
International Journal of Statistics and Probability; Vol. 6, No. 6; November 2017
ISSN 1927-7032 E-ISSN 1927-7040

Published by Canadian Center of Science and Education

Unit Roots in Time Series with Changepoints
Ed Herranz1, James Gentle2 & George Wang3

1 Treasury Risk, International Finance Corporation, Washington, DC, USA
2 Department of Computational and Data Sciences, George Mason University, Fairfax, Virginia, USA
3 School of Management, George Mason University, Fairfax, Virginia, USA

Correspondence: Ed Herranz, 2512 N. McKinley St, Arlington, VA, 22207, USA. E-mail: ed.herranz@gmail.com

Received: September 18, 2017 Accepted: October 9, 2017 Online Published: October 13, 2017

doi:10.5539/ijsp.v6n6p127 URL: https://doi.org/10.5539/ijsp.v6n6p127

Abstract

Many financial time series are nonstationary and are modeled as ARIMA processes; they are integrated processes (I(n))
which can be made stationary (I(0)) via differencing n times. I(1) processes have a unit root in the autoregressive polyno-
mial. Using OLS with unit root processes often leads to spurious results; a cointegration analysis should be used instead.
Unit root tests (URT) decrease spurious cointegration. The Augmented Dickey Fuller (ADF) URT fails to reject a false
null hypothesis of a unit root under the presence of structural changes in intercept and/or linear trend. The Zivot and
Andrews (ZA) (1992) URT was designed for unknown breaks, but not under the null hypothesis. Lee and Strazicich
(2003) argued the ZA URT was biased towards stationarity with breaks and proposed a new URT with breaks in the null.
When an ARMA(p,q) process with trend and/or drift that is to be tested for unit roots and has changepoints in trend and/or
intercept two approaches that can be taken: One approach is to use a unit root test that is robust to changepoints. In this
paper we consider two of these URT’s, the Lee-Strazicich URT and the Hybrid Bai-Perron ZA URT(Herranz, 2016.) The
other approach we consider is to remove the deterministic components with changepoints using the Bai-Perron breakpoint
detection method (1998, 2003), and then use a standard unit root test such as ADF in each segment. This approach does
not assume that the entire time series being tested is all I(1) or I(0), as is the case with standard unit root tests. Perfor-
mances of the tests were compared under various scenarios involving changepoints via simulation studies. Another type
of model for breaks, the Self-Exciting-Threshold-Autoregressive (SETAR) model is also discussed.
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1. Introduction

1.1 Time Series and ARIMA Models

A time series (TS) is an ordered sequence of values of a variable at equally spaced time intervals,

{xt} = {x1, x2, ..., xn}. (1)

An auto-regressive integrated moving average (ARIMA(p,d,q)) model is a model of a time series xt where we first differ-
ence the series d-times, resulting in ∆d(xt) , and then we build an ARMA(p,q) model from the differenced series. Here
the “I” stands for integrated. An ARMA(p,q) model is defined in terms of its lagged values xt and its current and past
innovations ϵt as :

xt =

p∑
i=1

ϕixt−i +

q∑
i=1

θiϵt−i + ϵt. (2)

1.2 Stationary and Nonstationary Time Series

A weakly stationary time series is defined as having a constant mean, and an autocovariance function γ(s, t) that depends
on s and t only through their difference |s − t|.
A strictly stationary time series is one where the joint probability distribution does not change with time. A stationary
time series is labeled I(0) if it is integrated order 0. A time series integrated order p, I(p), needs to be differenced p times
to become stationary.

1.3 Unit Roots

The characteristic polynomial of the AR(p) part of Model (2) is defined as:

ϕ(z) = 1 − ϕ1z − ... − ϕpzp. (3)
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A unit root process is an ARMA(p,q) process (or AR(p) process) with 1 as a root of the characteristic polynomial equation.
Time series with unit roots are non-stationary processes. In the case of an AR(1) process if |ϕ1| = 1 there will be a unit
root.

