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Abstract 

This study traced the patterns of discrete time series over time with respect to GARCH effect and asymmetric GARCH 

effect. Particularly, we paid attention to the weakness of the GARCH model in modeling the asymmetry of GARCH effect. 

In order to handle this weakness, we applied the sign and size bias test which comprises sign bias test, negative size bias 

test, positive size bias test, and Lagrange Multiplier test in order to identify the asymmetric effect in the residual series of 

the GARCH model. Where the asymmetric effect is present and significant, we fit the asymmetric GARCH models. 

Exploring the share price returns of Zenith bank plc obtained from the Nigerian Stock Exchange from January 4, 2006 to 

May 26, 2015, our findings indicated the presence of GARCH effect and was adequately captured by GARCH(0,1) model. 

Also, the sign and size bias test for asymmetric GARCH effect on the residual series of GARCH(0,1) model showed a 

joint significance as indicated by the Lagrange Multiplier test. Moreover, the asymmetric GARCH effect was adequately 

captured by EGARCH(0,1) and TGARCH(0,1) models. In addition, the significance of the size bias test indicated that the 

size of negative and positive returns has an impact on the predicted heteroscedasticity. Hence, we concluded that 

GARCH(0,1) model adequately predicted the GARCH effect but failed to capture the asymmetric effect in the share price 

returns of the discrete series. However, this was complemented by both EGARCH(0,1) and TGARCH(0,1) models with 

the size of both the negative and positive effects taken into consideration. 

Keywords: Discrete-time series, EGARCH,GARCH effect, Heteroscedasticity, Sign and size test, TGARCH, Volatility. 

1. Introduction 

Statistically, returns are the natural logarithm transformed share prices whose characterizations have more attractive 

statistical properties, and easier to handle than the share prices. The fact that large absolute returns tend to appear in 

clusters, indicating a possible presence of heteroscedasticity, is hardly compatible with the assumption of constant 

variance(Franses and Dijk, 2003). Thus there is need for appropriate models that can capture the time-varying 

heteroscedasticity as neglecting its presence in linear models results in inefficient ordinary least squares estimates of 

ARMA parameters though still consistent and asymptotically normally distributed, their variance-covariance matrix is no 

longer the usual one. Thus, making the t-statistics invalid and cannot be used to examine the significance of the individual 

explanatory variables in the model. Also, over-parameterization of an ARMA model and low statistical power are 

identified as part of the consequences for neglecting heteroscedasticity. Lastly, neglecting heteroscedasticity can lead to 

spurious nonlineality in the conditional mean and difficulty in computing the confidence interval for forecasts (see for 

example, Deshon and Alexander, 1996; Franses and Dijk, 2003; Fan and Yao, 2005; Astriou and Hall, 2007). Moreover, 

the formal tests for the presence of heteroscedasticity (ARCH/GARCH effects) areusually Lagrange Multiplier and 

Ljung-Box on the squares of the residual series obtained from ARIMA modeling of the return series. Once these 

ARCH/GARCH effects are identified, then GARCH models could be applied (Akpan, Moffat and Ekpo, 2016;Akpan and 

Moffat, 2015;Ogum, Beer and Nouyrigat, 2005; Mgbame and Ikhatua, 2014; Atoi, 2014; Onwukwe, Samson and Lipcsey, 

2014;Yaya, 2013; Emenike, 2010). Meanwhile, in an attempt to model the asymmetric GARCH, previous studies in 

Nigeria only extended the fitted GARCH models to the asymmetric ones and thereafter, access the significance of 

coefficient of leverage effect without prior formal test for the presence of asymmetric GARCH effect and thus created a 

gap in knowledge by not exploring a formal test in detecting the asymmetric GARCH effect. Hence, we seek to fill this 

gap by using sign and size bias test (which are categorized into; sign bias test, negative size bias test and positive size bias 

mailto:eubong44@gmail.com


 

 

http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                 Vol. 6, No. 6; 2017 

112 

test) and Lagrange Multiplier (which checks the joint significance of sign and size test) to detect the asymmetric GARCH 

effect in the share price returns of Zenith bank plc. In this regard, the fitted GARCH model would be evaluated based on 

its ability to model the changing conditional variance and its failure to capture the asymmetries in the series while 

extensions to EGARCH and TGARCH models are made in order to overcome the weaknesses of the GARCH model. 

