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Abstract

It is well known that the logistic model plays an important role for the analysis of binary outcomes. Most of the existing
methods for the assessment of logistic models are constructed based on the distance between the observed and the predict-
ed outcomes. We consider a new method from a different perspective by assessing the distance between two consistent
estimators developed under the same logistic model form. The proposed tests are easy to implement and are applicable to
both prospective and case-control studies.
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1. Introduction

The logistic regression model has become one of the most widely used statistical tools in the analysis of binary outcome
data arising from either prospective studies or case-control studies (e.g., Prentice & Pyke, 1979; Breslow & Day, 1980;
Hosmer, Lemeshow, & Sturdivant, 2013). Let X be a p × 1 vector of covariates and Y be a binary outcome taking value 1
or 0, where p is a positive integer representing the dimension of the covariates. The logistic model specifies the following
relationship between Y and X:

log
{

P(Y = 1|X)
P(Y = 0|X)

}
= β0 + β

T X, (1)

where β0 is a scalar parameter and β is a p × 1 vector of parameters. The interpretation of β is the vector of log odds
ratios of outcome Y associated with one unit increase in the vector of covariates X. The parameter β0 can be estimated for
prospective studies, but is not estimable in case-control studies (Prentice & Pyke, 1979; Yi, 2017, Ch.7). The inference
on β enables investigators to quantify the effects of covariates X on the outcome Y .

The estimation results and interpretations obtained from model (1) can be misleading when model (1) does not reflect the
true relationship between X and Y . For example, if the working model (1) fails to include important risk factors for the
outcome, or the true link function connecting X and Y is not logit, fitting (1) to the data often leads to invalid inferential
results. Therefore, it is essential to assess the appropriateness of the working model (1) before making conclusion based
on the model fitting.

There has been extensive research on developing reliable tests for the assessment of logistic models; see Ch.5 of Hosmer
et al. (2013) for a comprehensive review. It is common to assess a working model by examining whether the model fits
the data well. Most existing tests assess the model by examining summary measures of the distance between the observed
and the predicted outcomes. For example, Hosmer and Lemeshow (1980) proposed the so-called Hosmer-Lemeshow
goodness-of-fit test based on grouping estimated probabilities. Tsiatis (1980) discussed a score test using the partition of
covariates. Osius and Rojek (1992) considered a large sample normal approximation to the Pearson chi-square statistic.
Su and Wei (1991) developed a test using cumulative sums of residuals. le Cessie and van Houwelingen (1991, 1995)
constructed tests using smoothed residuals. Stukel (1988) proposed a generalized logistic model by introducing additional
parameters for an expanded class of models. A test was constructed based on the hypothesis that the additional parameters
are equal to zero to shrink the class of models to the desired logistic model. In the context of case-control studies, Qin and
Zhang (1997) pointed out that model (1) is equivalent to a two-sample semiparametric model and proposed a goodness-
of-fit test by comparing the observed distribution of covariates and the expected counterpart under the assumed model.

In this paper, we propose a new method for the assessment of logistic models. The idea stems from a perspective different
from existing methods. We construct the tests by comparing the maximum likelihood estimator for the parameter in (1)
and a consistent estimator obtained from a weighted estimating equation, where the weight is a function of covariates
and parameters. The intuition behind this approach is as follows. Since the two estimators are both consistent under the
same assumption of model (1), a significant distance between them implies that the assumed model (1) may not hold. Our
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idea is relevant to Shih (1998) who developed a goodness-of-fit test for the Clayton copula model based on the difference
between the unweighted and weighted estimators for the association parameter with the weight depending on the observed
data only. In comparison, the weight in our paper also depends on the parameter and is attached to the estimating equation
rather than the estimator.

Many existing methods are based on grouping of covariates, or estimated probabilities, which may be unideal in some
cases. For instance, it has been documented that test statistics based on grouping can be sensitive to the choice of groups,
i.e., test results obtained from different grouping plans can be inconsistent (e.g., D. Hosmer, T. Hosmer, le Cessie, &
Lemeshow, 1997). To overcome this shortcoming, we propose tests that are free of grouping, conceptually straightfor-
ward and easy to implement. Our methods are applicable to handle both prospective data and case-control data. In our
simulations, the proposed tests present similar performance to the widely used Hosmer-Lemeshow (HL) test. In some
scenarios, the proposed tests achieve a higher power than the HL test.

