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Abstract

Given Gaussian observation vectors [Y1, . . . ,Yn] having a common mean and dispersion matrix, a pervading issue is
to identify shifted observations of type {Yi → Yi +δi}. Conventional usage enjoins Hotelling’s T2

i diagnostics, derived
and applied under the mutual independence of [Y1, . . . ,Yn]. Independence often fails, yet the need to identify outliers
nonetheless persists. Accordingly, the present study reexamines T2

i under dependencies to include equicorrelations and
more general matrices. Such dependencies are found in the analysis of calibrated vector measurements and elsewhere. In
addition, mixtures of these distributions having star–shaped contours arise on occasion in practice. Nonetheless, the T2

i
diagnostics are shown to remain exact in level and power for all such mixtures. Moreover, further matrix distributions,
not necessarily having finite moments, are seen to generalize n–dimensional spherical symmetry to include non–Gaussian
matrices of order (n×k) supporting T2

i . For these the use of T2
i remains exact in level. These findings serve to expand

considerably the range of applicability of T2
i in practice, to include matrix Cauchy and other heavy tailed distributions

intrinsic to econometric and other studies. Case studies serve to illuminate the methodology.

Keywords Outlying data, deletion diagnostics, dependent errors, Hotelling’s T 2

1. Introduction

Let Y0 = [Y1, . . . ,Yn]′ comprise n vectors {Y′i = [Yi1, . . . ,Yik]; 1≤ i≤n} having identical means E(Y′i )=µ′ = [µ1, . . . , µk] and
dispersion matrix {V(Yi) = Σ; 1≤ i≤n}. The model is {Y0 = 1n ·µ′ + E0}, where E0 = [ ϵi j] consists of random errors, and
E0 = [ ei j] contains the ordinary observed residuals. The problem at issue, and of persistent concern to users, is whether
shifts of type {Yi→Yi+δi} in Rk may have occurred. Numerous approaches have been advocated, to include graphics
and numerical diagnostics. Selected references are listed subsequently; a recent survey is Rodrigues and Boente (2011).
Prominent deletion diagnostics are modeled on Mahalanobis (1936) distance metrics in Rk.

Under single–case deletions, the rows [Y′i , ϵ
′
i] are removed from [Y0,E0], retaining Y from Y0 = [Y′,Yi]′ and ei from

E0= [E′, ei]′. For k=1, with S 2
i as the residual mean square, the R–Student statistics t2

i =n e2
i /(n−1)S 2

i trace to Snedecor
and Cochran (1968, page 157) in testing for a single shift {Yi+δi}; see also Beckman and Trussell (1974). Corresponding
to t2

i for k>1 are Hotelling’s (1931) diagnostics T2
i given byT2

i =
n e′iS

−1
i ei

(n−1)
; 1≤i≤n

 (1)

where (n−1)Si = Y′Y. In having exact and well documented normal–theory operating characteristics, these remain the
diagnostics of choice for many users. Initially derived under normality and the mutual independence of [Y1, . . . ,Yn], these
assumptions continue to validate the use of T2

i up to the present. For early developments see Caroni (1987), and more
recently Barrett and Ling (1992) and Barrett (2003), together with references cited. Clearly independence often fails in
practice, yet the need to identify outliers nonetheless persists.

As background, precedents for this study in the case k=1 include t2
i and the diagnostics of Dixon (1950), Grubbs (1950),

and Ferguson (1961) based on order statistics. As reassessed in Jensen and Ramirez (2015), all remain exact in level
and power under dependent ensembles of distributions in Rn, and for mixtures over these ensembles having star–shaped
contours.

The objectives of this research are to extend those findings to include mixture distributions for Gaussian matrices Y0 =

[Y1, . . . ,Yn]′ having dependent elements with the direct–product structure V(Y0)=Ω ⊗Σ, and for mixtures of these. Here
Ω is taken as an equicorrelation matrix Ω(ρ) or the more general Ω(ξ) to be identified. In addition, left–spherical matrix

24



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 6, No. 6; 2017

distributions serve to generalize the notion of spherical symmetry on Rn, thereby to encompass matrix stable laws and
Cauchy distributions. For the latter the use of T2

i nonetheless is seen to remain exact in level. These findings serve
to expand considerably the range of applicability of T2

i in practice, to include heavy tailed distributions. Accordingly,
normal-theory T2

i diagnostics are seen to be genuinely nonparametric.