Furthermore, the remaining content of this paper is organized as follows: section 2 which treats the methods to be 

implored; the results and discussion of the findings are presented in section 3 while section 4 accommodates the 

conclusion of the overall findings of this work. 

2. Methods 

2.1 Return 

The return series 𝑅𝑡 can be obtained given that 𝑃𝑡 is the price of a unit share at time, t and 𝑃𝑡−1  is the share price at time 

t−1. 

𝑅𝑡 = ∇𝑙𝑛𝑃𝑡  = (1 − 𝐵)𝑙𝑛𝑃𝑡   = 𝑙𝑛 𝑃𝑡  − 𝑙𝑛 𝑃𝑡−1                              (1) 

The 𝑅𝑡 in equation (1) is regarded as a transformed series of the share price, 𝑃𝑡 meant to attain stationarity, that is, both 

mean and variance of the series are stable (Akpan and Moffat, 2015). The letter 𝑩is the backshift operator. 

2.2 Model Selection Criteria 

For a given dataset, when there are multiple adequate models, the selection criterion is normally based on summary 

statistics from residuals of a fitted model (for more details see Wei, 2006 ). For the purpose of this study, we consider the 

well-known Akaike’s information criterion (AIC), (Akaike, 1973) defined as 

AIC = −2 𝑙𝑛(likelihood) +  2(number of parameters)                                          (2) 

where the likelihood function is evaluated at the maximum likelihood estimates. The optimal order of the model is chosen 

by the value of the number of parameters, so that AIC is minimum (Wei, 2006). 

2.3 Diagnostic Checking of the Model 

Ljung and Box Test (1978) is given as 

Q(m) = T(T + 2) 

𝑚
∑

𝑙 = 1

𝜌̂𝑙
2

𝑇−𝑙
                                           (3) 

where T is the number of observations. This test checks the joint significance of the first m lags of the ACFs of the residual 

series. The joint null hypothesis is stated as follows: 𝐻0:  𝜌1 =  𝜌2 =  ⋯ =  𝜌𝑚 = 0 against 𝐻𝐴:  𝜌1 ≠  𝜌2 ≠  ⋯ ≠  𝜌𝑚 ≠
0. The decision rule is to reject 𝐻0 if Q(m) >𝜒𝛼

2 , where 𝜒𝛼
2 denotes the 100 (1 – 𝛼)th percentile of a Chi-squared 

distribution with m – (p + q) degree of freedom (see for example Akpan, Moffat and Ekpo, 2016).  

2.4 Lagrange Multiplier Test 

Another approach for testing the ARCH/GARCH effect (otherwise called heteroscedasticity is the changing conditional 

variance) is to apply the Lagrange Multiplier (LM) test of ARCH(q) against the hypothesis of no ARCH effects to {𝑎𝑡
2} 

series. The LM test is carried out by computing, 𝜒2 = T𝑅2 in the regression of 𝑎𝑡
2 on a constant and q lagged values. T is 

the sample size and 𝑅2 is the coefficient of determination. Under the null hypothesis of no ARCH effects, the statistic has 

a Chi-square distribution with q degrees of freedom. If the LM test statistic is larger than the critical value, then, there is 

evidence of the presence of ARCH effects (Greene, 2002). 

2.5 Test for Asymmetries in Heteroscedasticity 

2.5.1 Sign Bias (SB) Test 

This test is used to verify whether previous positive and negative shocks have a different impact on heteroscedasticity. 

The test can be carried out as follows:  

Obtain the residual series from GARCH model. 

Test for sign bias in the following regression of the squares of residual series: 

𝜀𝑡̂
2  =   𝛼0  +   𝛼1𝑁𝑡−1

−   +   𝑒𝑡 ,                                   (4) 

𝑁𝑡−1
−  =  {

1      𝑖𝑓 𝜀𝑡̂−1
2 < 0

0,       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

If positive and negative shocks have different impacts on heteroscedasticity then 𝛼1 will be statistically significant. 
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2.5.2 Sign and Size Bias Test 

This test as proposed by Engle and Ng (1993)verifies whether heteroscedasticity depends on both the sign and size of 

previous shocks. This test is based on the following regression: 

𝜀𝑡̂
2  =   𝛼0  +   𝛼1𝑁𝑡−1

−  +  𝛼2𝑁𝑡−1
− 𝜀𝑡̂−1 + 𝛼3𝑁𝑡−1

+ 𝜀𝑡̂−1 + 𝑒𝑡,                    (5) 

𝑁𝑡−1
+  =   1 − 𝑁𝑡−1

−  

where 

𝑁𝑡−1
−  is the sign bias variable 

𝑁𝑡−1
− 𝜀𝑡̂−1 is the negative size bias variable 

𝑁𝑡−1
+ 𝜀𝑡̂−1 is the positive size bias variable 

The null hypothesis of no sign and size bias corresponds to: 𝐻0: 𝛼1  =  𝛼2 =  𝛼3 = 0. This can be tested with a 

Lagrange Multiplier test(see also, David, Dikko and Gulumbe, 2016;Lundbergh and Terasvirta, 2002; Hagerud, 1997). 

