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Abstract 

This paper investigates the design of accelerated life test (ALT) sampling plans under progressive Type II interval 

censoring with random removals. For ALT sampling plans with two over-stress levels, the optimal stress levels and the 

allocation proportions to them are obtained by minimizing the asymptotic generalized variance of the maximum 

likelihood estimation of model parameters. The required sample size and the acceptability constant which satisfy given 

levels of producer’s risk and consumer’s risk are found. ALT sampling plans with three over-stress levels are also 

considered under some specific settings. The properties of the derived ALT sampling plans under different parameter 

values are investigated by a numerical study. Some interesting patterns, which can provide useful insight to practitioners 

in related areas, are found. The true acceptance probabilities are computed using a Monte Carlo simulation and the results 

show that the accuracy of the derived ALT sampling plans is satisfactory. A numerical example is also provided for 

illustrative purpose.  

Keywords: accelerated life test, progressive Type II interval censoring, random removal, sampling plan 

1. Introduction 

The design of reliability sampling plans under Type II censoring schemes has been studied by many researchers (Fertig & 

Mann, 1980; Hosono, Ohta, & Kase, 1981; Kocherlakota & Balakrishnan, 1986; Schneider, 1989; Balasooriya, 1995; Wu, 

Hung, & Tsai, 2003). In practice, it is not uncommon that some units are removed during the test, which leads to 

progressive censoring schemes. Balasooriya and Saw (1998), Balasooriya and Balakrishnan (2000), and Balasooriya, Saw, 

and Gadag (2000) discussed reliability sampling plans for the two-parameter exponential, lognormal and Weibull 

distributions under progressive Type II censoring schemes, respectively.  

The number of removals at each failure was assumed to be pre-fixed in those works. However, in practice it might be 

infeasible to pre-determine the removal pattern and the decision of removing any units is based on the status of the 

experiment at that specific time, such as excessive heat or pressure, reduction of budget and facility, etc. Therefore, the 

number of removals should be a random outcome (Yuen & Tse, 1996). Tse and Yang (2003) discussed the design of 

reliability sampling plans for the Weibull distribution under progressive Type II censoring with random removals, where 

the number of units removed at each failure was assumed to follow a binomial distribution. In recent years the feature of 

random removal has been adopted by many researchers in designing various kinds of progressive censoring schemes, 

such as Ashour and Afify (2007), Wu, Chen, and Chang (2007), and S. Dey and T. Dey (2014). 

Units are supposed to run at use condition in traditional reliability sampling plans. When it is desired to test the acceptance 

of highly reliable products, it is impractical to use such reliability sampling plans due to time constraint. Wallace (1985) 

stressed the need for introducing ALT into reliability sampling plans. Bai, Kim, and Chun (1993) studied the design of 

failure censored ALT sampling plans for lognormal and Weibull distributions. Hsieh (1994) investigated reliability 

sampling plans with ALT under Type II censoring for exponential distribution. The optimal design of ALT sampling plans 

with a non-constant shape parameter under both Type I and Type II censoring schemes was given by Seo, Jung, and Kim 

(2009). 

Note that continuous inspections were assumed in the above works. Nevertheless, sometimes it is inconvenient to conduct 

a test with continuous inspections due to the high cost and/or possible danger in monitoring the test continuously. Under 

these circumstances, the interval inspection schemes, in which only the number of failures between two successive 
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inspections is recorded, would be more favorable. Studies on life test and/or accelerated life test which employ interval 

censoring schemes are numerous. To number some of them, Tse, Ding, and Yang (2008) investigated the optimal design of 

accelerated life test under interval censoring with random removals for Weibull distribution; Chen and Lio (2010) 

compared the maximum likelihood estimation, moment estimation and probability plot estimation of parameters in the 

generalized exponential distribution under progressive Type I interval censoring; Ding, Yang, and Tse (2010) discussed 

the design of optimal ALT sampling plans under progressive Type I interval censoring with random removals. Most 

recently, Ding and Tse (2013) investigated the design of optimal ALT plans under progressive Type II interval censoring 

with binomial removals for the Weibull distribution. However, as far as our knowledge goes, there is no relevant study 

that investigates the design of ALT sampling plans under similar experimental settings with a Type II censoring scheme.  