Precedents for undertaking the mixtures and dependence structures of this study trace to Box and Tiao (1968) and Aitken
and Wilson (1980), who modeled data from subsamples as Gaussian mixtures. Moreover, among other venues, calibrated
data subject to errors of calibration often are equicorrelated under both direct and inverse calibration, as seen in Jensen and
Ramirez (2009, 2012). The importance of heavy–tailed distributions in economics and finance is highlighted in Ibragimov
et al. (2015). An outline of the study follows.

Preliminary developments are given in Section 2. The principal findings follow in Section 3, and some consequences of
these are detailed through examples in Section 4. Critical supporting topics, to include essential matrix distributions, are
attached for completeness as an Appendix.

2. Preliminaries

2.1 Notation

Spaces of note include the Euclidean n-space Rn; its positive orthant Rn
+; the real (n×k) matrices Fn×k; the symmetric (n×n)

matrices Sn; and their positive definite varieties S+n . Vectors and matrices are set in bold type; the transpose, inverse, trace,
and determinant of A are A′, A−1, tr(A), and |A|; In is the (n×n) identity; Diag(A1, . . . , Ak) is a block-diagonal array;
and 1′n = [1, . . . , 1] ∈Rn is the unit vector. The direct matrix product is A⊗B = [ai jB]. An idempotent matrix of note is
Bn= (In− 1

n 1n1′n).

A random Y∈Rn has distribution L(Y); the mean vector E(Y) and dispersion matrix V(Y)=Σ, with variance Var(Y)=σ2

on R1. Its density (pd f ) and cumulative distribution function (cd f ) are g(y) and G(y); and its characteristic function
(ch f ) is ϕY(t). Specifically, L(Y) = Nn(µ, Σ) is Gaussian in Rn with mean vector µ and dispersion matrix Σ, whereas
L(Y0) = Nn×k(M,Ω ⊗Σ) is Gaussian in Fn×k with designated parameters. A random W ∈ S+k is said to have the Wishart
distribution Wk(ν,Σ,Θ) of order k, with ν degrees of freedom, the scale parameters Σ, and the noncentrality matrix Θ.
Further details are supplied in Appendix A.1.

Distributions on R1
+ include χ2(u; ν, σ2, λ) as chi-squared with argument u, having ν degrees of freedom, the scale param-

eter σ2, and noncentrality λ; and Hotelling’s (1931) T 2
k (u; ν, λ) of order k having ν degrees of freedom and noncentrality

parameter λ. Moreover, F(u; ν1, ν2, λ) is the noncentral Snedecor–Fisher F–distribution having ν1 and ν2 degrees of free-
dom, which increases stochastically with the noncentrality parameter λ. Identify {T2

i > cα} as the conventional α–level
rejection rule based on T 2

k (u; ν, 0).

2.2 The Model

We specialize from the model {Y0 = X0B+E0} with Y0 = [Y1, . . . ,Yn]′ ∈ Fn×k, X0 = [x1, . . . , xn]′ ∈ Fn×d of rank d < n with
xi as design point i, and B = [β1, . . . ,βk] ∈ Fd×k. Under single–case deletions E0 = [E′, ϵ i]′ consists of random errors;
E0= [E′, ei]′ are ordinary residuals; and Hn=X0(X′0 X0)−1X′0.

Definition 1. In particular, we take {Y0=1n ·µ′ +E0} and Hn=1n1′n/n in keeping with the objectives of this study.

To continue, extended Gauss-Markov assumptions take V(Y0)=Ω⊗Σ, whereΩ takes valuesΩ(ρ) (equivalentlyΩ(θ)) and
Ω(ξ) as in Section 2.3.

Assumptions A. The following hold for a model with a single shift.

A1. E(E0)=∆= [O′, δi]′ with O(n−1×k) a matrix of zeroes such that E(E)=O and E(ϵ i)=δi;

A2. V(E0)=Ω ⊗Σ with Ω∈{Ω(ρ),Ω(ξ)}; and

A3. L(E0)=Nn×k(∆,Ω ⊗Σ) for Ω∈{Ω(ρ),Ω(ξ)}.
As in conventional deletion diagnostics, this represents a shift {Yi→Yi+δi} at the design point xi (now the index i) in X0.

