*4(t,y,,6,,m) = mj and V#(t,y,,6,,p) = p’;’ Vj e
I(1,n),q € I(1,0). Using the multivariate real valued version of Ité formula in (9) and (11) applied to U, we obtain,
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respectively:

dmi(0) = gm™ () = mi)| Z Kjmi()]dt

" %q(q - ij_z(t—)(uj - mf(t_))z[‘sij + HZ; ) 6§,lm12(f)]dt

" le [+ my NGO = )] O do)

* fl o () + myOHHP )] = w2976 d2)

j|;|<1 [[m,(t )+ m(t)G] ()] = mf(17) — gmi(t” )Gm]V”-’(O,—,dz)
+ LM [[mf,]-(t‘) +m(CO)YH ()] - m?(t)]v;f’((?f,dz)

+qm® () uj — m())[6;,dW () + Z 8 mi(t)dW (1)), V1t € [Ty, Tysr, s € I(1, 00), (19)
I=1,1#j

d(pi(0) = gpi()y;jm;i(™) = p,(1)) + B + Z yipi(Dldt

2q(q—1>p" P, +l; ()]
#J

’ fll ([P, + PG = Pl |76 d2)

+ LIM [[Pj(t‘) + pj(t‘)Hf(z‘)]q - Pj(f)]%(ﬁt—,dz)

le [[Pj(t‘) + pj(t‘)G;’]" - pj(t‘) - qp‘1(f)G£]V§7(9hdZ)

+ ﬁ . [[Pj(t’) +pi(tHY ]! - p‘f-(t’)]vj; ©,-.dz)

+qp!()]ojdZ;; + Z o upit)dZ (1))t € [Ty, T, s € I(1, ). 0,

I=1,1%)

Applying Euler Maruyama discretization scheme at #; leads to:

E[Amj’-(tk)i(Gtk_.] = Qm?ﬂ(tkfl)(uj - mj(tk,l))[ Z Kj,lml(t_))]Atk
=1

1 _
+ 24 = D)y = mi(te)P| 65 1) + Z &2t (1]
I=1 %]

+ f [[mj(tk—l) +m(1)G (1) — m?(tk—l) - qm‘,]‘(tkfl)G?l(tk—l)]Vl}l(gtk_] ,d?)
lz]<1 .

+ f 1 [[mj(tk—l) +m () H (1)) — m?(tk_l)]wj’,’(ef,dz),

21
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E[[Amt(@) - E[Amt@)|G,, ,)1|Gy ]
= (u; —mj(tk_l))z[qzmi(q_l)(tk_l)[5% + Z (5i,m[2(lk—l)]Alk
I=1,1%]

" f [[mj(fk—l) +m()GL )] - m(;(tk—l)]zv'f(%,, , d2)Aty
lzl<1

+ f| ‘ [ (tac) + (O E (1)) - mi(tk_1>]2v'}1<e,k,l,dz)Ark]], (22)
z|>1

and

E[ApIt0)|Gy ] = api(t-0)y,jmi() = pi6)) + B + Z YiupiD]Ar
=

1
+ 54 - 1)17;1-(&)[0'?,1 + Z O-ilplz(tk—l)]
Sy

+ f| » [[piGt-1) + Pyt t-D]? = Pllti-1) = @pi1-D)G 1) [V O, d2)

+ [I X [[pj(tk—l) + pj(tk—l)Hf(lk)]q - p;]»(l‘k_1)]vf(95—, dz), (23)

E[[ap10 - EIAPI0|G V|G | = @] e + Y ot|an
I=1,1#j

+ fl‘l 1 [[Pj(fk—l) + pi(ti-)G) ()] - P?(tk—l)]szp-(ezk,, ,d2)Aty
’ [| [[pj(tk—1) + Pj(lk—1)Hf(lk—1)]q - p?(lk—1)]2V§(91k,1 , dZ)Aty.. 24)
z|>1

We note that Levy jumps sizes of a fixed price process(resp: fixed mean process) are independent and identically dis-
tributed for a given market regime. The Euler Maruyama discretization in (21) and (23) involve first and second moments
of Levy jump sizes which we will estimate using Monte Carlo integration. We note from model definition in 13 that the
contribution of small and big Levy jumps in dp ;(¢)(resp: m (1)), the price (resp: the mean) change in asset j at time ¢ are re-
spectively p;(t7) [, GJ(t, pr-,2) and py() [ H (2, pi,2) (vesp: my(e7) [, Gp'(t, e, 2) and my() [, (2 m,2)).
Hence, the Levy Jumps are estimated from the price and mean process return time series in the following manner (see
Robert and Casella (2013)):

n(my,[s,1])

!
- 1 . . .
fs LR Fan, 2’ G, dz)dn ~ WG m. [s.1]) {m; . f@" zpn), Ve, s € [0, Tlwith6, = i, ¥y € [s,1]. (25)
€[,

(&")ien~ is the sequence of Levy time jumps of the mean price process m;. n(my, [s, t]) denotes the total number of jumps
of the [ —th mean asset price process while in regime i in the time interval [s, f] and (zdw )ien+ Tepresents the corresponding
sequence of Levy jump sizes. We assume that the function f is integrable with respect to the product measure v/ (i, )dt in
the domain R X [0, T']. Throughout the discretization process. the four functions