The optimal reliability sampling plans which combine ALT, interval inspection and progressive Type II censoring with 

random removals are developed in this paper. This study can be noted as an extension to the work of Ding and Tse (2013) 

along three directions: (i) the research topic is extended from the design of optimal ALT plans to the design of optimal 

ALT reliability sampling plans, in which both the consumer’s risk and the producer’s risk are satisfied. In this sense this 

paper resolves a more practical problem; (ii) instead of minimizing the asymptotic variance of an estimated quantile of 

units’ lifetime distribution, this paper minimizes the asymptotic generalized variance of the maximum likelihood 

estimation of model parameters. It enables us to compare the outcomes derived using two different criteria in optimization; 

(iii) the true acceptance probabilities of the derived optimal ALT sampling plans are simulated, which provides us a way 

to evaluate the accuracy of the proposed method.  

The rest of this paper is organized as follows: Section 2 describes the basic model of the proposed scheme. The design of 

optimal ALT sampling plans under progressive Type II interval censoring with random removals is discussed in Section 3. 

A numerical study is conducted in Section 4 to examine the properties of the derived sampling plans. In Section 5 the 

accuracy of the proposed ALT sampling plans is evaluated by a Monte Carlo simulation. Section 6 provides a numerical 

example. Conclusions are drawn in Section 7. 

2. Model Description 

Consider an ALT with the following settings: 

1. A total of n  identical and independent units are available at the beginning of the test. 

2. There are m  over-stress levels, i.e.,  1 2,  ,  ..., ms s s . Denote 0s  as the stress level at use condition. 

3. Suppose that in  units are randomly allocated to the thi  stress level ( 1,2,...,i m ). Then the allocation proportion to 

the thi  stress level is given by /i in n  . 

4. A progressive Type II censoring scheme is employed, and the test on the 
thi  stress level will be terminated after ic  

( 1,2,...,i m ) or more units fail. 

5. Interval inspections are conducted at time points 
1it , 

2it , …, , ( )i k it  and the number of failures ijx  between inspection 

interval , 1( ,  )i j ijt t  is recorded. It should be pointed out that both the experiment time , ( )i k it  and the number of 

inspections ( )k i
 
are random variables.  

6. Suppose that ( 1,2,..., ; 1,2,..., ( ) 1)ijr i m j k i    non-failed units are randomly removed at inspection time ijt . To 

ensure that there are at least ic  failed units at the end of the test on stress level is , ijr
 
is restricted to be any integer value 

between 0 and 
1

1

j

i i ill
n c r




  . Further assume that ijr  follows a binomial distribution with probability p , then we 

have  1

1
~ ,   

j

ij i i ill
r B n c r p




  . For notational convenience, denote 

( ) ( ) 1

, ( ) 1 1

k i k i

i k i i ij ijj j
r n x r



 
     as the number 

of units left. 

The process of this testing scheme is depicted in Figure 1. 
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Figure 1. The testing scheme of an ALT under progressive Type II interval censoring with random removals (on the 
thi  

stress level) 

Suppose that the lifetime of a unit T  follows a Weibull distribution with probability density function (pdf) 

      
1

/ / exp /f t t t
 

   
   

 
, 0t  .                         (1) 

Further assume that the scale parameter   and stress level s  are related as   

 0 1exp s    ,                                  (2) 

where 
0  and 

1  are unknown constants and the shape parameter   does not depend on s . Define ln( )Y T , then 

Y  has an extreme value distribution with cumulative distribution function (cdf) 

   1 exp exp ( ) /G y y        , y    ,                     (3) 

where  = ln = 0 + 1s ,  =1/  . 

Given observations ( , ,  1,2,..., ; 1,2,..., ( ))ij ijx r i m j k i  , the logarithm of the likelihood function can be derived as: 
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,  (4) 

where ln( )ij ijy t .  

The maximum likelihood estimates of 
0 , 1 ,

   and p
 
(denoted by 

0̂ , 1̂ , ̂  
and p̂

,
 respectively) can be 

solved from equations 
0 1ln / ln / ln / ln / 0L L L L p             

.
 Besides, the Fisher information matrix of 

0 1( , , , )p  
 

is given by 
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,       (5) 

where 
1 0 1( , , )I    is the upper left 3×3 sub-matrix of 0 1( , , , )I p    and  2 2

2 ( ) ln / .I p E L p     The asymptotic 

covariance matrix of 0 1
ˆ ˆ ˆ( , , )    is then given by 1

1 0 1( , , )I    . The detailed formulation for the entries of Eq. (5) can 

be found in the Appendix of Ding and Tse (2013). 