2.3 The Matrices Ξ

Validity in linear inference rests in part on the structure of dispersion matrices. Three cases are considered, namely Ω(θ),
Ω(ξ), and Ω(ρ) where, for ξ′= [ξ1, . . . , ξn], we have τ1= ξ1+ . . . + ξn=nξ and τ2=

∑n
i=1(ξi−ξ)2. Details follow, where

α1=
1
2

[τ1+(τ2
1+4nτ2)

1
2 ] and αn=

1
2

[τ1−(τ2
1+4nτ2)

1
2 ]. (2)

25



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 6, No. 6; 2017

Lemma 1. (i) LetΩ(θ) = σ2(In + θ1n1′n); its eigenvalues are 1.0, with multiplicity n−1, and 1+nθ, so thatΩ(θ) is positive
definite if and only if θ∈Γ1= {θ :θ>− 1

n }.

(ii) Let Ω(ξ) = σ2(In+ 1nξ
′+ ξ1′n− ξ1n1′n) with 0,ξ, θ1n; its ordered eigenvalues are {κ1=1+α1, κ2= . . .= κn−1=1, κn=

1+αn} as in (2.1); then Ω(ξ) is positive definite if and only if ξ∈Γ2= {ξ∈Rn :τ1>nτ2−1}.
(iii) Let Ω(ρ)= σ2[(1−ρ)In+ ρ1n1′n], the equicorrelated case; then Ω(ρ) is positive definite if and only if ρ∈Γ3= {ρ :− 1

n−1 <
ρ<1}.

Proof. Details are given in Jensen (1996).�
That Ω(θ) and Ω(ρ) are equivalent follows on taking θ = ρ/(1−ρ), so that Ω(θ) = 1

1−ρΩ(ρ). Accordingly, the collections
Ξ1 = {Ω(θ); θ ∈ Γ1}, equivalently, Ξ1 = {Ω(ρ); ρ ∈ Γ3}, and Ξ2 = {Ω(ξ); ξ ∈ Γ2}, comprise ensembles of positive definite
matrices, to be amalgamated as Ξ=Ξ1∪Ξ2. For further details see Jensen (1996).

2.4 Mixture Distributions

From Assumption A1 let Λ = 1n ·µ′+∆ and consider gn×k(y;Λ,Ω ⊗Σ) in Fn×k as the Gaussian density corresponding to
Nn×k(Λ,Ω ⊗ Σ) as in Appendix A.1. These generate ensembles as Ω ranges over Ξ, namely

E1 ={gn×k(y;Λ,Ω(θ)⊗Σ); θ∈Γ1} (3)
E2 ={gn×k(y;Λ,Ω(ξ)⊗Σ); ξ∈Γ2}. (4)

Next visualize the ensemble E1 to have mixing parameters θ, and E2 to have mixing parameters ξ. Then mixtures in Fn×k
of type

fi(y;Λ,Gi)=
∫
Γi

gn×k(y;Λ, Ω(i)⊗Σ)dGi(·) (5)

emerge with Gi ∈ {G1,G2} as cd f s on Γi ∈ {Γ1,Γ2}, and with Ω(i) ∈ [Ω(θ),Ω(ξ)]. In particular, the densities f1(y;Λ,G1)
and f2(y;Λ,G2) are dispersion mixtures of elliptical Gaussian distributions on Fn×k centered at Λ ∈ Fn×k. Let G1 and G2
comprise all cd f s on Γ1 and Γ2, respectively; these in turn generate the collections

M1 = { f1(y;Λ,G1); G1 ∈G1} (6)
M2 = { f2(y;Λ,G2); G2 ∈G2} (7)

comprising all dispersion mixtures of the referenced types.

3. The Principal Findings

3.1 Overview

Taking {Y0 = 1n ·µ′+E0} in Fn×k as in Definition 1, we rearrange elements such that Y0 = [Y′, Yi]′, E0 = [E′, ϵ i]′, and
E0 = [E′, ei]′, and consider arbitrary shifts {Yi → Yi+δi}. Nonstandard versions of L(T2

i ) as in expression (1) are to be
studied, but where the independence of {Y1, . . . ,Yn} fails. Instead take L(Y0) = Nn×k(M,Ω ⊗ Σ) with Ω ∈ {Ω(ρ),Ω(ξ)},
equivalentlyΩ∈{Ω(θ),Ω(ξ)}, as the basic model undergirding the T2

i diagnostics. Here M=Λ=1n·µ′+∆ from Assumption
A1. It is seen that shifts {Yi→ Yi+δi} propagate into noncentralitiy parameters of L(T2

i ). These findings in turn rest on
matrices of quadratic and bilinear forms of type Y′0AY0 in the observed data matrix Y0 ∈Fn×k as in Appendix A.1. Here Yi

is a generic test case; another would entail rearranging Y0 as Y0= [Y′,Yj]′.