The rest of this paper is organized as follows. Section 2 proposes the new assessment method for the logistic regression
model, presents theoretical results and describes the test procedures. Section 3 performs simulation studies to assess the
performance of the proposed tests in comparison with the HL test. Section 4 illustrates the proposed tests using two
examples. Section 5 closes the paper with a discussion.

2. The Proposed Tests

Shih (1998) constructed a simple test to assess the goodness-of-fit for the Clayton copula model by examining the differ-
ence between the unweighted and weighted estimators for the association parameter. This test is justified by the fact that
if the Clayton copula model holds, then the resulting two estimators should be consistent, thus yielding that the difference
converges to zero as sample size goes to infinity. Adapting this scheme, we develop new tests for the assessment of the
logistic model.

2.1 Unweighted and Weighted Estimating Equations

Suppose we observe a sample of n subjects. Let Xi and Yi denote the observed covariates and outcome, respectively, for
subject i, where Yi is a binary outcome taking value 1 or 0. Suppose the relationship between Xi and Yi is characterized by
model (1). The maximum likelihood estimator (β̂0, β̂

T )T of (β0,β
T )T is obtained by solving the likelihood score equations

n∑
i=1

[{
Yi −

1
1 + exp(−β0 − βT Xi)

} (
1
Xi

)]
= 0 (2)

for (β0,β
T )T . It is known that the maximum likelihood estimator (β̂0, β̂

T )T is a consistent, asymptotically normal and
efficient estimator for (β0,β

T )T when model (1) is true and certain regularity conditions (e.g., Lehmann & Casella, 1998,
Ch.6) hold.

Huang and Wang (1999, 2001) considered the weighted version of estimating equations (2):

n∑
i=1

[
w(β0 + β

T Xi)
{

Yi −
1

1 + exp(−β0 − βT Xi)

} (
1
Xi

)]
= 0, (3)

where w(β0 + β
T Xi) is a weight function which depends on the covariates and the model parameter. Given a positive

weight function w(·), a consistent estimator of (β0,β
T )T can be obtained by solving (3) for (β0,β

T )T by the fact that the
expectation of the left hand side of (3) is zero (e.g., Yi, 2017, Ch.2). In particular, Huang and Wang (2001) chose weight
functions w(β0 + β

T Xi) = 1 + exp(−β0 − βT Xi) and w(β0 + β
T Xi) = 1 + exp(β0 + β

T Xi), and respectively, obtained the
following estimating equations:

n∑
i=1

[
{1 + exp(−β0 − βT Xi)}

{
Yi −

1
1 + exp(−β0 − βT Xi)

} (
1
Xi

)]
= 0, (4)

and
n∑

i=1

[
{1 + exp(β0 + β

T Xi)}
{

Yi −
1

1 + exp(−β0 − βT Xi)

} (
1
Xi

)]
= 0. (5)

Let (β̂0−, β̂
T
−)T be the resulting estimator of (β0,β

T )T obtained by solving (4) for (β0,β
T )T , and (β̂0+, β̂

T
+)T be the resulting

estimator of (β0,β
T )T obtained by solving (5) for (β0,β

T )T . Under the assumed logistic model (1) and regularity conditions
C1 and C2 of Huang and Wang (2001), both (β̂0−, β̂

T
−)T and (β̂0+, β̂

T
+)T are consistent and asymptotically normal estimators

of (β0,β
T )T (Huang & Wang, 2001).
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2.2 The Proposed Test Statistics

We comment that the consistency of (β̂0, β̂
T )T , (β̂0−, β̂

T
−)T and (β̂0+, β̂

T
+)T is basically ensured by the unbiasedness of the

corresponding estimating functions in (2), (4) and (5), i.e., these estimating functions have a zero expectation (e.g., Yi,
2017, Ch.2). The zero mean property of the estimating functions in (2) and (3) is guaranteed because the conditional mean
of Yi given Xi is correctly specified as

E(Yi|Xi) =
1

1 + exp(−β0 − βT Xi)
,

which is described by model (1). The involvement of the terms (1, Xi)T and w(β0 + β
T Xi) in (2) and (3) do not alter the

zero mean property of the estimating functions in (2) and (3).