Given sample size n , use condition 
0s  and high stress level 

ms , removal probability p , predetermined number of 



 

 

http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                 Vol. 7, No. 1; 2018 

29 

failures 
ic  and inspections times ( , 1,2,..., ; 1,2,..., ( ))ijt i m j k i   on each stress, the stress levels ( , 1,2,..., 1)is i m   

and the allocation proportions ( , 1,2,..., 1)i i m    to these stress levels are selected in such a way that the generalized 

asymptotic variance of 0̂ , 1̂ , and ̂ , which is given by 1

1 0 1( , , )I    , is minimized.  

3. Design of ALT Sampling Plans 

Suppose that a sample of size n  is randomly drawn from the lot and the test is conducted at the accelerated settings 

described in Section 2. Assume that the lifetime of a unit T  follows a Weibull distribution ( , )F   , where the 

relationship between the scale parameter   and the stress s  is given by Eq. (2) and the shape parameter   does not 

depend on s . Suppose that a unit with lifetime less than   is considered to be nonconforming. Define ln( )Y T , then 

Y  follows an extreme value distribution ( , )G    and the lower specification limit for the log lifetime is given by 

ln( )  .  

Define 
0 d    , where 

0  is the location parameter of (.)G  at use condition and d  is the acceptability constant. 

Since the stresses can be standardized such that 
0 0s  , 1ms  and 0 1 ( 1,2,..., 1)is i m    , it follows from Eq. (3) 

that 
0 0 1 0 0s      . By the invariance principle of the maximum likelihood method, the MLE of   is then given 

by 0 0
ˆˆ ˆ ˆ ˆd d        . To judge whether a lot should be accepted or not, ̂  is compared with the lower 

specification limit  . If ̂  , the lot is accepted; otherwise, it is rejected. 

Define the nonconforming fraction of the lot by fp , which is calculated as 

  0( ) 1 exp exp ( ) /fp P Y          .                       (6) 

The sample size n  and the acceptability constant d  are determined such that lots with nonconforming fraction 

fp p  are accepted with a probability of at least 1  and lots with fp p  are rejected with a probability of at least 

1  , where   and   are the given levels of producer’s and consumer’s risks, respectively. 

It follows from 0
ˆˆ ˆd     that   2

0 0
ˆ ˆˆ ˆ ˆ( ) 2 ( , ) ( )Var Var d Cov d Var        .  

Since    
1/2

0
ˆ ˆ( ) / ( )U d Var     

 
is parameter-free and asymptotically standard normal, the operating 

characteristic (OC) curve is given by 

  ˆ ˆ( ) ( ) 1 ln ln(1 ) / ( )f fO p P p d Var           
 

,                (7) 

where (.)  is the cdf of the standard normal distribution.

 The sample size n  and the acceptability constant d  are determined such that the OC curve goes through two points 

( ,1 )p   and ( , )p  . This implies 

     ˆ1 1 ln ln 1 /p d Var  
        ,

 

 

 ˆ1 ln( ln(1 )) / ( )p d Var          .                       (8) 

It follows that 

       1 1ln ln 1 ln ln 1 /u p u p u ud       
       
 

, 

     
2

2 2ˆ ln ln 1 /Var p d u   
    
  

,                        (9) 

where 
1( )zu z  . The acceptability constant d  is calculated directly from the first part of Eq. (9), while the required 

sample size n  can be obtained by a search method from the second part (the detailed algorithm is provided in Section 

4.1). 

4. Numerical Study 

4.1. ALT Sampling Plans with Two Over-stress Levels 

The properties of the derived ALT sampling plans under different parameter values are evaluated by a numerical study in 

this section. The following settings are made: 

1. Two over-stress levels 
1s , 

2s  are employed, i.e., 2m  . 
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2. The inspections on each stress level are equally spaced, i.e., 
0 0it  , , 1ij i j it t l  , ( 1,2,..., ; 1,2,..., ( ))i m j k i  , 

where 
il  is the inspection length on the 

thi  stress level. Define 
0 1exp( ) (1 1/ )i iMT s       as the mean of units’ 

lifetime distribution on the same stress and /i i il MT   as the proportion of the inspection length to the corresponding 

mean. 
i , which is proportional to the inspection length 

il , is used in this numerical study since it is more convenient to 

use a relative value than an absolute one. The case of 
1 2     is considered. 

3. Define the censoring fraction on the 
thi  stress level as / ( 1,2)ci i if c n i  . The cases of both 

1 2c cf f  and 
1 2c cf f  

are considered since units are much easier to fail on the high stress level than on the low one.   

Without loss of generality, set 0 0s  , 1ms  . In practice, it is often difficult for an experimenter to give prior estimates 

of parameters 0  and 1 . On the contrary, based on the experimenters’ experiences and/or the information collected 

from preliminary or similar studies, the estimation of the probability that a unit falls into a certain interval is much easier. 