3.2 Properties of Residuals

The observed residuals E0 under Assumptions A are germane, as T2
i is a function of these. In particular, it remains to

evaluate E(ei), Var(ei) and L(ei) as special cases. Details follow, where r= (n−1) and E(E0)=∆= [0′, δi]′ as Assumption
A1, and Bn= (In− 1

n 1n1′n).

Theorem 1. Consider the ordinary residuals E0= [E′, ei]′ under Assumptions A, withΩ∈{Ω(θ),Ω(ξ)}, and let T (E0) be
a mapping to a linear space V. Then the following properties hold independently of Ω∈{Ω(θ),Ω(ξ)}.
(i) V(E0)=Bn⊗Σ and L(E0)=Nn×k(∆, Bn⊗Σ);

(ii) E(ei)= r
nδi, V(ei)= r

nΣ, and L(ei)=Nk( r
nδi,

r
nΣ);

(iii) L(T (E0|Ω))=L(T (E0 | In)).
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Proof. Observe from E0=BnY0 and the conventions of Appendix A.1 that V(E0)=BnΩBn⊗Σ=Bn⊗Σ forΩ∈{Ω(θ),Ω(ξ)},
since Bn1n=0 annihilates successive terms in expansions for Ω(θ) and Ω(ξ) in the product terms following the first. This
together with Assumption A3 gives (i). The expected product E(E0)= (In− 1

n 1n1′n)∆ in partitioned form is

E

[
E
e′i

]
=

1
n

[
(nIr−1r1′r ) −1r

−1′r r

] [
0
δ′i

]
=

1
n

[
−1rδ

′
i

rδ′i

]
. (8)

Thus E(ei) = rδi/n and V(ei) = r
nΣ is the (n, n) block of Bn ⊗Σ which, together with normality, give conclusion (ii).

Conclusion (iii) follows directly. �
3.3 Nonstandard Matrix Forms

Generalizing from Lemma A.1(iii) of Jensen (2001a) and from Jensen and Ramirez (2014) in extending to include matrix
arrays, the multivariate Fisher–Cochran expansion generating T2

i is

Y′0 A1Y0+Y′0 A2Y0 = Y′0 A3Y0; (9)
n
r

eie′i + (r−1)Si = E′0E0; (10)

where (ei, δi) are of order (k×1), and the second line explains the first. Moreover, (A1, A2, A3) are idempotent as given
explicitly in Jensen and Ramirez (2015), namely, A3 = Bn = (In− 1

n 1n1′n), A2 = Diag(Br, 0) with Br = (Ir− 1
r 1r1′r ), and

A1= A3−A2. To continue, designate the aforementioned matrix forms as Q1=Y′0A1Y0, Q2=Y′0A2Y0, and Q3=Y′0A3Y0, and
recall that M=Λ=1n ·µ′+∆.

Theorem 2. Given L(Y0) = Nn×k(Λ,Ω ⊗ Σ) under Assumptions A; take E0 = BnY0; and consider the matrix forms
{Q1, Q2, Q3} as in (9). Then despite dependencies among elements of Y0= [Y1, . . . ,Yn]′ we have for eachΩ∈{Ω(θ),Ω(ξ)}
the following.

(i) L(Q1)=Wk(1;Σ,Θi), Θi=
r
nδiδ

′
i ;

(ii) L(Q2)=Wk(r−1;Σ, 0);

(iii) L(Q3)=Wk(r;Σ,Θi);

(iv) Q1 and Q2 are distributed independently;

(v) T2
i = (r−1) tr Q1Q−1

2 ;

(vi) {L(T2
i ) = T 2

k (u; r−1, λi); λi=
r
nδ
′
iΣ
−1δi; 1≤i≤n}.

Proof. Fix u ∈ Rk and let {Qu
i = u′Y′0 AiY0u; i = 1, 2, 3}, such that L(u′Y0) = Nn(u′Λ, σ2

uΩ) with σ2
u = u′Σu. Drawing

on Mathai and Provost (1992, page 201), Jensen and Ramirez (2015) established conclusions (i)–(iv) for (Qu
1 ,Q

u
2 ,Q

u
3}

in terms of the corresponding χ2 distributions on demonstrating that {AiΩAi = Ai; i = 1, 2, 3} and that A1ΩA2 = 0
for Ω ∈ {Ω(θ),Ω(ξ)}, as in Appendix A.1 of Jensen and Ramirez (2015). Theorem A.1 of the attached Appendix now
lifts those results to encompass the Wishart distributions of conclusions (i)–(iv). Conclusion (v) follows directly from
expressions (1) and (10), and conclusion (vi) as the Wishart analog of the noncentral properties of Theorem A.1 of Jensen
and Ramirez (2015). �
3.4 Invariance under Mixtures

That the T2
i diagnostics may be valid under star–contoured errors is the subject of the following, where Λ=1n ·µ′+∆ as in

Assumption A1.