The consistency of three estimators (β̂0, β̂
T )T , (β̂0−, β̂

T
−)T and (β̂0+, β̂

T
+)T requires that model (1) holds. When the logistic

model (1) does not reflect the truth, we may expect to observe significant difference between the maximum likelihood
estimator (β̂0, β̂

T )T and the weighted estimating equation based estimator (β̂0−, β̂
T
−)T , or significant difference between

(β̂0, β̂
T )T and (β̂0+, β̂

T
+)T . In practice, the estimation of parameter β is often of interest since β provides the odds ratio

interpretations. Moreover, for case-control studies, the scalar parameter β0, which is related to P(Y = 1) for the population
of interest, cannot be estimated. Prentice and Pyke (1979) showed that valid odds ratio estimators can be obtained by
fitting logistic model (1) to the case-control data as if the data were collected from a prospective study. Therefore, here we
focus on the log odds ratio parameters β and construct two tests based on the distance between β̂ and β̂−, and the distance
between β̂ and β̂+, respectively.

Under (1) and suitable regularity conditions, β̂, β̂− and β̂+ are consistent and asymptotically normal estimators of β. Thus,
√

n(β̂− β̂−)
d−→ N(0,V−) and

√
n(β̂− β̂+)

d−→ N(0,V+) as n→ ∞, where V− and V+ are positive definite covariance matrices.
The analytic forms of V− and V+ can be obtained based on the sandwich type formula (Stefanski & Boos, 2002), and the
estimates of V− and V+ are available based on the empirical estimates of the corresponding sandwich terms.

The following Theorem reports the two proposed tests.

Theorem: Suppose the logistic model (1) and suitable regularity conditions hold.

(a). The statistic

(β̂ − β̂−)T Σ̂−1
− (β̂ − β̂−)

d−→ χ2
p as n→ ∞,

where Σ̂− is a consistent estimator of the covariance matrix var(β̂ − β̂−).

(b). The statistic

(β̂ − β̂+)T Σ̂−1
+ (β̂ − β̂+)

d−→ χ2
p as n→ ∞,

where Σ̂+ is a consistent estimator of the covariance matrix var(β̂ − β̂+).

Proof. Since V− and V+ are positive definite, they are invertible with rank p. Let V−1
− be the inverse matrix of V− and let

V−1
+ be the inverse matrix of V+. By the theory of quadratic forms (e.g., Rao, 1973, Ch.3),

{
√

n(β̂ − β̂−)T }V−1
− {
√

n(β̂ − β̂−)} d−→ χ2
p as n→ ∞

and

{
√

n(β̂ − β̂+)T }V−1
+ {
√

n(β̂ − β̂+)} d−→ χ2
p as n→ ∞.

Since nΣ̂− is a consistent estimator of V− and nΣ̂+ is a consistent estimator of V+, the results in the theorem are immediate.

Remark 1: When the singularity problem of Σ̂− or Σ̂+ occurs, we describe two strategies. The first strategy is to simply
consider subvectors of β̂− β̂− and β̂− β̂+ such that the resulting covariance matrices are nonsingular. Then the degrees of
freedom in (a) and (b) should be modified to be the length of the subvectors. The second strategy is to use the generalized
inverse matrix (Rao, 1973, Ch.1) to get around the singularity. The resulting test is still valid, with the degrees of freedom
in (a) and (b) replaced by the rank of V− and V+, respectively. The use of generalized inverse matrix for handling
singularity was considered by Lin and Wei (1991) in the context of information matrix tests for Cox regression models.

Remark 2: Since the derivation of the analytic forms of the estimators Σ̂− and Σ̂+ needs the second derivatives of the
likelihood, and the derivatives of the estimating equations, the implementation is complicated. In real applications, we
use nonparametric bootstrap method (Efron, 1982) to obtain these two covariance matrices Σ̂− and Σ̂+ for convenience.
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2.3 Test Procedures

The theorem proposes two tests for assessing the model form (1). We now further elaborate on the detail of the test
procedure by using the test statistic in Theorem (a); the test based on Theorem (b) can be conducted in the same manner.

Step 1: Obtain β̂ and β̂− by solving estimating equations (2) and (4), respectively. In particular, β̂ can be easily obtained
using available software packages for logistic models.