Define uP = P (a unit’s lifetime T  falls into (0, 1) at use condition) and hP = P (a unit’s lifetime T  falls into (0, 1) on 

high stress level), then we have 

  0 ln ln 1 uP     , 

      1 ln ln 1 ln ln 1u hP P       .                        (10) 

In order to obtain an optimal ALT sampling plan under progressive Type II interval censoring with random removals, the 

values of n , d , 
1s  and 

1  have to be determined. The acceptability constant d  depends on ( ,1 )p   and ( , )p   

only, and it can be calculated from Eq. (9) directly. The determination of the other three parameters requires the 

combination of a grid search method and the Monte Carlo simulation. For the sake of simplicity, let   denote 

   
2

2 2ln ln 1 /p d u     . Then, n , 
1s  and 

1  are calculated using the following algorithm: 

1. Set an initial value 
(0)n  for n . Consider the smallest sample size and set 

(0) 2n  . Find the optimal 
* *

1 1( , )s   which 

minimizes 1

1 0 1( , , )I     using a grid search method over unit square (0,1) (0,1) . Calculate the corresponding value 

of ˆ( )Var   at 
* *

1 1( , )s  .  

2. Set 
(1) (0)2n n , find 

* *

1 1( , )s   based on sample size 
(1)n  and compute ˆ( )Var   accordingly.  

3. Repeat step 2 until for 
( )in , ˆ( )Var     and for 

( 1)in 
, ˆ( )Var    . Define 

( ) ( )l in n  and 
( ) ( 1)u in n  .  

4. Set 
( 2) ( ) ( )( ) / 2i l un n n   . Find 

* *

1 1( , )s   and calculate ˆ( )Var  . If ˆ( )Var    , set 
( ) ( 2)l in n  ; otherwise, set 

( ) ( 2)u in n  .  

5. Repeat step 4 until ˆ( )Var     approximately holds or 
( ) ( ) 2u ln n  . 

For given parameter values, specifically ( ,1 )p  =(0.00041, 0.95); ( , )p  =(0.01840, 0.10); 
uP =0.01; 0.1hP  ; 

  0.5, 1, 2; 
1 2( , )c cf f =(0.5, 0.5), (0.8, 0.8), (0.5, 0.7), (0.5, 0.9); p =0, 0.05, 0.1, 0.3 and  =0.02, 0.05, 0.1, 0.3, the 

optimal ALT sampling plans 
* *

1 1( , , , )dn s   are determined using the algorithm described above. A consistent pattern 

emerged based on the results of these combinations. The required sample size n  decreases as the censoring fractions 
1cf , 

2cf  increase. In order to provide a better insight on the effect of p (the probability of random removal) and  (which is 

proportional to the inspection length), some cases are selected for illustration and the corresponding results are depicted in 

Figure 2.  
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Figure 2. Two over-stress levels ALT sampling plans under progressive 

Type II interval censoring with random removals 

The following patterns are observed: 

a. For the cases of 0.5  , n  increases as   increases for all values of p . For the cases of 1  , when p =0, 

0.05 and 0.1, n  increases as   increases; when p =0.3, n  first decreases and then increases as   increases. For the 

cases of 2  , when p =0 and 0.05, n  increases as   increases; when p =0.1 and 0.3, n  first decreases and then 

increases as   increases. This pattern can be interpreted in this way: Larger   means wider inspection intervals, from 

which the collected information on units’ lifetime is less accurate and thus more units are required to judge whether to 

accept the lot or not. However, when 0p   , a larger   also implies that units are less likely to be removed at the early 

stage of the test. Consequently, more information on the lifetime distribution is collected and the required sample size n  

is decreased. Taking these two kinds of effect into consideration, shorter inspection interval doesn’t always yield smaller 

required sample size for ALT sampling plans under progressive Type II interval censoring with random removals.  

b. For the cases of 0.5   and 1, n  decreases as p  increases for all values of  . For the cases of 2  , when 

=0.1 and 0.3, n  decreases as p  increases; when  =0.02 and 0.05, n  first decreases and then increases as p  

increases. This pattern is caused by the two-sided effects of the removal probability p . Generally speaking, a test is 

likely to be prolonged as p  increases. Thus more information on the lifetime distribution can be observed and the 

required sample size n  is decreased. Nevertheless, when the inspection intervals are too small, a non-zero removal 

probability p  also causes more units being removed at the early stage of the test. In this case, less data can be collected 

and thus n  is increased. In conclusion, except for several cases ( 2   and  =0.02/0.05), the removal probability p  

is helpful in reducing the required sample size n . 