2.6 Heteroscedastic Model 

The statistical methods for modeling the volatility of a return are referred to as heteroscedastic models. Let 𝑅𝑡 be the 

return of a share price at time index t. The basic idea behind volatility study is that the series {𝑅𝑡} is either serially 

uncorrelated or with minor lower-order serial correlations, but it is a dependent series. For the purpose of this study, we 

consider the GARCH model to account for the ARCH effect (volatility clustering) and the EGARCH and TGARCH 

models to account for the asymmetric (leverage) effect. To successfully, fit the heteroscedastic models, one starts with 

modeling ARIMA process to remove the linear dependence in the data (see Box, Jenkins and Reinsel, 2008; Cryer and 

Chen, 2008: Wei, 2006; Brockwell and Davis, 2002 ; Fuller, 1996, for more details on ARIMA modeling). The residual 

series of the fitted ARIMA model is used to model the GARCH process and if the asymmetric effect is detected in the 

residuals series of the fitted GARCH model, then the EGARCH and TGARCH models are entertained.  

2.7 Generalized Autoregressive Conditional Heteroscedasticity (GARCH) Model  

Although the ARCH model is simple it often requires many parameters to adequately describe the volatility process of a 

share price return. Some alternative models must be sought. Bollerslev (1986) proposed a useful extension known as the 

generalized ARCH (GARCH) model. For a return series, 𝑅𝑡, let 𝑎𝑡 = 𝑅𝑡 − 𝜇𝑡 be the innovation at time t. Then, 𝑎𝑡 

follows a GARCH (p, q) model if  

𝑎𝑡 =  𝜎𝑡𝑒𝑡, 

𝜎𝑡
2 =  𝛼𝑜 + 

𝑞
∑

𝑖 = 1
𝛼𝑖𝑎𝑡−𝑖

2 +

𝑝
∑

𝑗 = 1
𝛽𝑗𝜎𝑡−𝑗

2                                       (6) 

where again 𝑒𝑡 is a sequence of i.i.d. random variance with mean, 0, and variance, 1, 𝑎𝑜 > 0, 𝛼𝑖 ≥ 0, 𝛽𝑗 ≥ 0,

𝑎𝑛𝑑
𝑚𝑎𝑥(𝑝, 𝑞)

∑
𝑖 = 1

(𝛼𝑖 + 𝛽𝑖) <  1(Tsay, 2010). 

Here, it is understood that 𝛼𝑖 = 0, for 𝑖 > 𝑝, and 𝛽𝑖 = 0, for 𝑖 > 𝑞. The latter constraint on 𝛼𝑖 + 𝛽𝑖 implies that the 

unconditional variance of 𝑎𝑡 is finite, whereas its conditional variance 𝜎𝑡
2, evolves over time. 

2.8 EGARCH Model 

The Exponential GARCH (EGARCH) model represents a major shift from ARCH and GARCH models (Nelson, 1991). 

Rather than modeling the variance directly, EGARCH models the natural logarithm of the variance, and as such, no 

parameter restrictions are required to ensure that the conditional variance is positive. The EGARCH (p, q) is defined as,  

𝑅𝑡 = 𝜇𝑡 + 𝑎𝑡 ,      𝑎𝑡 =  𝜎𝑡𝑒𝑡 , 

𝑙𝑛𝜎𝑡
2  =  𝛼0  +  ∑ 𝛼𝑖

|𝑎𝑡−𝑖|+ 𝛾𝑖𝑎𝑡−𝑖

𝜎𝑡−𝑖

𝑞
𝑖=1  +   ∑ 𝛽𝑗

𝑝
𝑗=1 𝑙𝑛𝜎𝑡−𝑗

2                      (7) 

where again, 𝑒𝑡 is a sequence of i.i.d. random variance with mean, 0, and variance, 1, and 𝛾𝑘 is the asymmetric 

coefficient. The process is covariance stationary if and only if∑ 𝛽𝑗
𝑞
𝑗=1 < 1. 