A unit root process is an I(1) process; an example is a Gaussian random walk:

xt = xt−1 + ϵt; xt =

t∑
i=1

ϵi; x0 = 0; ∆(xt) = ϵt ; ϵt ∼ N(0, 1). (4)

As detailed in (Chan, Ngai Hang, 2010) if an AR(p) process has all of its characteristic polynomial roots with an absolute
value greater than one, then such a process is defined to be causal, and will also be stationary.

Many financial time series, such as asset prices are modeled as unit root processes. As was originally proposed in the
seminal work by (Fama, 1965), the logarithm of stock prices is often modeled as a random walk: log(S t) = log(S t−1) + ϵt
which is equivalent to modeling log returns as a stationary process: log

(
S t

S t−1

)
= ϵt.

We define a cointegrating relationship between two or more time series each having unit roots (I(1)) if a linear combination
exists that is stationary, i.e. I(0).

Prior to testing for cointegration of two or more series each one must be pretested to ensure they are all I(1) or this can
lead to spurious cointegration.

2. Statistical Tests for Unit Roots Without Changepoints

See (Herranz, E., 2017) for an up to date literature review of unit root tests.

2.1 Unit Root Test Null and Alternative Hypotheses

Unit root tests of a time series address the null hypothesis that the series is unit root nonstationary( I(1) ). The alternative
hypothesis is that the time series is weakly stationary ( I(0) ). Consider the following AR(1) model with deterministic
components of an intercept and a linear trend:

xt = ϕ1xt−1 + ϵt; yt = β0 + β1t + xt. (5)

In the AR(1) case the null hypothesis consists of ϕ1 = 1, and the alternative hypothesis that we will consider in this paper
is ϕ1 , 1. Most unit root tests in the literature consider the alternative hypothesis to be |ϕ1| < 1.

2.2 Augmented Dickey Fuller Unit Root Test

(Said, S. E. and Dickey, D. A., 1984) extended the Dickey Fuller unit root test for ARMA models and not just AR(p)
models; this is known as the Augmented Dickey Fuller(ADF) unit root test and is one of the most commonly used in the
literature (Choi, In, 2010, p. 33). The ADF test regression is fitted using OLS:

△yt = α + δt + βyt−1 +

n∑
i=1

γi △ yt−i + ϵt, (6)

where △ is the difference operator and ϵt represent 0-mean white-noise innovations. Under the null hypothesis yt is
considered to be I(1) which is equivalent to △yt being I(0) in which case β would be zero. The test statistic is the standard
regression t-statistic tβ =

β̂

s.e.(β̂)
, where β̂ is the standard coefficient estimate as derived using ordinary least squares and T

is the time series length:

β̂ =

∑T
t=1 ytyt−1∑T

t=1 y2
t−1

. (7)

The asymptotic quantiles of this test statistic are a functional of Brownian motions as detailed in Equation (8):

tβ=1 ⇒
D

∫ 1
0 WtdWt(∫ 1

0 (Wt)2 dr
)0.5 . (8)

This expression does not have a closed form solution, but it can be used to derive critical values via Monte Carlo simula-
tion.

A normalized bias test statistic (δ̂) can be used as well:

δ̂ = T (β̂ − 1). (9)
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The asymptotic quantiles of the normalized bias test statistic are also functionals of Brownian motions:

δ̂β=1 ⇒
D

∫ 1
0 WtdWt∫ 1

0 (Wt)2 dr
. (10)

.

3. Removing Structural Changes in Intercept and Trend

3.1 Estimating Changepoints

The (Bai, J. and Perron, P., 1998) procedure for estimating structural breaks/change points in a linear model is implement-
ed in the breakpoints() function of the strucchange R package (Zeileis,Achim and Leisch,Friedrich and Hornik,Kurt and
Kleiber,Christian , 2002, p. 12).