£01.2) = Lggen|[psen) + PG DV = pi ]
8(m,z) = 1(\z|51)[[17j(tk—1) + (-Gl (-1, 2" = pi |, — QPZ(tk—l)G?(tk—hZ)],
h(n,z) = 1(\z|>l)[[l7j(tk—l) + pi(ti-)H (-1, 2] - 1’24]2’

$(1,2) = Lggon|[Pj(t-1) + pj(te-)HY (111, 2] = PZ,I], (26)

are integrated with respect to vf . Similarly, the four counterparts of the functions in (26) with the price function replaced
by the mean function are integrated with respect to v;f’. Those integrals are approximated as described by the Monte Carlo
integral (25). For convenience of notation, from here on, for each function f, g, h and s in (26) we denote the Monte Carlo
integral estimates in any time period [#, f;,1] by respectively by M?(sp),M"'(sp),M*(bp) and M'(bp). If the mean process
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is used in (26) similar notations are used with m substituting p.

E[Ami(fk)mrk,l] = qmj_l(tk—l)(uj - mj(fk—l))[ Z Kj,zmz(f))]Afk
=1

1 - 2
+ 5a(q = Dm0 = miGe) | Y85 0] + gm )M (bm).
=1

E[[Am(1) - E[Am!(0)|Gy I

Gfk—] ]
=(uj — mj(tk,l))zqzmi(qfl)(tkq)[6% + 6§!,m,2(tk71)]Atk
I=1,0#]

+ ¢Pm ()M (sm) + ¢Pm’ (6 M (bm),

and

E[APZ(lk)|Gtk,l] = qp3_1(tk—l)pj(tk—l)[)’j,j(mj(t_) -piE)+B;+ Z v, ()] Aty
=

1
+54q = Dplw|os; + > ohpi-n]+ apln-)M;bp).
I=1,1%]

n
2
sz,l] = qujq(tk—l)[o-ij + 1; O'i[(tk—l)[)i(tk—])]Atk
=Li#)

E[[Ap%(0) - E[ApI10)|Gy 11

+ @ Pt )MA(sp)AL + ¢ p (1) MEA(bp) A
We note that the particular case ¢ = 1 in (21) and (23) yields the following systems:

n

E[Amj(lk)|sz,1] = (u; - mj(lk—l))[ Z Kj,zml(f))]Atk

=1
+m(ti-1)M;(bm),

E|[Am () — E[Am (1[G, 1P

sz_,] = (u; — mi(te-1))* Z 5?,,m12(tk71)Atk
=1

+ m3 (1) [ M7 (sm)Aty + M (bm)Az],
and

E[Apj(t)|Gy_,] = pj(te—dyj(mi(t7) = pj(t)) + B + Z Y1) Aty

1=1,1#j
+ pj(ti-))M3(bp),

E[[Ap](tk) - E[Apj(tk)iGtkfl ]]2

G| = Pt Y i n)an
=1

+ M3(p) At + ME(p At |
When g = 1, from the second equation of the system in (31) we have:

(uj - mj(tk_1))2[ Z 5§!1m12(tk—1)] = E[[Amj(tk) - E[Amj(tk)|G’lk71]]2
=1

Gtk—l ]

= m3 ()M’ (sm) — m3(t) M5 (bm).
Using (35) in the first moment equation of (27) yields:

n

E[Am(1)|Gy,., ] = qm®™ (h-0)(uj = mja)| Y kjoma(e7)|Ar
=1

1 _
+ 5alq = D0 | E[[Amya0) = E[ama0)]G 1P

Gy, | = 36 M3 (sm)

= M3 b + ani )M )
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27

(28)

(29)

(30)

€1y

(32)

(33)

(34)

(35)

(36)
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hence,

1 -
E[Am(@)|Gy, \] = 54(q = m] 2t )E[[Am;(t) = E[Am j(tk)|G,k7]]]2|G,kfl]
1 1
+ 54(q = DM (sm) + 2q(q = Dmi()M;(bm) = qmi(c")M; (bm)

= ij[qujmlj]'(tk—l) - qm(j'ﬂ(tk—l)] + Kjl[qujm3_1(lk—l)mz(lk—l) - qm(j-(tk—l)ml(tk—l)]- (37

Writing the estimating equations at time #; yields:

s—1 1 s—1 g
> E[Amtw)|G, ] - 54@=1) D m e )E|[Ami(n) - E[Am10|Gy, 1P|y |
k=s—ng k=s—ng