Step 2: Obtain Σ̂− using the nonparametric bootstrap method (Efron, 1982). Specifically, we generate B bootstrap samples
by resampling the original data at the individual level with replacement, where B is a user-specified positive integer. For
b = 1, . . . , B, let β̂(b) and β̂−(b) denote the resulting estimators obtained from Step 1 using the bth bootstrap sample. Then
Σ̂− is given by the sample covariance matrix of {β̂(b) − β̂−(b) : b = 1, . . . , B}. Specifically, let δ̂(b) = β̂(b) − β̂−(b). Then

Σ̂− =
1

B − 1

B∑
b=1

δ̂(b) − 1
B

B∑
b=1

δ̂(b)


δ̂(b) − 1

B

B∑
b=1

δ̂(b)


T

.

Step 3: Calculate the observed value for the test statistic T1 = (β̂ − β̂−)T Σ̂−1
− (β̂ − β̂−). The observed p-value is obtained

as P(χ2
p > T1), where χ2

p represents a random variable following a χ2 distribution with degree of freedom p. For a given
significance level α, if the observed p-value is less than α, the test suggests that logistic model (1) may not be appropriate,
and the null hypothesis that the model (1) holds is then in doubt.

3. Simulation Studies

We conduct simulation studies to assess the finite sample performance of the proposed tests. The widely used HL test
(Hosmer & Lemeshow, 1980) is included in the simulation studies as the benchmark. The HL test is grouping-based
method and the number of groups is user-specified. We adopt the commonly used strategy and take 10 groups in our
simulations. We use 1000 bootstrap replicates for the proposed tests to estimate the covariance matrices. The sample size
is set to be 500 or 1000. For each scenario, 1000 replications are run. For the ith subject, let covariates Xi = (X1i, X2i)T

where X1i is drawn from a standard normal distribution, and X2i is generated from a uniform distribution ranging from 0
to 1. The outcome is generated from the model:

logit P(Yi = 1|Xi) = −0.1 + X1i + X2i + γ(X1i + X2i)2, (6)

where γ is a parameter for the extra quadratic and interaction terms. The working model we use to fit the simulated data
is from (1),

logit P(Yi = 1|Xi) = β0 + β1X1i + β2X2i,

where no extra quadratic and interaction terms are included.

3.1 Assessment of Test Level

When γ = 0 in (6), the logistic model form (1) correctly reflects the truth. For this case, we examine the estimated
significance levels (i.e., the probability of rejecting model (1) when model (1) is really true) of the proposed tests and the
HL test, and report the test results in Table 1 for the significance level α = 0.01, 0.05 and 0.1. The estimated significance
levels for all three tests are reasonably close to the nominal significance levels.

Table 1. Estimated significance levels for the Hosmer-Lemeshow test and proposed tests at the significance level α =
0.01, 0.05, and 0.1.

n = 500 n = 1000

Method α = 0.01 α = 0.05 α = 0.1 α = 0.01 α = 0.05 α = 0.1

Hosmer-Lemeshow 0.010 0.042 0.087 0.009 0.051 0.098

Proposed (1st weight) 0.004 0.038 0.080 0.010 0.043 0.099

Proposed (2nd weight) 0.007 0.034 0.084 0.011 0.059 0.116

3.2 Assessment of Test Power

When γ , 0 in (6), model (1) does not reflect the truth. By setting γ = −0.2 or −0.5, we examine the estimated powers
(i.e., the probability of rejecting model (1) when model (1) is really not true) of the proposed tests and the HL test at
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the significance level α = 0.05. Table 2 summarizes the empirical results. The estimated powers are significantly larger
with γ = −0.5 than those with γ = −0.2, because of the farther departure from the null model. The first proposed test
performs similar to the HL test. The second proposed test achieves a significantly higher power than the other two tests
when γ = −0.2. As anticipated, the achieved power gets larger as the sample size increases.