4.2. ALT Sampling Plans with Three Over-stress Levels  

ALT plans with three over-stress levels are useful in practice since they can provide a way to check the assumed 

straight-line relationship between distribution parameter   and stress level s  by adding a middle stress. The design of 

three over-stress levels ALT sampling plans under progressive Type II interval censoring with random removals is 

discussed in this section. They are developed under the following settings: 

1. Three over-stress levels, 1s , 2s  and 3s  are employed. In particular, set 0 0s  , 3 1s   and 2 1 3( ) / 2s s s  . 

2. The allocation proportions to three over-stress levels 
1 2 3( ,  ,  )    are set to be (1/ 3,  1/ 3,  1/ 3)  and 

(0.5,  0.3,  0.2) . 

3. Three settings of censoring fractions are considered, namely, 1 2 3( ,  ,  )c c cf f f  equals (0.5,  0.5,  0.5) , (0.8,  0.8,  0.8)  

and (0.5,  0.7,  0.9) . 

4. The proportion of the inspection length to the corresponding mean, that is, i  is set to be equal on three over-stress 

levels, i.e., 1 2 3      . 

A numerical study is conducted to determine ALT sampling plans with three over-stress levels under equally spaced 

inspection times. For given parameters, the optimal low stress level 1s

 is found by a grid search method over interval (0, 
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1). The step size is 0.01. For different parameter values, specifically, ( ,1 )p  =(0.00041, 0.95); ( , )p  =(0.01840, 

0.10); 
uP =0.01; 0.1hP  ;  =0.5, 1, 2; p =0, 0.05, 0.1, 0.3 and  =0.02, 0.05, 0.1, 0.3, the optimal low stress level 1s


 

and the required sample size n  are calculated. The effects of p  and   on the required sample size n  are depicted in 

Figure 3. We note that: 

 

Figure 3. Three over-stress levels ALT sampling plans under progressive 

Type II interval censoring with random removals 

a. For the cases of 0.5   and 1, n  increases as   increases. For the cases of 2  , when p =0 and 0.05, n  

increases as   increases; when p =0.1 and 0.3, n  first decreases and then increases as   increases.  

b. For the cases of 0.5  , n  decreases as p  increases. For the cases of 1  , when  =0.05, 0.1 and 0.3, n  

decreases as p  increases; when 0.02  , n  first decreases and then increases as p  increases. For the cases of 2  , 

when  =0.1 and 0.3, n  decreases as p  increases; when  =0.02 and 0.05, n  first decreases and then increases as p
 

increases. 

Note that these patterns are similar to those observed in the two over-stress levels case. 

5. Accuracy of Large Sample Approximation 

Since the proposed ALT sampling plans are derived based on asymptotic theory, there is a need to evaluate the finite 

sample behavior of them. The accuracy of the derived ALT sampling plans is assessed by a simulation study. The OC 

curve is set to go through two points, that is, ( ,1 )p  =(0.00041, 0.95) and ( , )p  =(0.01840, 0.10). For each 

combination of parameters, the nonconforming fraction of a lot under given acceptance probability (99% and 95%) on the 

pre-defined OC curve is computed, and then the true acceptance probability of a lot with that corresponding 

nonconforming fraction is calculated by a Monte Carlo simulation with 1000 runs. The results for ALT sampling plans 

with two over-stress levels and three over-stress levels are presented in Table 1 and Table 2, respectively. Actually, several 

different values of  (  0.5, 1, 2) are considered in this numerical study. Since they show similar patterns, only parts of 

the results of 1   are provided for simplicity. 

We note from Table 1 and Table 2 that the simulated acceptance probabilities are close to their nominal values in most 

cases. This indicates that the optimal ALT sampling plans derived based on asymptotic approximation have satisfactory 

accuracy.  

6. A Numerical Example 

Suppose that there is an agreement between a consumer and a producer to determine the acceptability of a lot. In particular, 

if the nonconforming fraction of a lot is smaller than 0.00041, then the lot should be accepted with a probability of at least 

0.95; while if the nonconforming fraction of a lot is larger than 0.01840, then it should be rejected with a probability of at 

least 0.90. Assume that an ALT reliability sampling plan with two over-stress levels is used to determine the acceptability 



 

 

http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                 Vol. 7, No. 1; 2018 

33 

of the lot. The probabilities for a unit to fail at use condition and high stress level are estimated to be 0.01 and 0.1, 

respectively. A progressive Type II interval censoring scheme is employed, and the censoring fractions on two stress 

levels are 0.8. The proportions of the inspection length to the corresponding distribution mean on both stresses are set to 

be 0.1. Besides, based on prior information, it is assumed that units’ lifetimes are Weibull distributed with shape parameter 

1   and a unit is likely to be removed at each inspection with probability 0.1. The problem is to determine the number 

of units used in this ALT sampling plan and to determine the low stress level and the allocation proportions to two stresses 

so that (1) both the consumer’s risk and the producer’s risk can be satisfied and (2) the maximum amount of information 

on units’ lifetime distribution can be collected.  