1 s—1 1 s—1 s—1
+54(q = DM} (sm) Y mi() + 5q(q = DM;(bm) Y mia) —q Y mi( )M, (bm)

k=s—ng k=s—ng k=s—ng
s=1 s—1 s-1
:ij[quj Z m‘j(tk_l)—q Z m§+l(tk_1)]+/<ﬂ[quj Z mg_l(l‘k—l)ml(tk—l)
k=s—ng k=s—ny k=s—ng
s—1
—q ), mit-mie)] (38)

k=s—ng

Let us set:

s—1

Al =4 Z m{(t-)(uj = mj(te-1) = aju + aj

k=s—ng

s—1
B(J]?’" =4 Z mﬁ_l(tk—l)(“j - mj(t1))my(te-1) = blu + b]
k=s—n;

s—1

CZm: Z E[Am(]]'(tk)|Gtk—1]

k=s—ng
1 S
- yalg - 1>k_Z m? (0 E[[Amy(0) = E[Am )]Gy V|G|

1 s—1 1 s—1 s—1
+54(q = DM} (sm) Y mi() + 5q(q = DM;(bm) Y mi(a) —q Y mi )M, (bm)

k=s—ng k=s—ng k=s—ny

s—1 s—1
q _ q q _ g+l
a =4 Z mi(t-1),ay = q Z m; (tg-1)

k=s—n; k=s—ng

s—1 s—1
bl=q > mi Geomuo)bi=q Y minmiho),

k=s—ng k=s—ny

For [ € {1,2} with, [ # j we seek to estimate the parameters u j,K;’} and K;']l The deterministic interaction coefficient
parameters k;; are estimated using the first moment equation in (38), for any three real values ¢, g» and g3 of the parameter

q.

q1 . q1 L —
A’ Kjj + Bj,mKl./ = Cj,m

Jm
q .. q2 L — 92
Aj,mKJ.l + Bj,mKl./ = Cj,m’
q3 . q3 L — DB
Aj,mKJJ + Bj,mKlJ = Cj,m’
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yielding the solutions:
2r 431,92 .q1 _ 93 1,91 > 91193 q> _ 421,93 g1 _ 911,92 .93 921,91 .q3
j[alblc al’bi'c” +al'bfc al’bi’c ai' b c® + al’ bl ]
1,9 1,92 g1 Ba2 g1 _ 433,92 g2 _ 931,41 g2 91 1.93 .q» 911,93 .q> _
+uj[albzc +a,b’c ay’by’c ay'bi'c®? +a)' by’ ¢ +ay' bi’c a
q1 1,92 .q3 _ 411,92 .93 q2 1,41 g1 q1 1,92 g3
ai'by’ ¢ —ay' b c® + aPby' ¢! + al' by ]

931492 q1 _ 931,91 .q2 911493 .q> _ 921,93 .q1 _ 911,92 .93 921,91 g3 —
[ay' b3 c? — a5’ by' ¢ + ay' b ¢ — a5’ by’ ¢ — ay' by et + a3’ by ¢ = 0

92 91 q2 611
Kii = Bj,ij,m C]m Jm
JJ'T par adi _ 42 pdi
Bijjm Aijjm
Q2 A A2
. ijAJm Aijjm
1j = .
B2 AT A% BT
Jmoj,m Jmom

92193 .q1 _ 92 1,93 g1
,bi'c a;’bsy’c

(39)

We estimate 6;, € {1,2},] # j the continuous random interaction coefficients of the mean processes (m;(t)).0,r1, ! € {1,2}

associated with the Brownian motion. We use the second order moment equation in (28)

s—1

s—1
> E[[amln) - E[aml@)|Gy IP{Ga | - @ M3sm) Y m(a)

k=s—ng k=s-n
s—1
— M (bm) Y mi ()
k=s—njg
s—1 s—1
=63 > = mit )P @M we) + 64 DTy - mia)P P @ mi )
k=s—ny k=s—n
applied to any two distinct values of ¢, ¢; and g, as follows:
q1.J 52 gl 2 _ ~l1
Aj‘mdjj B.1 6, =Cjn
2 1 2
A‘ﬁn/o‘” + B(jhm(s - C]m’
where the coefficients are defined as follows:
s—1
A;{m = Z (uj — mj([kfl))2q2m§q(tk—l)Atk
k=s—ng
B(f-,m = Z (u; —mj(ti1)) q2m2(q (- m; (te-1) Aty
k=s—ng
s—1 s—1
2
cl, = Z E[[Am;’.(tk) - E[Am;’.(tk)|Gtk_,]]2|G,k_,] - ¢*M3(sm) Z m ()
k=s—ng k=s—ng

s—1
— @ Mibm) Y m(n)

k=s—ng
this, therefore yields the solutions:

C‘{l ZB‘IZ A Bqulcqz,l

2 _ jm
T pani qz [ 2. paii!
Ajm B A Bjm

q1,J 1121 611,1 92,

2 Ajm ¢ Cj,mAJlm

Ij— 1 j /N
AT A Igh
Jm o m Jm o m
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We turn our attention to estimating the parameters of the price processes p;, j € {1,2}. Equation of (30) has parameters
0'11 [ € {1,2}. From

s—1 s—1

> E[IAw) - B a|Go (G | - 4 Y Pt )Mispin (45)

k=s-ng k=s—ng
s—1

—q* > P )MIbp)A (46)
k—r—nY

=q Z Praod e+ Y o tepien]|An. (47)
k=s—ng I=1,1#j

The parameters a'lzj,l € {1, 2} are estimated through the general equation,
2 2 _
Eq’jO'jj + Fq,/o-lj = Dq’/,

where,

s—1
2
Ej=¢ Z P (1)

k=s—ng

s—1
Fo=¢* Z P?q(fk—l)Plz(lk—l)

k=s—ng
s—1 s—1
2
Dyi= Y E[[Aplw) - E[Apa|G IP[Gu | -4 ) pliaDMisp)An
k=s—ng k=s—ng
s—1
—q* > P )MIbp)A
k=s—ng