  



 

 

http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                 Vol. 6, No. 6; 2017 

114 

2.9 TGARCH Model 

According to Francq and Zakoian (2010), a natural way to introduce asymmetry is to specify the conditional variance as 

a function of the positive and negative parts of the past innovations. The Threshold GARCH (TGARCH) class of 

models introduces a threshold effect into the volatility. Moreover, this model takes the asymmetry into account while 

keeping the linear function form of conditional variance.  

By definition, (𝑎𝑡) is called a TGARCH (p,q) process if it satisfies an equation of the form 

𝑎𝑡 =  𝜎𝑡𝑒𝑡 

𝜎𝑡  =  𝛼0  +  ∑ 𝛼𝑖 (|𝑎𝑡−𝑖|
𝑝
𝑖=1  −  𝛾𝑖𝑎𝑡−𝑖)  + ∑ 𝛽𝑗𝜎𝑡−𝑗

𝑞
𝑗=1                    (8) 

where 𝛼0, 𝛼𝑖 and 𝛽𝑗 are real numbers. Under the constraints 𝛼0 > 0, 𝛼𝑖,+ ≥ 0, 𝛼𝑖,−  ≥ 0, 𝛽𝑗  ≥ 0 the variable 𝜎𝑡 is 

always strictly positive and represents the conditional standard deviation of 𝑎𝑡. In general, the conditional standard 

deviation of 𝑎𝑡 is |𝜎𝑡|, therefore, imposing the positivity of 𝜎𝑡 is not required (contrary to the classical GARCH 

models based on the specification of 𝜎𝑡
2) (Francq and Zakoian, 2010). 

3. Result and Discussion 

Considering the daily closing share prices of Zenith Bank plc from 04/01/2006 to 26/05/2015 obtained from the 

Nigerian Stock Exchange with the series made up of 2451 observations. The motivation for the choice of share price 

series of Zenith Bank Plc is that Zenith Bank Plc has emerged the most active and capitalized stock of the Nigerian Stock 

Exchange. From the plot assessment, the series presented in figure 1 indicates that the series is not stationary. Also, the 

fact that ACF of the share price series persists and decays slowly is an indication that the series is not stationary (see 

Figure 2). 

 

Figure 1. Plot of Share price series of Zenith Bank 

 
Figure 2. ACF and PACF of the Share Price Series 

However, we take the log difference of the share price series (returns) to ensure stationarity. In addition, volatility 

clustering (heteroscedasticity) is evident in the returns and the fact that return series clusters around zero mean entails 

stationarity (see Figure 3). 
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Figure 3. Plot of the Return Series of Zenith Bank 

3.1 ARIMA Modeling 

In order to model the linear dependence in the return series, ARIMA (1, 1, 3) model was identified since the ACF of the 

share price return series cuts off after lag 3 and the PACF cuts off after lag 1 (see Figure 4) 

The estimated ARIMA(1,1,3) model is presented below 

(1 − 0.8289𝐵)∇𝑙𝑜𝑔𝑃𝑡  =  (1 − 0.5885𝐵 − 0.1734𝐵2  − 0.0633𝐵3)𝜀𝑡             (9) 

s.e: (0.065054) (0.067549) (0.025665) (0.020043) 

z-value: (12.7420) (-8.7127) (-6.7569) (-3.1584) 

p-value: (< 2.2𝑒−16) (< 2.2𝑒−16)  (1.41𝑒−11)  (0.001586) 

The diagnostic checking on the ARIMA(1,1,3) model using Ljung – Box test indicates that the model is a good fit since 

the null hypothesis that the first eight (8) lags of the residuals of the model are not autocorrelated is not rejected given 

that the p-value of 0.3062 associated with Chi square of 9.4444 with degree of freedom, 8 is less than 0.05 significance 

level. 

 

Figure 4. ACF and PACF of the Returns of Zenith Bank 
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3.2 Symmetric GARCH Modeling 

3.2.1 Detection of Heteroscedasticity 

To detect the presence of heteroscedasticity (ARCH effect), we assess the ACF of 𝜀𝑡
2 of ARIMA(1,1,3) model. If at 

least one lag term in the squares of residual series (𝜀𝑡
2 ) is found to be statistically significant, then heteroscedasticity is 

said to exist. From figure 5, the first lag term of ACF of the squares of the residual series is significant and 

heteroscedasticity is said to exist. 