Theorem 3. Given the model {Y0=Λ+E0} having a Gaussian mixture density f1(y0;Λ,G1) in M1 or f2(y0;Λ,G2) in M2
as in Section 2.4.

(i) Tests using T2
i remain exact in level and power for all mixtures in M1;

(ii) Tests using T2
i remain exact in level and power for all mixtures in M2;

(iii) These T2
i distributions are identical to those derived from L(Y0)=Nn×k(Λ, In⊗Σ).

Proof. Return to Section 2.4 and expression (5). We argue conditionally as follows: (i) Fix Ω ∈ {Ω(θ),Ω(ξ)}; (ii) note
from Theorem 3.2(vi) that L(T2

i ) holds independently of Ω; then (iii) make the change–of–variables behind the integral,
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to conclude for {i=1, 2} that

fi(y0,Λ,Gi) =
∫
Γi

gn×k(y0;Λ,Ω⊗Σ)dGi(·)

fi(y0,Λ,Gi)→
∫
Γi

T 2
k (u; r−1, λi)dGi(·) = T 2

k (u; r−1, λi)

independently of Ω∈{Ω(θ),Ω(ξ)} and of Gi, and since
∫
Γi

dGi=1. �
3.5 Left–Spherical Matrix Distributions

Other structured distributions are germane. This section draws heavily from Jensen and Good (1981).

Definition 2. A distribution on Fn×k is left–spherical provided that L(X)=L(PX) for every orthogonal matrix P∈O(n).
Denote by Ln×k(0, In) the class of left–spherical matrix distributions centered at the origin in Fn×k, in which case its ch f
has the form ϕX=ψ(tr T′T) with argument T∈Fn×k.

Nor are these required to have moments of various orders: examples are the left–spherical stable laws on Fn×k having ch f s
of type

ϕX(T) = exp(γ[tr(T′T)]
α
2 ) (11)

with parameters {γ<0, 0<α<2} of which the matrix Cauchy law with α=1 is a noteworthy special case. In addition, the
shift {X→Z=X+ M} gives L(Z)=Ln×k(M, In).

To continue, let M be a linear subspace of Fn×k. The following is fundamental.

Definition 3. The transformation T : Fn×k→V is said to be translation–invariant with respect to M if, for each Z ∈Fn×k
and M∈M, T (Z+M)=T (Z). In addition, T is right–invariant under Gl(k) if, for every B∈Gl(k), T (ZB)=T (Z.)

The following is given as Theorem 2 of Jensen and Good (1981).

Lemma 2. Suppose L(Z)∈ {Ln×k(M, In); M ∈M}, and let the transformation T : Fn×k →V be translation–invariant with
respect to M and be right–invariant under Gl(k). Then the distribution of T (Z) is the same for all L(Z) ∈ Ln×k(M, In)
independently of M, and thus is identical to its matrix normal theory form.

We next examine T2
i under L(Y0)=Ln×k(Λ, In), where Λ=1n ·µ′+[O′, δi]′ with O(r×k) a matrix of zeroes as in Assumption

A1. We proceed in two steps, first taking Y0→GY0, then the latter into T2
i , namely,

GY0 =

[
Br 0
− 1

n 1′r (1 − 1
n )

] [
Y
Y′i

]
=

[
BrY
e′i

]
→ n

r
e′i[Y

′BrY]−1ei = T
2
i . (12)

As BrY contains deviations from means, it is clear that (n− 1)Si = Y′BrY. In addition, the final row of G is u′ =
[− 1

n , . . . ,−
1
n , (1 −

1
n )], so that u′Y0=e′i . Moreover, under Assumptions A, E(BrY)=O and E(ei)=δi.

To continue, let M= {1n ·µ′ |µ∈Rk}. We have the following.

Theorem 4. Suppose that L(Y0)∈{Ln×k(M, In); M∈M}, and consider testing H0 :δi=0 against H1 :δi,0.

(i) Then the null distribution of T2
i is the same for all L(Y0)∈{Ln×k(M, In); M∈M} and thus is identical to its matrix normal

theory form.