For two distinct values ¢, and g, of g we form the following system:
2 2 _
Eq,.j0; + Fgu07; = Dy
2 2 _
ECIz,jO-jj + qu,la-lj = Dg, 1,
with solutions;

2 _ ququ1 _ququll

o= S (48)
7 qu Iqul qu JFq1 /
D, E, i—D E
0_l2j q2,15q1.) q1,l (49)

qu JE i = Eqg,, JFq| s

The last parameters of the price processes are the deterministic interaction coefficient parameters y;;, 8; and y;;, [ # j. In
order to estimate them, we assume the parameters o,/ € {1,2} known from the estimation equations (48). We use the
first moment equation in (29).

s—1 s—1

> EAPW|G, ] - q(q— ) Z pla[o?, + o3 pian)|—g Y. pla)M]bp)

k=s—n; k=s—n; k=s—ng
s—1 n

=q Z P?(tk)[yjj(mj(tk—l)_Pj(tk—l))"'ﬁj"' Z Yiupi(te-1)] Aty (50
k=s-ng I=1,l#j

Equation (50) could also be written

Kq.jvii+ QaBj+ Oqivij = S g1,
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where the equation coefficients are expressed as follows,

5—

1 s—1 n
Sq1= E[Api(lk)mrk,,] - 561(61 -1 Z P?(tk)[z O'ilplz(tk—l)]
=1

k=s—ng k=s—ng

s—1
—q Y plu)M}bp)

k=s—ng

s—1
041 =¢ Z P?(lk)

k=s—ng

s—1
0,=9 Z p?(tk)
k=s—ng

s—1

Kej=q . ploomt ) = i)

k=s—ng
For three distinct values g1, ¢> and g3 of g, we form the system:
Ky1.jvii+ CqBj+ Oguivij = Sqy1s

Ko, 1vij + QaBi+ Oqa, lyij = S g1
Kys.ivij + QasBi+ Oguivij = S gau-

Solutions are expressed in closed form through Cramer rule

SQIJ QtJl 01]1,1 anj S‘]lwl OIJIJ qu,j ch S‘IIJ

St]zJ Qt]z Oqu quv.i quJ Oqu qu,j qu SQZJ

yii= Sgi Qg Oy B; = Kysj Sant Ogsi i = Kgj Qg S
Y Koyj Qq Oguu - Kogj Qq Oquu Y Koyj Qq Oquu
Kpj Qg Ogu Ky Qg Ogu Kpj Qq  Ogu

Koj Qg Ogau Koy Qg Oguu Koj Qg Ogai

3.2 Modeling of Asset Prices with a Regime Switching Heston Model

This illustration extends Elliott et al. (2015) and presents how vanilla option pricing could be performed using a model
with stochastic volatility in a market with semi Markov regimes. However, the results and proofs in this second illustration
of the general model of coupled stochastic dynamics will rely on a different but equivalent notation for market regimes.
We first introduce the new notation for the semi Markov process and a few necessary results.

Definition 3.1. 1. The semi Markov process (0;)ic[0.17 is now represented by a vector process denoted (O;)ci0.11 With
®; = (1g,=1), Lig,=2)> ---» Lig,=m)),

2. A(y) = (A4;(y1)i,j<m denotes the conditional matrix of intensities of the semi Markov process (®,)c(0,1),

3. the notation AT denotes the matrix transposed of A,

4. we denote the states of the semi Markov process (®)0,1), €1, ...em, Where e; = (0,...0,1,0,...0) and I represents
—_——

i~th
the identity matrix.

We establish a martingale theorem for the vector valued semi Markov process as a particular case of Brémaud (1981).

Lemma 3.1. Let O, = (1¢9,=1), Lg,=2), --» Lig=m)) and A(t) = (A;;(y:))ij<m as in Definition 3.1, be the vector carrying
instantaneous states of the semi Markov process ®, and the conditional intensity matrix of ®,. There exists an R™ vector
valued martingale process M,, right continuous with left limits such that:

13
0, = 0y + f A (O, du + M,. (51)

fo
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Proof. From Definition 3.1 and the intensity theorem for general marked point processes in Brémaud (1981), the condi-
tional intensity process A; of 1(y,=; could be expressed as follows:

Jo,i(t = Ty)dt
/ll(t) = Z l— 1(T,1SI<T,,+1)1(T,1<00)

e "So L =Ty)
Z Z sz(f n)dt
- jl S (f lT,,§t<T,l,,| 1T,,<oo
JEE n>0
fii(t = Ty)dt
= JEZE /lj,i(t - Tn)lgr:j, where, /lj,[ = ;0 pjimlTnSKTm 1Tu<°°'