This methodology assumes an underlying linear model with a dependent one dimensional variable yt, a p × 1 covariates
vector xt with corresponding coefficient vector β, and the innovations ϵt:

yt = xtβ + ϵt . (11)

If there are m change points in the coefficient this implies m + 1 regimes. Equation (11) can be rewritten as:

yt = xtβ j + ϵt ( j = T j−1 + 1, ..., T j, j = 1, ...,m + 1). (12)

The underlying idea is solving the problem by dividing it into independent optimally solvable sub-problems, whose
solutions can be combined to solve the larger problem. In this case a triangular residual sum of squares (RSS) matrix
is computed and stored in memory which can be reused over and over again to derive the residual sum of squares for a
segment starting at observation t and ending at t′ with t < t′

This approach is considerably faster than the brute force approach of computing the RSS for all possible sub-segments.
The (Bai, J. and Perron, P., 1998) algorithm uses only O(T 2) least squares operations for a number m of change points.
The brute force approach would require O(T m) least squares operations.

3.2 Hybrid Bai-Perron ADF I(0)/I(1) Segment Procedure

(Herranz, Edward, 2016) proposed using the (Bai, J. and Perron, P., 1998) methodology of estimating structural break
date/s based on finding the model specification that minimizes the RSS via a dynamic programming approach, and then
to use the ADF URT to test each section to determine if it is likely I(0) or I(1). The following Regression Model (13) with
the (Bai, J. and Perron, P., 1998) procedure which will be used to estimate structural breaks in the coefficients µ, µt, ϕ1:

xt = µ + µtt + ϕ1xt−1 + ϵt. (13)

Figure 1 shows in red vertical bars the estimated break-points using this procedure with Model (13) on historical GE
prices between 1-September-2016 and 1-September-2017. When the ADF URT was run on each of the five segments, the
null hypothesis of a unit root was never rejected.

Table 1 summarizes the results of various simulations run with this methodology, as well as running the ADF test on the
entire time series. Each time series has a length l = 1000, with m = 100 Monte Carlo simulations and a significance level
of α = 0.05 of the ADF tests used in each segment, and for the entire series. The following data generating process (DGP)
was used with a single break time in all coefficients:

yt = ϕ
A
1 yt−1I{t ≤ TB} + ϕB

1 yt−1I{t > TB}. (14)

We can see that this new Hybrid Bai-Perron-ADF testing procedure is sensitive to the location of the structural break.
When compared to using a single unit root test on the entire time series, this approach can be significantly more accurate,
as can be seen in the case with ϕA

1 = 1 and ϕB
1 = 0.9 where we can seem make a greater error if we assume that the entire

series is homogeneous I(1) or I(0).
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Figure 1. Estimated Changepoints in GE Prices.

Table 1. Proportions of Failures to Reject Null I(1) on a AR(1) Series with a Break in ϕ1, intercept and linear trend with
l = 1000,m = 100 and α = 0.05

Break

Propn ϕA
1 ϕB

1 µA µB µA
t µB

t ΓAADF > CVα ΓBADF > CVα ΓAll
ADF > CVα

0.50 0.000 0.000 10 -30 5 -2 0.00 0.00 1.00
0.50 1.000 1.000 10 -30 5 -2 0.95 0.97 1.00
0.50 1.000 0.500 10 -30 5 -2 0.96 0.00 1.00
0.50 0.900 1.000 10 -30 5 -2 0.04 0.97 1.00
0.50 1.000 0.900 10 -30 5 -2 0.95 0.00 1.00
0.50 1.000 0.950 10 -30 5 -2 0.95 0.12 1.00
0.50 1.000 0.980 10 -30 5 -2 0.95 0.65 1.00
0.25 0.000 0.000 10 -30 5 -2 0.00 0.00 0.03
0.25 1.000 1.000 10 -30 5 -2 0.98 0.96 0.02
0.25 1.000 0.500 10 -30 5 -2 0.98 0.00 0.10
0.25 0.900 1.000 10 -30 5 -2 0.53 0.96 0.00
0.25 1.000 0.900 10 -30 5 -2 0.98 0.00 0.00
0.25 1.000 0.950 10 -30 5 -2 0.98 0.01 0.01
0.25 1.000 0.980 10 -30 5 -2 0.98 0.60 0.01
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4. Statistical Tests for Unit Roots in the Presence of Structural Changes