(ii) This holds in particular for every left–spherical stable law on Fn×k having moments of order up to but excluding α.

Proof. Conclusion (i) follows directly from Lemma 2, where the translation invariance of T2
i , and its right–invariance

under Gl(k), are readily apparent. Observe that developments including the definition of M are devoid of δi, i.e. δi = 0,
so that Lemma 2 establishes invariance of the null distribution L(T2

i |H0). Conclusion (ii) follows on recognizing that
moments are not required in the developments of earlier sections. Specifically, Λ = 1n · µ′+ [O′, δi]′ of Assumptions A
may be taken to be location and shift parameters without first moments, and the earlier dispersion parameters In⊗Σ serve
instead as scale parameters of the distributions in lieu of second moments. �
Remark 1. It is nothing short of remarkable that operating characteristics of T2

i should be identical under matrix Cauchy
errors as under matrix Gaussian errors. The importance of heavy–tailed distributions in economics and finance is high-
lighted in Ibragimov et al. (2015) as noted.
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4. Case Studies

4.1 Overview

Calibrated data often entail calibration curves, direct or indirect, both injecting dependencies among the calibrated mea-
surements; see Jensen and Ramirez (2009, 2012). These apply in the analysis of univariate data. Another venue adjusts
observations directly to a common standard, as in compensating for the tare weight of a scale, or in assessing yield incre-
ments relative to a control yield as in Jensen (2001b). Subsequent examples fall within the latter framework, which we
develop next for multivariate data amenable to Hotelling’s T2

i diagnostics.

In short, observations Y0 = [Y1, . . . ,Yn]′ from {Y0 = 1nµ
′+E0} are sought. For Case I the user sees Z0 = [Z1, . . . , Zn]′

having {Zj =Yj + W∈Rk; 1≤ j≤n} with scalar shifts W= [ W1, . . . , Wk ] often themselves random. To model this we proceed
as follows: (a) Append Y†0 = [Y1, . . . ,Yn, W]′; (b) suppose that V(Y†0)= IN⊗Σ with N = n+1; and (c) let A= [In, 1n]. Then
Z0= AY†0 ∈Fn×k. For Case II, if rows of Y0 are to be adjusted instead against W as standard, then {Zj= (Yj − W); 1≤ j≤n} and
A= [In,−1n]. To continue, in both cases we have V(Z0)= AINA′⊗Σ from Remark A.1. In what follows we parallel steps
given heretofore in working from Y0 to T2

i .

Lemma 3. Begin with Z0 as constructed; rearrange as Z0= [Z′, Zi]′ with Zi as the test case; and determine T2
i from Z0

as before using Y0. Then

(i) The residuals R0=BnZ0 have V(R0)= Bn⊗Σ independently of W;

(ii) L(T2
i )=T 2

k (u; r−1, λi) independently of W, with λi=
r
nδ
′
iΣ
−1δi;

(iii) T2
i remains exact in level and power for all mixtures in M1 of (5);

(iv) These T2 distributions are identical to those initially derived from the unadjusted L(Y0)=Nn×k(Λ, In⊗Σ).

Proof. Taking V(Z0)= AA′⊗Σ from A= [In,±1n], it follows that Bn AA′Bn⊗Σ= Bn⊗Σ since Bn is idempotent, to give
conclusion (i). Conclusion (ii) follows directly, setting the stage so that conclusions (iii)–(iv) now follow from Theorem
3, to complete our proof. �
Remark 2. Observe that a fractional adjustment {Zj = (Yj ± κ W); 1≤ j≤n} can be achieved on taking A= [In,±κ 1n]. The
stated conclusions follow directly if so modified.

4.2 Simulation Studies

As developments heretofore are tedious, convoluted, and unconventional, it is instructive to demonstrate Theorem 2 and
then Theorem 3. Details follow.

(i) Induced Correlations.

Accordingly, N = 40, 000 random samples Y0 ∈ Fn×k of size n=10 and k=2 were generated from Nn×k(0, In⊗Σ) with rows
as independent bivariate Gaussian vectors having zero means and dispersion matrix Σ =

[
1.0 0.8
0.8 1.0

]
. Correlations among

rows were induced through Y0→ Z0 = [Ω(θ)]
1
2 Y0 using the spectral square root, so that V(Z0) =Ω(θ)⊗Σ using Remark

A.1. In consequence, rows of Z0 are equicorrelated with ρ=θ/(1+θ) and, to illustrate, we vary ρ∈ [ 0.0, 0.2, 0.5, 0.8] with
corresponding θ∈ [ 0.00, 0.25, 1.00, 4.00]. MINITAB was used for all the simulations.