Hence from Brémaud (1981), there exists real valued cadlag martingale processes M'(¢), Vi = 1, ..., m such that
. !
M© = 10~ [ a00ds.
0
We set M(7) = (M'(7), ..., M™ (7)) and rewrite
d(1g=p) = Z ;i) g, = jydt + dM' (D)
JEE

d(Lg,=y) = (i), A2V )s wvos i (V). O; dt + dM (1)
hence:

d®, = A(y,) @7 dr + dM(1),

hence proving a martingale decomposition of the vector process (®;)e[o,r]- O

We consider the particular case where the asset price and its volatility follow the risk neutral Heston Model:

dx; = (r(t,0:,y1) — .50(t, O, y,))dt + x, o (2, ®r9)’z)thl (52)
do—(t’ ®t’yt) :a([’(’)t’}’t)(b(t’@t’)’z)_U'(t, ®l’yt))dt+v(t9®t9yt) Vo-(tv ®l’yt)th2 (53)
with: dW!dW? = p,dt, and (0, ©g, yo) = oo > 0, (54)

where r is the risk free interest rate, x is the log asset price model, o is the asset volatility, a is the speed of the mean
reversion of the asset volatility, b is the long term asset volatility and v determines the variance of the volatility which is
referred to as the volatility of volatility.

We make the following simplifying assumptions on the model parameters:

1. A sufficient condition for the volatility remains non negative we assume: 2a(t, ®,, y,)b(t, 6, y,) > V3 (1,0,, v, ¥t €
[0,T],

2. The only parameter subjected to mean reversion is the long term volatility: r(z, ®,,y,) = r(?), p(t,0,,y,) = p(?),
U(t’ ®l’yt) = U(t)

3. the speed of mean reversion of the volatility, the interest rate and the volatility of volatility are assumed to be
positive and constant: a(f) = a > 0,r(t) = r > O,u(r) = v > 0.

4. The correlation between asset price and volatility is assume to be constant: p(f) = p.

The main goal is to derive a general formula for the vanilla European call option prices both from the perspective of Carr
and Madan’s algorithm and as an extension of the formula derived in Elliott et al. (2015). Both problems are simplified if
one can derive an expression for the following conditional expectation:

E(eiwx,,

IF,), for a fixed u > .

We first present a useful Lemma providing a general conditional expectation formula needed in this illustration.
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T
Lemma 3.2. We denote I, 1 =(1,...,1), f, A(s) = (/l,-,j(s))lq j<m and ® the m X m identity matrix, an m X 1 vector of real
<i,j<

m
numbers, a real valued process continuous in its second and third variables, the m X m real valued conditional intensity
matrix of the semi Markov process © and the m X m matrix of real numbers satisfying the linear matrix partial differential
equation with terminal condition:

a0 9D
T gy TAGCYT.Ly) =0, with OT.T.yr) =1 (35

where:

AT, t,y,) = N (v,) — diag(f(t, ),
f([’y) = (f(tvyl’ E]), f([vyta 62)’ cees f(t7yl7 em))‘

We assume that the following conditions are satisfied:

E[e— J(-)T f(H>Yu*,®u*)dll|Ht Vi ]LT] < oo, Vt e [O, T] (56)
T
f A(s)ds < oo (57)
0
We define a real valued function F and a vector valued function F as follows:
F(T,1,y,0,) = E(e” ftT .f(u,y‘r,@uf)du|Ht v Lg), (58)
F(T’ f’)’z) = (F(T7 t,)’z’ el)’ F(Ta t’ Vis eZ)’ L) F(Ty t’)’z’ em))9 . (59)

Let K be a m x m real matrix function. M is said to satisfy the bracket condition if Vt,1; € R*,[K(t1), K(t2)] = O, where
[, ] denotes Lie matrix bracket.

1. The vector valued function F and the real valued function F can be respectively expressed as follows:

F(T’ t’yt) = (D(T’ t’yt)l’ (60)
F(T’ t7yl’ ®I) = <(D(T7 t’yt)1,®l> = <(D(T’ t7yl)®t’1>’ (61)

2. If A satisfies the bracket condition, a closed form expression for the fundamental matrix of (55) could be expressed
as follows:

T—t+y
O(T. 1,y,) = exp| f AW =y +tv)dv], (62)
y

Proof. We define the following product of processes,

P, = ¢ b/ O p(T ¢y 0)) (63)
= ¢ b Fy- O, )du E[e— I fay, -0, )du

M, v ]LT] (64)

— E[ e Iy @y, -0, )du

H, Vv L. (65)
In addition to being integrable as per assumption (56), the process ((P)ejo.r;) satisfies the following properties:

E[P,|H, v L] = E[E[e_fon(u,y,r,@,,—)du H, v L ][H, v L]

= e e 0oy v L]
=P, Vs <twiths, teR.