4.1 Unit Root Tests with Changepoints

A typical changepoints linear model for unit root testing, allowing breaks in β0 and β1 under both alternative and null is
as follows:

xt = ϕ1xt−1 + ϵt

yt = µ1 + (µ2 − µ1)1{t > TB} + (t − TB)(β2 − β1)1{t > TB} + β1t + xt.
(15)

A common assumption is that the auto-regressive multiplier ϕ1 is constant. However, what if it exhibits one or more
structural breaks? Then the series tested can have one or more changes from I(0) to I(1) or vice versa. We do not consider
the case where ϕ1 is random.

The ADF URT fails to reject a false null hypothesis of a unit root under the presence of structural changes in intercept
and/or linear trend.

The Zivot and Andrews (ZA) (1992) URT was designed for unknown breaks, but not under the null hypothesis. (Lee, J.
and Strazicich, M. C., 2001) argued the Zivot Andrews URT was biased towards stationarity with breaks and proposed a
new URT with breaks in the null.

The new Hybrid Bai Perron Zivot Andrews unit root test proposed by (Herranz, Edward, 2016) also allows breaks under
the null.

The one break ((Lee, J. and Strazicich, M.C., 2001) procedure and the two break (Lee, J. and Strazicich, M.C., 2003)
procedure allows for the breaks to be determined endogenously from the data and breaks are allowed under both the null
and the alternative hypothesis.

4.2 Zivot Andrews Unit Root Test

(Andrews, Donald and Zivot, Eric, 1992) developed a unit root test (ZA) that could deal with breakpoints in the drift
and/or linear trend components. The test statistic of the ZA test is the Student t ratio. As detailed in (Pfaff, B., 2008, p.
110):

tα̂i [λ̂i
inf] = inf

λ∈Γ
tα̂i (λ) for i = A, B,C. (16)

where Γ is a closed subset of (0, 1) and the A model has breaks in intercept,the B model has breaks in linear trend, and the
C model has breaks in both intercept and trend. Depending on the model, the test statistic is inferred from one of these
three regression models:

yt = µ̂
A + θ̂ADUt(λ̂) + β̂At + α̂Atyt−1 +

k∑
i=1

ĉA
i ∆yt−i + ϵ̂t, (17)

yt = µ̂
B + γ̂BDT ∗t (λ̂) + β̂Bt + α̂Btyt−1 +

k∑
i=1

ĉB
i ∆yt−i + ϵ̂t, (18)

yt = µ̂
C + θ̂C DUt(λ̂) + β̂Ct + α̂Ctyt−1 + γ̂

C DT ∗t (λ̂) +
k∑

i=1

ĉC
i ∆yt−i + ϵ̂t. (19)

where DUt(λ) = 1 if t > Tλ and 0 otherwise, and DT ∗t (λ) = t−λT for t > Tλ and 0 otherwise. The null hypothesis of the
ZA unit root test does not allow structural breaks. Changepoints in the deterministic components are allowed only under
the alternative hypothesis. (Glynn, J. and Perera, N. and Verma, R., 2007) criticize this since if there are breaks under the
null (ϕ1 = 1) we can mistakenly conclude that the series is stationary (with breaks.)

inf
λ∈Λ

tα=1 ⇒
D

∫ 1
0 W i(r, λ)dW(r)(∫ 1
0 (W i(λ, r))2dr

)0.5 . (20)