Table 2. Estimated powers for the Hosmer-Lemeshow test and proposed tests at the significance level α = 0.05 when the
working model lacks quadratic and interaction terms.

n = 500 n = 1000

Method γ = −0.2 γ = −0.5 γ = −0.2 γ = −0.5

Hosmer-Lemeshow 0.269 0.967 0.532 1.000

Proposed (1st weight) 0.270 0.801 0.643 1.000

Proposed (2nd weight) 0.508 0.921 0.811 1.000

Now we assess the power of the three methods when the true link function is not logit. To simulate data, we modify
(6) by specifying γ = 0 and replacing the logit link by one of the two link functions: probit and complementary log-log
(Clog-log). We still use model (1) to fit the simulated data. Table 3 summarizes the estimated powers of the three tests
at the significance level α = 0.05. Compared with the complementary log-log link, testing the probit link leads to lower
powers as expected, since the probit model is close to the logistic model, and the difference is hard to determine (e.g.,
Dobson, 2002, Section 7.3). When n = 500, the first proposed test and the HL test show similar performance, with higher
achieved powers than the second proposed test. Interestingly, when n = 1000, the second proposed test shows the highest
achieved powers. The estimated powers increase as the sample size increases.

Table 3. Estimated powers for the Hosmer-Lemeshow test and proposed tests at the significance level α = 0.05 when the
working model misspecifies the link function.

n = 500 n = 1000

Method probit Clog-log probit Clog-log

Hosmer-Lemeshow 0.041 0.118 0.052 0.324

Proposed (1st weight) 0.032 0.139 0.124 0.276

Proposed (2nd weight) 0.024 0.029 0.199 0.341

4. Examples

We use two examples to illustrate the proposed tests. The HL test is conducted as the benchmark, where we adopt the
commonly used 10 groups. One thousand bootstrap replicates are used for the proposed tests.

Example 1. Hosmer et al. (2013) considered a dataset of 100 subjects with age regarded as the covariate and the presence
or absence of coronary heart disease taken as the binary outcome. It is of interest to assess model (1) which is used to
feature the relationship between the status of coronary heart disease and age. We apply the two proposed tests and the HL
test to assess model (1). The observed test statistic for the first proposed test is 0.010 with 1 degree of freedom, and the
observed p-value equals 0.920. The observed test statistic for the second proposed test is 0.002 with 1 degree of freedom,
and the observed p-value equals to 0.969. The HL test gives the observed test statistic 2.224 with 8 degrees of freedom,
and the observed p-value equals 0.973. The three tests produce fairly similar results of p-value and they all suggest no
evidence against the use of logistic model (1).

Example 2. Hosmer et al. (2013) discussed a low birth weight study. The dataset includes 189 births to women observed
in the obstetrics clinic. The binary outcome is the indicator of low birth weight (< 2500 grams). Consider weight of
mother at last menstrual period, age of mother and smoking status during pregnancy as covariates. Our goal is to assess
the appropriateness of model (1). The observed test statistic for the first proposed test is 1.314 with 3 degrees of freedom,
yielding the observed p-value 0.726. The observed test statistic for the second proposed test is 1.913 with 3 degrees of
freedom, giving the observed p-value 0.591. The HL test gives the observed test statistic 7.225 with 8 degrees of freedom,
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and the observed p-value equals 0.513. The three tests produce similar results of p-value and they all suggest no evidence
against the use logistic model (1).

5. Discussion

In this paper, we construct new tests for the assessment of the logistic model from a different perspective than existing
tests. We construct the tests by examining the distance between two consistent estimators developed under the logistic
model (1), rather than the distance between the observed outcome and the predicted outcome as considered by most
existing methods. The asymptotic results for the proposed tests are established. Our tests are straightforward, easy to
implement and applicable for both prospective studies and case-control studies. Test results and odds ratio estimates are
given simultaneously. Unlike grouping-based tests which may be sensitive to the choice of groups, the proposed tests
are free of grouping. In our limited simulation studies, the proposed tests show similar results to the widely-used HL
test. In some scenarios, the proposed tests have higher powers than the HL test. When the sample size is relatively large
(n = 1000), the second proposed test produces higher powers than the first proposed test.

Defined as the probability of being assigned to receive the treatment/intervention given pre-treatment covariates, the
propensity score has been increasingly used to conduct causal inference (Rosenbaum & Rubin, 1983). Logistic regression
models are often employed as the propensity score model. It has been documented that misspecifying the propensity score
model can lead to severely biased estimated causal effects (e.g. Kang & Schafer, 2007). Our proposed tests may be useful
to evaluate the propensity score model in causal inference.
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