Hence, P, has the martingale property with respect to the filtration (H; V Ly )ef0,r1. Writing It6 differential formula for P,
from Applebaum (2009) yields:

d|em b I OB, 1y, 0)| = (. yr O b S ONUE(T, 1y, ©,)dr
+ e h Fwse OB (T 1y, @)t

— (. OF, y e~ b TWOR(T ¢y ©)d1

= £y, Op )e b WO (T 4\ @) dr + e h TUONGE(T 1y, ©,)
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Applying a particular case of It6 rule for semi Markov regime switching processes developed in Assonken and G. Ladde
(2015) yields:

oF v
dF(T.1.31.6) = Zrdt + Zodi + (F(T,s,y,),d0,)

Hence,
d[e’ I8 f® ) gy @[)] = —f(t", 00,y e N f@® R (T ¢y @,)dt
‘ oF oF
fw,0,-)du
+eh [_at dt + % dt +(F(T.1.y,).d®,)]| (66)

= —f(t, O,y e b ONUET 1y, ©)dr
: OF OF
— | f(u,0,-)du T
+e b [_(9t 5y +(F(T. 1,5, ), Ay-)" O, )|t

+e f(; fu,0,- )d“<F(T, t, ), er)> (©7)

=-e 'Ef(ll’(alr)du(diag(f(t_’ yt’))F(T9 t’ )’t)’ ®l’ >dt
o saul, OF OF
4o b fwo, RE’ O )di + (GO )dr + (AOOF(T,1,y,), 0, )|dt

+ e hIWON(B(T 1, y,), dM,)). (68)

As efol f@y=8,-)du pp (T,t,y;,0,) is a martingale process, the bounded variation term of It6 formula in (66) is identically
zero. It reads:

oF OF _ . . ,

T gy TACYOFTLy) =0, with Aty,) = ~diag(f(t,y)) + A (30). (69)

Assuming matrix A has continuous components with respect to both ¢ and y there exists @ a fundamental solution of (69),
ie @ satisfies the matrix ODE

oD
ot
Hence, the solution of the ODE (69) with terminal condition F(T, T, yr) = 1 is:

+ (Z—(}I]) + A(t_ayt’)q)(T, t, yt) = O, with A([,yt) = —dlag(f([,yt)) + A/(yt)- (70)

F(T’ tsyt) = (D(T, t»)’z)l»

where @ is solution of the matrix partial differential equation (70), with terminal condition ®(7, T, y7) = I. This therefore
proves (60). We establish (61) as follows:
F(T, 1,1, 0,) = E(ek 109 0|, v Ly
= (F(T,t,y:),0,), From (59)
=(O(T,1,y)1,0,) Since the ¢;, j = 1, ..., m form an orthonormal basis
={(D(T,1,y,)0,,1).

The proof of part (2) proceeds from the result in part (1). Indeed, assuming the bracket condition is satisfied one can
derive a closed form expression for the solution of (69). We first use the method of characteristic to solve the system of
PDEs (69). We consider the variable transforms:

n=t—vyandl =t+y. (71)

Based on (71), we define the transforms Fand A from F and A, respectively, as functions of (1, {):

F(T,n,¢) = F(T, 3¢, 2L
{ o e ) @)
A, = A, 5.
Simple algebra shows that the system of PDEs (69) becomes :
OF(T,n,?) 1. .
T = 3A0oFTa0 73)
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Assuming continuity of the components of the matrix A, the ODE (73) has general solution

N 1 (% .
F(T.n.0) = exp| - 5 f A, s)ds (). (74)
0
where c is a vector function of 77 only. Assuming the terminal condition F(7, T, y) = 1, the function ¢ becomes
1 T+y "
eT ~y) = exp|3 f AT -y, 5)ds),
0
which leads to ,
1A
c(n) = exp [E f A(n, s)ds].
0

Hence, the solution of the system of PDEs (69) becomes

t—y+s y—t+s
2 72

1 2T —t+y
F(T,t,y) = exp [5 f A(T, )ds|.1
t+y

T—t+y
= exp [f AV —-y+t, v)dv].l,
¥

Y= Hence, one can verify that the fundamental matrix of the matrix system is:

where v =

T—t+
O(T. 1,y,) = exp| f ’ AW =y +1v)dv]. (75)
§

]

We note that the semi Markov process 6, paired with its corresponding backward recurrence time y, form a Markov
process. This important fact allows to claim that the preceding conditional characteristic function is a function of only the
current values of the variables. Next Lemma review the characteristic function formula of the log price in the context of
Heston model with no market regime.

Lemma 3.3. If a log asset price (x;)w0,r] and its volatility process (0)ci0.1] follow the dynamic of the model in (52) and
(53), with one single market regime (that is no regime change), the characteristic function of the log price is expressed as
follows:

E(eiwxu IF;) — eA/JrBt(T,wa,, Yu>t (76)
A =irw(u—1)+ af Bbds a7n
t
_a—ippw+n, 1 -
Bt - v2 ( 1-— ’)’EU(”_’)) (78)
where,
n= \/(a —ipvw + )% + v2w(w + i) (79
a—ipuw +
. it (80)
a—ipuw +17

where, i = V—1.
Proof. The Markov property of the pair (®;, y;) implies that the quadruplet (®;, y;, x;, o) is Markovian as well. Therefore,
we can use the notation:

h(u, 0;,y:, 04, Xp) = E(eibx“|F,), for a fixed u > t.