The asymptotic critical values as T ⇒ ∞ for models i = A, B,C are given by Equation (20) which is a functional of
Brownian motions. The actual critical values used in the ZA test are derived via simulation of this formula. The critical
values for the ZA unit root test for the intercept, trend and intercept and trend (both) models are detailed in Table 2. Notice
the similarity of Equation (20) with the asymptotic critical value formula for the ADF model in Equation (8). The key
difference is that in the ZA unit root test there is a minimization search for the parameter λ, the location in the series
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Table 2. ZA Critical Values

Model 0.01 0.05 0.10
Intercept -5.34 -4.80 -4.58
Trend -4.93 -4.42 -4.11
Both -5.57 -5.08 -4.82

Table 3. Proportions of Failures to Reject Null I(1) of URTs on AR(1) Processes with one Structural Break in
Intercept(10,-10) and Linear Trend (-10,10) with l = 1000, m = 500, and α = 0.05 and s = 12345

ϕ1 ADF ERS-Ptest ERS-DFGLS ZA
1.010 1.00 1.00 0.98 0.92
1.005 0.96 0.97 0.97 0.05
1.000 0.92 0.90 0.90 0.00
0.990 0.92 0.90 0.90 0.00
0.980 0.91 0.90 0.90 0.00
0.970 0.91 0.90 0.90 0.00
0.960 0.91 0.90 0.90 0.00
0.950 0.91 0.90 0.90 0.00
0.900 0.91 0.90 0.90 0.00
0.000 0.91 0.90 0.90 0.00

where a break can occur such that it results in the minimum possible t-statistic; the ZA regressions allow breaks in the
deterministic components and the ADF regression does not.

4.3 Lee-Strazicich Unit Root Test

The one-break (Lee and Strazicich, 2004) procedure and the two-break (Lee, J. and Strazicich, M.C., 2003) unit root tests
allow for structural breaks to be determined endogenously from the data and breaks are allowed under both the null and
the alternative hypothesis. Consider the single break model:

yt = δZt + Xt, Xt = βXt−1 + ϵt. (21)

where Zt contains exogenous variables. The null hypothesis is specified by β = 1.

“Model A” is the crash model that allows for a single change intercept where Zt = [1, t,Dt]′ where Dt = 1 for t ≥ TB + 1,
and zero otherwise. TB is the time of the structural break and δ = (δ1, δ2, δ3)

“Model C” allows for a shift in intercept and change in trend slope under the alternative hypothesis where Zt = [1, t,Dt,DTt]′

where DTt = t − TB for t ≥ TB + 1, and zero otherwise. TB is the time of the structural break and δ = (δ1, δ2, δ3).

The unit root test statistics are derived from the regression:

∆yt = δ
′∆Zt + ϕ ˜S t−1 + ut, (22)

S̃ t = yt − Ψx − Ztδ̃ , t=2,...,T. (23)

where δ̃ are the coefficients estimated in the regression of ∆yt on ∆Zt and Ψ̃x is the restricted MLE of Ψx = Ψ + X0 given
by y1 − Z1δ̃. The unit root null hypothesis consists of ϕ = 0 and the LM(Lagrange multiplier) t-test statistic τ̃ = t-statistic
testing the null hypothesis ϕ = 0. As in the case with the ADF test, a correction for auto-correlated innovations is made
by adding lagged terms ∆S̃ t− j where j = 1, ..., k. The location of the break TB is determined by searching across all
breakpoints and picking the one with the most negative τ̃.

inf τ̃(λ̃) = inf
λ
τ̃(λ) where λ = TB/T. (24)

If the DGP is that in (21), the ϵt satisfy certain regularity conditions, and TB/T → λ as T → ∞, then under the null
hypothesis of β = 1

inf τ̃(λ̃) = inf
λ

(
−1

2

∫ 1

0
V(r)2dr

)−1/2

, (25)
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where V(r) represents a demeaned Brownian bridge.