Table 1 reports the empirical critical values for T2
i corresponding to tabulated critical values cα from Theorem 2(vi) such

that L(T2
i )= T 2

k (u; r−1, 0). The row being evaluated for a potential shift is set to i= 10. Computations yielding T2
i were

undertaken for each repetition, with results as summarized in Table 1.

Table 1. Tabulated and empirical critical values for {T2
i ≥cα}, N=40, 000 runs, for correlated Z0 with varying ρ such that

V(Z0) = Ω(θ)⊗Σ with θ=ρ/(1−ρ), n = 10, and k = 2.

α 10% 5% 2.5% 1%

Tabulated cα 7.45 10.83 14.95 21.82
ρ=0.0 7.40 10.77 14.65 21.84
ρ=0.2 7.40 10.77 14.65 21.84
ρ=0.5 7.40 10.77 14.65 21.84
ρ=0.8 7.40 10.77 14.65 21.84
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Table 2. Tabulated and empirical powers for {T2
i ≥cα}, N=40, 000, with varying shifts δ′= [δ1, δ2] for correlated Z0 such

that V(Z0)=Ω(θ)⊗Σ with θ=1, n=10, and λi=
r
nδ
′
iΣ
−1δi.

δ1 δ2 k r−k λi Tabulated Power Empirical Power
0 0 2 7 0.000 0.0500 0.0496
1 1 2 7 1.000 0.1020 0.1036
2 2 2 7 4.000 0.2848 0.2822
3 3 2 7 9.000 0.5670 0.5647
4 4 2 7 16.000 0.8188 0.8177
5 5 2 7 25.000 0.9504 0.9499

Table 2 reports the empirical power for T2
i with noncentrality parameter λi =

r
nδ
′
iΣ
−1δi as in Theorem 2(vi). The corre-

sponding tabulated power as in Theorem 2(vi) is from L(T2
i )=T 2

k (u; r−1, λi), where the shifts were added to the residual
for row i=10. Table 2 demonstrates that the powers for Hotelling’s T2

i diagnostics under equicorrelated data are equivalent
to those tabulated for independent data. Recalling that L( r−k

k(r−1)T
2
i )= F(u; k, r−k, λi), the noncentral F probabilities were

computed using the Keisan Online Calculator provided by the Casio Computer Co., Ltd.

(ii) Mixture Experiments.

To demonstrate the validity of T2
i in mixture distributions as in Theorem 3, N = 40, 000 random samples Y0 ∈Fn×k of size

n = 10 and k = 2 were generated from Nn×k(0, In⊗Σ) having zero means and dispersion matrix Σ =
[

1.0 0.8
0.8 1.0

]
. As before,

correlations among the rows were induced through Y0→Z1= [Ω(θ1]
1
2 Y0 so that V(Z1)=Ω(θ1)⊗Σ using Remark A.1. This

was repeated with Y0→Z2= [Ω(θ2]
1
2 Y0 to form another correlated data set.

For a 50%–50% mixture, m=5 observations were randomly chosen from each of Z1 and Z2 and stacked in random order
to form a data set of order (10 × 2). Table 3 reports the empirical critical values for T2

i from Theorem 2(v), with the
corresponding tabulated critical values cα from Theorem 2(vi) where L(T2

i ) = T 2
k (u; r−1, 0). Values ρ ∈ [ 0.0, 0.2, 0.5 ]

were used with θ=ρ/(1−ρ). The row being evaluated for a potential shift was set to be i = 10.

Table 3. Tabulated and empirical critical values for {T2
i ≥cα}, N = 40, 000, with varying ρ, for 50%-50% mixtures with

correlated Z1 having V(Z1)=Ω(θ1)⊗Σ, and with Z2 having V(Z2)=Ω(θ2)⊗Σ, where θ=ρ/(1 − ρ), m=5, k=2, and n=10.