We derive the system of partial differential equations satisfied by & when the market has one single state 6, = j, V¢ € [0, T'].
From 9 It6 Lemma applied to % yields:

oh(t, j, U't,xz)dt + on(t, j, oy, Xt)dxt + Oh(t, j, o4, x¢)

dh(t’ j7 O-I’ -xt) = (91‘ (9)(,' ao_ do—t
1 8%h(t, j, oy, x;) 1 82h(t, j, oy, X;) 1 82h(t, j, oy, X;)
E#dx,dx, + E#dmdm + 5#(1&(1@,
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From (52), we have:

. oh(t, j, o4, x . 1 — Oh(t, j, o4, X,
dh(t, j, i %) = %d; + (112, ) = 5 o p)%d;
6/’1(t, ja O-f’ -xl) 1 azh(t’ j’ O-l’ -xf)
—— dt+ —oy———————=dt
oo 20T o
O*h(t, Jy Oty Xt) 1 O%h(t, Jr Oty Xp)
——— dt+ —v(t, j t, j)—————=dt
502 + 2U( )] Sodx

—oh(t, jo;, x;) . —oh(t, j, o, x;)
+ Vo, J)#dw} +u(t, j) o (t, j)#dw,l. (81)

+a(t, b, ) = o(t, j)

1 N
+ §v2<r, Do, j)

As h is defined through the means of conditional expectations, it is easy to prove that h is therefore a martingale process
with respect to (P, (IF;)e0,77)- Therefore, the bounded variation terms of the right hand side of equation (81) reduce to 0.

oh(t, j, o o1 ~ Oh(t, j, o,
LI | (1, ) - 5 Nl e

ot 0x
on(t, j, o, 1 &, j, o,
+att, )b, ) - orte, jyy 2L T30 L O] T X0
oo 2 ox

1 2 - - 62h(t’ j» 0-17 xt) 1 . o a2h(t’ j’ O—I" -xt)

—v(t, )o(t, )———"" + —pu(t, o(t, )—
+ 5 (t, Po(t, ) 502 + 2pv( Do, j) oo
=0 (82)
with boundary condition :
h(u, j, Yo, T, Xo) = ™. (83)

From Elliott et al. (2015), we assume that the the characteristic function is of the form:

h(f ]) — e(A,+B,(r,+iwx,).

We apply substitution in (82) and from Elliott et al. (2015); Heston (1993) the following system of ODE is obtained:
irw +a(t, )b(t, ))B, + A, =0 (84)
— 5w? + iwpuB, + .5U°B? — 5w —aB, + B, =0 (85)
Solutions of such a coupled system are found in Heston (1993) and Elliott et al. (2015).

a—ipvw+n, 1 — M

otz oen -

Ar=irwlu—1t)+a fu Bbds 87
where, t

n= \/(a —ipvw +n)? + v2w(w + i) and y = % (88)

O
We systematically extend the main result derived in Elliott et al. (2015) by considering semi Markov regimes. We find a
similar but more general formula for vanilla call prices.

Lemma 3.4. Let M(t,y;,u),u > t, ©,, K and A be an mxX m real valued matrix function, a semi Markov process, the strike
price of an option contract and the conditional intensity matrix of ®;. We assume that M is solution of the matrix PDE:

66%/1 + 66—1:1 + A(t,y)M(t,y,u) =0, with M(u,y,,u) = 1. (89)

1. The Vanilla European Heston call price from Carr and Madan algorithm is given by the semi analytic formula

e U@ (1 +a)
— ipk
€O 0.0 ) = e [ e HEC LD ) ©0)
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with k = log(K) and « the Carr and Madan parameter. s is the characteristic function of the log asset price x,
given by the following expression:

W(u, ©q, Yo, Xo, o, w) = E(e?|Fg) = & Bo70+ 0 (d(u, 0, )0, 1), 91)
where @ satisfies the equation (89) with A(t,y) = —diag(f(0,yo)) + AT (yo) and with f(t,y,) = aB;b(t,y,).

2. A semi closed expression for vanilla option prices with Heston model in a market with semi Markov regimes is as
follows:

. 1 1 o eiwru+iwx0+Boo'o<(I)(u’ O’ y0)®0’ 1>
C(u, ®g, yo, X9, Vo) =€ (5 + - f R@[ ” ]dw)
0

1 1 00 —iwlog(K)+irwu+ibxo+Booo+iwxg (i) , 0’ ® , 1
+Kefm(_+_ Re[e . (D(u,0,y0)O >]dw),
2 T Jo

92)
mw

where ® (respectively, ®) are solutions of the system of matrix partial differential equations (89) when A(t,y,) =
~diag(f(t,y,)) + AT(y,) with f(t,y,) = aBb(t,y,) (respectively, f(t,y,) = aBb(t,y,)) with A,,B,,n, and vy, defined as
in Lemma 3.3 for any t > 0.

B - a—pv—ipuw+i, 1 — el
r= 02 (1 — yelu=n 7’

where,

a—pv—ipvw+10

n= \/(a—pv—ipvw+f7)2+v2w(w+i)and)7= d -
a—pv—ipvb—1

A =irw(u—1) + af Bbyds.

t

Proof. We note that (90) is a well known formula derived in Carr and Madan (1999). The critical issue is to prove (91).
The first part of the lemma boils down to deriving an expression for the characteristic function of the log asset price of
Heston model in a regime switching market.