4.4 Hybrid Bai-Perron Zivot-Andrews Unit Root Test

(Herranz, Edward, 2016) proposed a new URT that allows structural breaks under the null hypothesis, which we refer to
here as the Hybrid Bai-Perron-Zivot-Andrews (HBPZA) unit root test. The test is conducted as follows:

1. Given TS, we first use the Bai-Perron break-point estimation procedure in (Bai, J. and Perron, P., 2003) using
Regression Model xt = β0 + β1t + β2xt−1 + ϵt, to detect changes in the coefficients. This divides the TS into k + 1
segments given a total of k breakpoints.

2. For each segment within the TS we compute the ZA URT statistic (zi).

3. A final test statistic is computed by weighing each sub-test statistic by the segment length (
∑k+1

i wizi).

4. If there are more than 3 breakpoints estimated, only the first three breakpoints are used to determine 4 segments.

Table 4. Simulated Quantiles of Zivot Andrews(ZA) and Hybrid Bai-Perron-Zivot-Andrews(HBPZA) Unit Root Test
Statistics with l = 1000 and m = 5000

URT Model Breaks ϕ1 0.01 0.05 0.01
ZA Trend 0 1.00 -5.00 -4.44 -4.17
ZA Trend 0 0.95 -6.99 -6.52 -6.30
ZA Both 0 1.00 -5.61 -5.10 -4.86
ZA Both 0 0.95 -7.43 -7.03 -6.81
HBPZA Trend 0 1.00 -4.95 -4.45 -4.21
HBPZA Trend 0 0.95 -6.98 -6.52 -6.30
HBPZA Trend 1 1.00 -5.80 -4.49 -4.21
HBPZA Trend 1 0.95 -6.85 -5.95 -5.60
HBPZA Trend 2 1.00 -5.87 -4.55 -4.24
HBPZA Trend 2 0.95 -6.48 -5.63 -5.30

Table 4 shows the estimated 0.01,0.05 and 0.10 quantiles of the ZA and HBPZA test statistics for various combinations
with simulations using m = 5000 replications with time series of length l = 1000 with the DGP in Equation (26) for 1
break, and another similar equation expanded to support two structural breaks. The quantiles in the unit root cases where
ϕ1 = 1 can be used to derive the critical values.

Table 5 displays the percentage differences of the simulated critical values for ZA and HBPZA tests relative to the pub-
lished ZA critical values. We can see that the ZA critical values derived from simulation are never more than 2% different
from the published ZA critical values. The same is true when the HBPZA technique is used when there are no breaks;
this shows empirically that the Bai-Perron breakpoint estimation procedure does not introduce any significant distortions
when there are no breaks. We can also see that under 1 break and two breaks, the 0.05 and 0.10 critical values of the
HBPZA test do not differ by more than 3% with respect to the corresponding ZA critical values. We see that there is more
significant differences in the 0.01 critical values for HBPZA for 1 and 2 breakpoints relative to ZA where they are 18%
and 19% respectively.

Table 5. Simulated Critical Values Percentage Difference Relative to ZA Critical Values With Trend Model

URT Breaks For 0.01 For 0.05 For 0.10
ZA 0 1 1 2
HBPZA 0 0 1 2
HBPZA 1 18 2 3
HBPZA 2 19 3 3

The Lee-Strazicich allowing both breaks in trend and intercept and the Hybrid Bai-Perron-Zivot-Andrews unit root tests
allowing breaks in trend were compared in simulations using the following DGP:

yt = xt + α1 + (α2 − α1)I{t > tu} + β1t + (β2 − β1)(t − tu)I{t > tu}
xt = ϕ1xt−1 + ϵt ; ϵt ∼ N(0, 1) ; cor(ϵt, ϵt−1) = 0

tu ∼ U(3, l − 2) ; t = 1, ..., l
(26)
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The Lee-Strazicich test does not allow only breaks in trend; a more consistent comparison would have been to derive the
Hybrid Bai-Perron-Zivot-Andrews unit root test using the “both” test statistic (allowing breaks in intercept and trend.) We
note this as work to be done.