 

Figure 5. ACF and PACF of Squares of Residual Series 

Also, according to the Lagrange Multiplier test, the hypothesis of no ARCH effects up to lag 24 is rejected since the 

Lagrange Multiplier test value of 2095 with corresponding probability (of Chi Square with 24 degree of freedom), 

0.000< 0.05 further confirms the presence of heteroscedasticity.  

3.2.2 Estimation of GARCH Model 

Having detected the presence of heteroscedasticity, we move on to estimate the GARCH model. We fit tentatively, 

GARCH(0,1), GARCH(0,2) and GARCH(0,3) models to the residual series of ARIMA(1,1,3) model. Their information 

criteria are almost the same (see Table 4) but based on the principle of parsimony and the fact that present conditional 

variance depends only on the immediate past conditional variance, we select GARCH(0,1) model.  

Table 4: Information Criteria for GARCH Model 

 GARCH(0,1) GARCH(0,2) GARCH(0,3) 

AIC −11417.96 -11525.57 −11625.91 

The estimated GARCH(0,1) model is presented in equation (10) below 

𝑅𝑡  =   8.91031 × 10−4 + 𝜀𝑡 

s.e: (0.00009) 

z-value: (2.2344)  

p-value: (0.0255) 

𝜀𝑡= 𝜎𝑡𝑒𝑡,𝑒𝑡 ~𝛮(0,1) 

𝜎𝑡
2  =  3.38191𝑒−4   +   0.631176𝜀𝑡−1

2                            (10) 

s.e: (1.4758𝑒−05)   (0.05227) 

z-value: (22.9165) (12.0745) 

p-value: (<0.0001) (<0.0001) 

The diagnostic checking on the GARCH(0,1) model indicates that the model is adequate since the Lagrange Multiplier 

test statistics of 4.372158 with corresponding probability of Chi- Square with lag 8, 0.8221 > 0.05 level of significance. 
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3.3 Asymmetric GARCH Modeling 

3.3.1 Test for Asymmetries in Heteroscedasticity 

With the symmetric GARCH being successfully represented by GARCH(0,1) model, then we move to test for the 

asymmetric effect in the residuals of the fitted GARCH(0,1) model based on sign and size bias test. The estimated test is 

presented is presented below 

𝜀𝑡̂
2  =  3.19e−05  +  4.04e−05𝑁𝑡−1

− −  0.009639𝑁𝑡−1
− 𝜀𝑡̂−1 +  0.010276𝑁𝑡−1

+ 𝜀𝑡̂−1               (11) 

s.e: (2.89e−05) (3.84e−05) (0.002139) (0.002753) 

t-value: (1.106081) (1.051076) (-4.505697) (3.733321) 

p-value: (0.2688) (0.2933) (0.0000) (0.0002) 

From equation (11), the coefficient of 𝑁𝑡−1
−  is not significant at 0.05 level of significance. The implication is that the 

effect of the sign of negative and positive shocks on heteroscedasticity is not different from the one predicted by 

GARCH(0,1) model. Also, the negative and positive size bias test statistics are highly significant at 0.05 level of 

significance. The implication is that the impact of large/small (negative/positive) returns on heteroscedasticity were not 

predicted by GARCH(0,1) model. Moreover, the joint significance of the sign and size bias test for asymmetric 

GARCH effect indicates the presence of leverage effect since the Lagrange Multiplier test statistic of 35.19073 with the 

corresponding probability value, 1.11e−07< 0.05 level of significance, rejecting the null hypothesis of no sign and size 

bias correspond to: 𝐻0: 𝛼1  =  𝛼2  =  𝛼3  = 0. 

3.3.2 Estimation of Asymmetric GARCH  

With the asymmetric GARCH effect detected, we extend symmetric GARCH(0,1) model to the asymmetric type; 

EGARCH(0,1) model and TGARCH(0,1) model. 