The optimal ALT sampling plan is obtained using the proposed method. The required sample size is 17, with 7 and 10 

units allocated to the low and high stress levels, respectively. The low stress level should be settled at 0.02 multiplied by 

the actual high stress. Besides, the acceptability constant which is required to make the decision is 5.6560. 

7. Conclusion 

The design of ALT sampling plans under progressive Type II interval censoring with random removals was discussed in 

this paper. For ALT sampling plans with two over-stress levels, the optimal stress levels and the corresponding allocation 

proportions, which minimize the generalized asymptotic variance of the MLE of model parameters, were found. The 

sample size and the acceptability constant required to judge the acceptability of the lot were calculated.  

The properties of the derived ALT sampling plans were examined by a numerical study. It is shown that generally the 

removal probability is helpful in reducing the required sample size. More importantly, when there exists random removal, 

short inspection interval doesn’t always yield small required sample size, which is different from the case of no random 

removal. These interesting patterns would provide useful insights to experimenter in designing similar ALT sampling 

plans. The accuracy of the proposed sampling plans was evaluated by a Monte Carlo simulation. The results show the 

simulated acceptance probabilities are close to their nominal values in most cases, which indicates that the performance of 

the derived ALT sampling plans is satisfactory.  

Table 1. Simulated acceptance probabilities for two over-stress levels ALT sampling plans under progressive Type II 

interval censoring with random removals ( 2m  ; 1  ; 0.00041p  ;1 0.95  ; 0.01840p  ; 0.10  ) 

 

 
  

1 2 0.5c cf f   1 2 0.8c cf f   

n  

Selected points on  

OC curve 

Simulated 

probability n  

Selected points on  

OC curve 

Simulated 

probability 

99%  95%  99%  95%  99%  95%  99%  95%  

0.0p   

0.02 25 0.00016 0.00039 0.987 0.973 17 0.00016 0.00037 0.986 0.967 

0.05 29 0.00018 0.00042 0.984 0.957 19 0.00017 0.00040 0.985 0.963 

0.1 29 0.00016 0.00039 0.982 0.949 19 0.00015 0.00038 0.991 0.970 

0.3 45 0.00017 0.00042 0.966 0.923 24 0.00017 0.00040 0.989 0.953 

0.05p   

0.02 21 0.00018 0.00041 0.992 0.978 17 0.00017 0.00043 0.995 0.972 

0.05 23 0.00016 0.00038 0.991 0.973 17 0.00015 0.00039 0.988 0.965 

0.1 29 0.00017 0.00038 0.989 0.966 17 0.00015 0.00040 0.982 0.972 

0.3 44 0.00017 0.00041 0.972 0.949 24 0.00017 0.00042 0.985 0.933 

0.1p   

0.02 21 0.00019 0.00044 0.991 0.975 17 0.00018 0.00044 0.995 0.974 

0.05 22 0.00016 0.00039 0.994 0.973 17 0.00017 0.00041 0.985 0.971 

0.1 25 0.00016 0.00039 0.985 0.969 17 0.00015 0.00039 0.989 0.957 

0.3 41 0.00016 0.00038 0.968 0.948 24 0.00018 0.00044 0.982 0.962 

0.3p   

0.02 21 0.00016 0.00042 0.992 0.979 17 0.00016 0.00040 0.992 0.970 

0.05 20 0.00016 0.00039 0.997 0.976 15 0.00014 0.00037 0.984 0.968 

0.1 20 0.00014 0.00035 0.992 0.967 17 0.00017 0.00038 0.988 0.978 

0.3 37 0.00015 0.00039 0.973 0.945 22 0.00017 0.00042 0.982 0.955 

 

 
  

1 20.5, 0.7c cf f   1 20.5, 0.9c cf f   

n  
Selected points on 

OC curve 

Simulated 

probability 
n  

Selected points on 

OC curve 

Simulated 

probability 
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99%  95%  99%  95%  99%  95%  99%  95%  