Table 6. Proportions of Failures to Reject the Unit Root H0 on AR(1) with 1 break in intercept and trend with l = 100,
m = 1000, and α = 5%, βA

0 = 50, βB
0 = 1000, βA

1 = 1, βB
1 = 3 and break=0.5; Lee-Strazicich implementation by (Gouvea

and Teixeira, 2012)

Hybrid Bai-Perron- Lee- Breakpoint
ϕ1 Zivot-Andrews Strazicich Proportion

1.0100 0.97 0.99 0.25
1.0000 0.97 0.99 0.25
0.9700 0.96 0.99 0.25
0.9500 0.96 0.98 0.25
0.9000 0.96 0.97 0.25
0.7000 0.87 0.65 0.25
0.5000 0.53 0.20 0.25
0.4000 0.28 0.18 0.25
0.2500 0.05 0.21 0.25
0.1000 0.00 0.25 0.25
0.0000 0.00 0.27 0.25
1.0100 0.96 0.99 0.50
1.0000 0.96 0.99 0.50
0.9700 0.96 0.99 0.50
0.9500 0.96 0.99 0.50
0.9000 0.96 0.97 0.50
0.7000 0.83 0.62 0.50
0.5000 0.37 0.22 0.50
0.4000 0.18 0.18 0.50
0.2500 0.04 0.22 0.50
0.1000 0.01 0.26 0.50
0.0000 0.00 0.29 0.50

Simulations were preformed with AR(1) time series with one structural break using Model (26) with α1 = 50, α2 =

1000, β1 = 1, β2 = 3 under various levels of ϕ1. The break times were 25% and 50% of the time series length. Two sets of
tests were performed, one for each break ratio, with a time series of length 100 and are summarized in Table 6. We can
see that the Lee-Strazicich URT has significantly less statistical power than the HBPZA URT when ϕ1 < 0.4.

5. Self Exciting Threshold Autoregressive Models

(Balke, Nathan S. and Fomby, Thomas B., 1997) proposed a general equilibrium model of zt based on a self exciting
threshold auto regressive framework (SETAR) such as the following with a low, middle and high regimes:

zt =


µh + ϕhzt−1 + ϵt, if zt−1 > θH

µm + ϕmzt−1 + ϵt, if θL ≤ zt−1 ≤ θH
µl + ϕlzt−1 + ϵt, if zt−1 < θL

(27)

As (Stigler, 2010) points out the commonly assumed case where Equation (27) is stable is when ϕh < 1 and ϕl < 1. The
middle regime can be nonstationary ϕm > 1, but with sufficient time it is likely the low and high regimes will force the
process to become stationary again.

The SETAR model exhibits structural breaks as transitions occur between the regimes. (Seo, B., 2006) developed a test
for the linear no cointegration null hypothesis against threshold cointegration in a threshold vector error correction model
with a sup-Wald type test and derived its null asymptotic distribution.

6. Conclusion

Unit roots are nonstationary ARMA(p,q) processes which have one of more roots of 1 of the auto-regressive polynomial.
If deterministic parameters such as the intercept or linear breaks have structural breaks standard unit root tests such as
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ADF will rarely reject the null of a unit root even when ϕ1 < 1. Unit root tests that allow breaks under the null hypothesis
such as the Lee-Strazicich unit root test should be used in that case. The Hybrid Bai Perron Zivot Andrews unit root test
is another such test which can have higher statistical power than the Lee-Strazicich test under certain conditions. These
unit root tests such as the Lee-Strazicich test are robust to structural breaks in the deterministic terms.

Another approach when testing for unit roots under structural breaks is to estimate the breakpoints and use traditional unit
root tests in each segment. One such approach is the Hybrid Bai-Perron ADF methodology. One strength of this approach
is it can also potentially detect changepoints in the auto-regressive coefficient (such as ϕ1 in the AR(1) case) which most
unit root tests cannot support.

One more form of auto-regressive models with changepoints that should be considered are SETAR models where the
previous level of the response variable determines the regime, and each regime can have different coefficients.
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