The estimated EGARCH(0,1) model is presented in equation (12) 

𝑅𝑡  =   6.83823 × 10−5 + 𝜀𝑡 

s.e: (0.000329079) 

z-value: (0.2078) 

p-value: (0.8354) 

𝜀𝑡= 𝜎𝑡𝑒𝑡,𝑒𝑡 ~𝛮(0,1) 

𝑙𝑛𝜎𝑡
2  =  −7.84212   +    0.570692 (|𝜀𝑡−1|  −  0.0808165𝜀𝑡−1)(𝜎𝑡−1)−1             (12) 

s.e: (0.0389357) (0.0403487)   (0.0280480) 

z-value: (-201.4) (14.14) (-2.881) 

p-value: (0.0000) (2.03e-045)   (0.0040) 

The statistical significance of the leverage effect parameter of the fitted EGARCH(0,1) model indicates that the 

leverage effect would impact negatively on the conditional variance and that the model is able to predict both large and 

small negative impacts on the returns. The diagnostic checking on the EGARCH(0,1) model shows that the model is 

adequate, since the Lagrange Multiplier test statistic of 5.927093 with the p-value of Chi-Square of first 8 lags, 0.6554 > 

0.05 level of significance. 

The estimated TGARCH(0,1) model is presented in equation (13) 

𝑅𝑡  =  4.65978 ×  10−6+𝜀𝑡 

s.e: (4.97470e-05) 

z-value: (0.09367) 

p-value: (0.9254) 

𝜀𝑡= 𝜎𝑡𝑒𝑡,𝑒𝑡 ~𝛮(0,1) 

𝜎𝑡  =  4.15618𝑒−4  +  0.485568(|𝜀𝑡−1| −  0.231281𝜀𝑡−1)                    (13) 

s.e: (1.04875e-05) (0.0281060)    (0.0426081) 

z-value: (39.63) (17.28) (5.428) 

p-value: (0.0000) (7.09e-067) (5.70e-08) 

The statistical significance of the leverage effect parameter of the fitted TGARCH(0,1) model indicates that the leverage 
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effect would impact negatively on the conditional variance and that the model is able to predict both large and small 

negative impacts on the returns. The diagnostic checking on the TGARCH(0,1) model shows that the model is adequate, 

since the Lagrange Multiplier test statistic of 1.227263 with the p-value of Chi-Square of first 8 lags,0.9964> 0.05 level 

of significance does not reject the null hypothesis of no heteroscedasticity. 

Furthermore, to choose between EGARCH(0,1) and TGARCH(0,1) models, we consider their information criteria 

(AIC), −11304.56822 and − 11474.16299, respectively. Since their information criteria are almost the same, it 

follows that both models can be entertained in modeling the asymmetric effect of the return series. 

The findings of this paper confirmed the presence of asymmetric (leverage) effect in the return series of Zenith Bank 

Plc which is in tandem with the findings of Onwukwe, Samson and Lipcsey (2014) whose study fitted ARCH(1), 

ARCH(2), GARCH(1,1), EGARCH(1,1) and TGARCH(1,1) models to the return series of Zenith Bank Plc from 4th 

January 2004 to 31st August 2012; EGARCH(1,1) model was selected as the best model and concluded that asymmetric 

conditional heteroscedastic model is more suitable than the symmetric conditional heteroscedastic model. Though the 

order of model specification are slightly different which could be as a result of the differences in time span considered, 

this particular work differs from the work of Onwukwe, Samson and Lipcsey (2014) in that it combines GARCH(0,1), 

EGARCH(0,1) and TGARCH(0,1) models to express the full characterizations in the series. The evidence of volatility 

clustering and leverage effect provided so far is in tune with both Nigerian and International evidence of financial data 

exhibiting the phenomenon of volatility clustering and leverage effect. 

4. Conclusion 

Following the inability of the symmetric GARCH in capturing and modeling the leverage effect of a discrete-time series, 

this study has been able to take into consideration asymmetric effect in modeling such a series. The sign and size bias 

tests were explored to detect the asymmetric effect the series. The findings revealed that the asymmetric effect is present 

in the share price returns series since the joint negative and positive size bias tests were significant. However, this 

asymmetric salient feature in the series could not be predicted by GARCH (0,1) model, but was adequately captured by 

both EGARCH(0,1) and TGARCH(0,1) models. The implication of the study is that, in contrast to GARCH, the 

EGARCH provided a natural way of avoiding the positivity constraint on the coefficients since the logarithm can be of 

any sign. Also, TGARCH avoided the imposition of conditional standard deviation, 𝜎𝑡 by modeling the modulus form 

of the conditional standard deviation, | 𝜎𝑡 |. Hence, it can be concluded that the current conditional variance depends on 

the modulus and sign of the past return series. Furthermore, subsequent studies will consider other forms of asymmetric 

GARCH models not captured in this study. 
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