0.0p   

0.02 21 0.00015 0.00040 0.991 0.974 18 0.00017 0.00042 0.989 0.956 

0.05 22 0.00016 0.00037 0.989 0.969 17 0.00015 0.00036 0.992 0.967 

0.1 24 0.00016 0.00039 0.984 0.961 19 0.00017 0.00042 0.990 0.948 

0.3 31 0.00016 0.00038 0.977 0.954 24 0.00017 0.00042 0.985 0.963 

0.05p   

0.02 18 0.00017 0.00039 0.994 0.976 17 0.00019 0.00041 0.994 0.965 

0.05 21 0.00018 0.00043 0.984 0.967 17 0.00016 0.00041 0.992 0.962 

0.1 21 0.00016 0.00038 0.981 0.977 19 0.00018 0.00042 0.987 0.969 

0.3 31 0.00016 0.00040 0.979 0.947 22 0.00016 0.00038 0.981 0.964 

0.1p   

0.02 17 0.00015 0.00037 0.994 0.975 17 0.00015 0.00042 0.999 0.972 

0.05 19 0.00017 0.00041 0.997 0.973 17 0.00016 0.00042 0.994 0.968 

0.1 19 0.00014 0.00038 0.990 0.973 17 0.00015 0.00039 0.994 0.969 

0.3 30 0.00017 0.00042 0.979 0.950 22 0.00017 0.00042 0.982 0.951 

0.3p   

0.02 19 0.00017 0.00041 0.995 0.971 17 0.00017 0.00040 0.993 0.967 

0.05 18 0.00015 0.00038 0.995 0.978 17 0.00016 0.00038 0.993 0.975 

0.1 19 0.00016 0.00040 0.988 0.980 17 0.00016 0.00040 0.990 0.970 

0.3 27 0.00016 0.00038 0.985 0.961 21 0.00017 0.00040 0.983 0.967 

  



 

 

http://ijsp.ccsenet.org                  International Journal of Statistics and Probability                 Vol. 7, No. 1; 2018 

35 

Table 2. Simulated acceptance probabilities for three over-stress levels ALT sampling plans under progressive Type II 

interval censoring with random removals ( 3m  ; 1  ; 0.00041p  ;1 0.95  ; 0.01840p  ; 0.10  ) 

Case I.    1 2 3: : 1/ 3,  1/ 3,  1/ 3     

 
  

1 2 3 0.5c c cf f f    1 2 3 0.8c c cf f f    1 2 30.5, 0.7, 0.9c c cf f f    

n

 

Selected 

points 

Simulated 

probabilities n

 

Selected 

points 

Simulated 

probabilities n

 

Selected 

points 

Simulated 

probabilities 

99%  95%  
99%

 

95%

 
99%  95%  

99%

 

95%

 
99%  95%  

99%

 

95%

 

0.0p   

0.02 
2

8 
0.00016 0.00041 0.991 0.972 19 0.00019 0.00043 0.994 0.964 20 0.00017 0.00043 0.996 0.972 

0.05 
2

9 
0.00016 0.00041 0.987 0.947 19 0.00017 0.00042 0.988 0.973 21 0.00018 0.00044 0.984 0.959 

0.1 
3

0 
0.00015 0.00040 0.991 0.947 18 0.00015 0.00038 0.988 0.952 21 0.00016 0.00042 0.987 0.963 

0.3 
4

2 
0.00016 0.00038 0.961 0.936 27 0.00018 0.00041 0.983 0.969 27 0.00017 0.00040 0.980 0.953 

0.05p 
 

0.02 
2

1 
0.00019 0.00045 0.992 0.971 17 0.00017 0.00042 0.993 0.970 18 0.00017 0.00042 0.998 0.969 

0.05 
2

5 
0.00016 0.00038 0.985 0.961 17 0.00017 0.00042 0.986 0.968 19 0.00018 0.00042 0.997 0.964 

0.1 
2

9 
0.00016 0.00039 0.989 0.960 18 0.00016 0.00039 0.988 0.973 20 0.00017 0.00042 0.989 0.978 

0.3 
4

2 
0.00016 0.00042 0.976 0.938 27 0.00019 0.00042 0.980 0.967 27 0.00017 0.00043 0.983 0.953 

0.1p 
 

0.02 
1

9 
0.00016 0.00037 0.994 0.975 17 0.00017 0.00041 0.993 0.966 17 0.00015 0.00038 0.981 0.969 

0.05 
2

2 
0.00017 0.00041 0.990 0.972 17 0.00017 0.00042 0.991 0.973 18 0.00018 0.00040 0.988 0.967 