E[eiwx‘ IFo] = E[E[eiwxulHT Vv ]LO]|F0]
= eiwru+iwxu+300'0E[€a fo“ Bib(s.05 35 )dSuFO]

= ebruribxotBoco (p(y, 0, y0)@y, 1), From Lemma 3.2, with @ satisfying (89)

where, f(t,y,) = aB,b(t,y;). This proves the first part of the lemma.
In order to complete the proof of the second part of the lemma, we recall the risk neutral pricing formula for a vanilla call
option with initial cost C, strike price K and in the context of a regime switching Heston driven market:

C(u, @9, Y0, X0, v0) = E[e™(e" — K)* [y
= e E[e" 15100 IFo | - KeE|x, 2 log (K)[F |
= ¢ E[e" Ly 210z k[Fo| ~ Ke™"P(x, > log K|Fy)

The second term of the last equation has been expressed as a conditional survival probability. We will express the first
term in similar fashion. We first define P for any A € F,, as follows:

_ 1
P(A) = TOE[e_mM"lAWO]
e
1 -5 [V ogds+ [ \Jo,dB
= —E[e b 7Tl V95455 4| Fy], from (52).

exo

It is easy to prove via It6 formula that the process

Lz — e—.S fou 0';d5+fou \/OTXdBX’ (93)
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which satisfies the differential form of It6 lemma
dL, = L, f \odB;, 94)
0

is a martingale process Jacod and Shiryaev (1987) and consequently is an appropriate density process. Hence, from
Girsanov theorem Applebaum (2009), P is a probability measure absolutely continuous with respect to the conditional
probability measure P(|Fy). The pricing formula can therefore be rewritten:

C(u, ®g, yo, X0, v0) = € "P(1 5100 x) — Ke "P(x, > log K|F) 95)

We first derive an expression for the second survival probability of (95). Under the probability measure P, the model
follows the dynamic in (52). Hence,

E[eibxu|HT vV LO] — eAU+BUO'0+ihx0

where,
_a—ipvb+n, 1 -l
B’ - U2 ( 1 - yen(u—t))
where,
— ipub +
n= \/(a —ipub + )2 +v*b(b +i)and y = w
a—ipvb—n

A, =irb(u—1) + af Bbds,
t

therefore from Lemma 3.3, the characteristic function has the form,

E[eiwx“|HT v ]LO] — eimeriwaJrBO(ro+a flu Bib(s,0; ,y-)ds

The only regime switching term involved is b. Hence,

E[emx'WO] _ E[E[eiwx"|HT Vv LO]HFO]

. . u _
— etwru+zwx“+Bo(roE[eaf0 Bb(s,0,y~ )ds”FO]

The characteristic function problem now boils down to deriving an expression for F(u, 8y, vo) = E[e* ky Bbsoy SR
From Lemma (3.2) we have:
F(u,0;,y,) = {®(u,t,y,)0,,1), with ® solution of the PDE:

oo 0D
E + a_y + A(t’}’r)(b(u, t,)’z) = 0’ with (D(u’ M’}’u) = I7vu >t>0

where:
A(t,y:) = AT () — aB.diag(b(t, y,)).
Therefore the characteristic function and the survival probability sought are:
E[ s |Hy v ]Lo] = plbrutibxo+Boc E[ g IN Bxb(s,é);,yx-)ds|FO]

— eihrl¢+ibe+Botro<(D(u’ 0’ yO)GO’ 1>

1 1 00 ibru+ibxo+Booo O(u, 0, ® , 1
P(x, > log K|Fy) = 3+ _f R[e ( (1, 0,y0)0 >]dw.
T Jo iw

We turn our attention to deriving a semi closed exPression for the first term of (95). We note that from Girsanov theorem
Jacod and Shiryaev (1987), under the probability IP, the standard Brownian motion in (52) become

dB[ = dBt - \/Ftdt.
The new dynamic of the Heston model under the probability measure PP is as follows:

dx, = (r + .50)dt + \Jo,dB,
do; = (a;b; — (a; — pv)o;) + vy Ao, dW,.
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In a derivation similar to that of the first characteristic function and default probability, we obtain:
E[eibx“ |F0] — e—iwlog(k)+invu+ihxo+BU(rg+iwx0<(i)(u’ 0, y0)®0, 1>
1 00 e—iwlog(k)+irwu+ihxo+Bou0+iwx0 ) u,0, o, 1
f R (@(u, 0,0)O0 >]
0

T

dw

_ 1

P(x, = log K|Fy) = 3 + -
w

oD 9D - ;

-+ —+ A(t’yt)q)(u5 I,Yr) = O’ Wlth CD(M’ M’yu) = I

o Oy

where:
A(t,y)) = N () — aBidiag(b(1,y,)),
- a—-pu—ipvw+1, 1 =D
B = A ()
1 - yel

2

where,

a—pv—ipuvw+1

ﬁ:\/(a—,ov—ipvw+f7)2+U2W(W+i)and7= - =
a—pv—ipvb -1

A =irw(u—1)+ af Bbds.
t
Hence, (95) yields the result to be proved. O

4. Conclusion

This paper aimed at calibrating the historical and the risk neutral parameters of two nonlinear coupled systems of semi
Markov regime switching stochastic differential equations, respectively representing a basket of commodity prices and
the risk neutral dynamic of a stock price. In the former case, we obtained closed form parameter estimates and in the latter
case we obtained a couple of semi closed form formulas for European call option prices, hence proving the tractability of
both models when the market follows a semi Markov dynamic.
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