0.1 
2

9 
0.00018 0.00043 0.990 0.963 17 0.00016 0.00039 0.990 0.964 19 0.00016 0.00039 0.996 0.951 

0.3 
4

2 
0.00016 0.00040 0.989 0.946 25 0.00016 0.00041 0.983 0.952 27 0.00018 0.00042 0.977 0.956 

0.3p 
 

0.02 
2

1 
0.00016 0.00040 0.997 0.978 17 0.00017 0.00041 0.995 0.974 19 0.00017 0.00039 0.990 0.968 

0.05 
2

1 
0.00018 0.00042 0.994 0.971 17 0.00018 0.00041 0.992 0.970 18 0.00016 0.00041 0.995 0.963 

0.1 
2

1 
0.00017 0.00038 0.985 0.967 17 0.00016 0.00040 0.993 0.954 19 0.00018 0.00042 0.991 0.977 

0.3 
3

3 
0.00016 0.00039 0.976 0.964 24 0.00016 0.00042 0.989 0.974 23 0.00016 0.00039 0.987 0.956 
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Table 2.(Cont’d) Simulated acceptance probabilities for three over-stress levels ALT sampling plans under progressive 

Type II interval censoring with random removals ( 3m  ; 1  ; 0.00041p  ;1 0.95  ; 0.01840p  ; 0.10  ) 

Case II.    1 2 3: : 0.5,  0.3,  0.2     

 

  

1 2 3 0.5c c cf f f  
 1 2 3 0.8c c cf f f  

 1 2 30.5, 0.7, 0.9c c cf f f  
 

n  

Selected 

points 

Simulated 

probabilities n  

Selected 

points 

Simulated 

probabilities n  

Selected 

points 

Simulated 

probabilities 

99%  95%  99%  95%  99%  95%  99%  95%  99%  95%  99%  95%  

0.0p 
 

0.02 27 0.00017 0.00039 0.995 0.970 19 0.00018 0.00044 0.990 0.974 20 0.00018 0.00044 0.995 0.971 

0.05 29 0.00017 0.00043 0.984 0.962 19 0.00016 0.00042 0.991 0.961 20 0.00017 0.00042 0.993 0.966 

0.1 31 0.00017 0.00041 0.988 0.965 20 0.00018 0.00041 0.989 0.969 22 0.00019 0.00044 0.982 0.969 

0.3 45 0.00016 0.00041 0.964 0.942 27 0.00018 0.00044 0.983 0.962 31 0.00017 0.00040 0.973 0.969 

0.05p 
 

0.02 19 0.00016 0.00040 0.988 0.979 17 0.00018 0.00041 0.995 0.972 17 0.00018 0.00040 0.991 0.975 

0.05 22 0.00016 0.00041 0.989 0.966 17 0.00015 0.00039 0.989 0.974 17 0.00016 0.00040 0.990 0.965 

0.1 28 0.00017 0.00040 0.987 0.962 19 0.00018 0.00042 0.988 0.964 20 0.00016 0.00040 0.993 0.959 

0.3 45 0.00017 0.00042 0.981 0.955 22 0.00015 0.00039 0.984 0.951 27 0.00015 0.00036 0.982 0.965 

0.1p 
 

0.02 19 0.00017 0.00041 0.998 0.974 16 0.00017 0.00042 0.988 0.975 17 0.00018 0.00040 0.988 0.977 

0.05 22 0.00018 0.00044 0.991 0.971 17 0.00017 0.00041 0.987 0.974 17 0.00017 0.00039 0.991 0.966 

0.1 27 0.00017 0.00042 0.990 0.955 18 0.00017 0.00040 0.989 0.966 20 0.00017 0.00042 0.991 0.976 

0.3 42 0.00015 0.00038 0.970 0.941 22 0.00016 0.00038 0.985 0.962 27 0.00015 0.00038 0.981 0.953 

0.3p 
 

0.02 21 0.00016 0.00038 0.993 0.976 17 0.00016 0.00041 0.992 0.966 19 0.00017 0.00043 0.996 0.982 

0.05 21 0.00015 0.00041 0.994 0.974 17 0.00017 0.00041 0.989 0.969 17 0.00016 0.00039 0.991 0.972 

0.1 21 0.00015 0.00037 0.990 0.969 17 0.00015 0.00039 0.989 0.968 19 0.00017 0.00042 0.986 0.977 

0.3 35 0.00016 0.00041 0.980 0.960 21 0.00016 0.00040 0.984 0.967 27 0.00017 0.00042 0.985 0.952 
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