Ω(θ1) Ω(θ2) 10% 5% 2.5% 1%
ρ1=0.0 ρ2=0.0 7.40 10.77 14.65 21.84
ρ1=0.0 ρ2=0.2 7.50 10.83 15.07 21.90
ρ1=0.0 ρ2=0.5 7.31 10.51 14.55 21.41
ρ1=0.2 ρ2=0.5 7.21 10.29 14.27 20.90

Tabulated cα 7.45 10.83 14.95 21.82

Table 3 demonstrates empirically the invariance of T2
i in mixture experiments. Observe that the second and third cases

comprise contamination of In⊗Σ, the classical model, with 50% contamination using Ω(θ)⊗Σ.
4.3 Running Times Example

Woodward (1970) studied the running times for n=22 baseball players who ran three different paths rounding first base.
These data, as used by Morrison (2005) to test for outliers, are reported in Appendix Table 7. The times that appear to be
abnormal are those for Player 14 and Player 22. Using T2

i we see in Table 4 that the running times for Player 22 are indeed
outlying with p–value 0.0138. Times for Player 14 are not flagged as outliers. However, the last four rows of Table 4 give
T2

i for Player 14 assuming improvements in his running times in units of δ ∈ [ 0.1, 0.2, 0.3, 0.4 ].

Beckett (1977) has identified that the n = 22 data points consist of two clusters, namely [2, 4, 5, 7–15, 17, 19–22] and
[1, 3, 6, 16, 18], where each cluster consists of correlated data. Observe that the rank order of the times [Y1,Y2,Y3] for
Players 1, 6, and 18 differ from the rank order for other players. In consequence, Morrison’s (2005) search for outliers
using T2

i is in dispute when based on the validating model of the day, namely V(Y)= In⊗Σ, instead of the apparent mixing
over clusters.

A fortunate conclusion from Theorems 2 and 3 is that searches for outliers using T2
i now has been validated for data sets

from cohorts which are equicorrelated. And, in addition, even for data sets arising as mixture distributions, in a belated
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Table 4. Values of T2
i for Player 22 and Player 14 with varying improvements δ′= [δ1, δ2, δ3] for Player 14.

Player δ = [δ1, δ2, δ3]′ T2
i n k r − 1 p-value

22 15.589 22 3 20 0.0138
14 4.886 22 3 20 0.2572
14 (−0.1,−0.1,−0.1) 6.835 22 3 20 0.1432
14 (−0.2,−0.2,−0.2) 9.094 22 3 20 0.0744
14 (−0.3,−0.3,−0.3) 11.694 22 3 20 0.0367
14 (−0.4,−0.4,−0.4) 14.624 22 3 20 0.0175

verification of Morrison’s (2005) analysis.

4.4 Adjusting to a Common Standard

Following the notation of Section 4.1, we consider a Case II example in which the data Y0 = [Y1, . . . ,Yn]′ are adjusted
against a standard W= [W1, . . . , Wk].Here N=40, 000 random samples Y0 ∈Fn×k were generated from Nn×k(0, In⊗Σ(ρ)) of size

Table 5. Tabulated and empirical critical values for {T2
i ≥ cα}, N=40, 000 runs, for correlated {Zj=Yj−W} as Yj adjusted

to the standard W, with V(Z0)=Ω(θ)⊗Σ and θ=1.0, ρ=0.5, n=20 and k = 4.

α 10% 5% 2.5% 1%
Tabulated cα 11.33 14.67 18.26 23.49

Empirical cα, ρ=0.5 11.32 14.70 18.24 23.38

n=20 and k=4 with rows as independent Gaussian vectors having zero means and dispersion matrix Σ(ρ)= (1−ρ)I4+ρ141′4
with ρ = 0.8. The standardizing vector W was random from Nk(0,Σ), with {Zj = Yj−W; 1≤ j≤ n} and with Z0 = AY†0
as equicorrelated data with V(Z0) = Ω(θ)⊗Σ, θ = 1.0 and corresponding ρ = θ/(1 + θ) = 0.5. Lemma 3(iii) notes
that T2

i = (r−1)tr(Q1Q−1
2 ) remains exact in level and power for the equicorrelated data. Table 5 reports the tabulated

and empirical critical values for this study, affirming that the critical values remain the same for data equicorrelated by
adjustment to a common standard.

Table 6. Tabulated and empirical powers for {T2
i ≥ c0.05}, N=40, 000 runs, with varying shifts δ′= [δi, δi, δi, δi] for

correlated {Zj=Yj−W} as Yj adjusted to the standard W, with V(Z0)=Ω(θ)⊗Σ and θ=1.0, ρ=0.5, n=20 and k = 4, and
λi=

r
nδ
′
iΣ
−1δi.

δi k r−k λi Tabulated Power Empirical Power
0 4 15 0.000 0.0500 0.0503
1 4 15 1.118 0.0956 0.0933
2 4 15 4.471 0.2683 0.2681
3 4 15 10.059 0.5673 0.5694
4 4 15 17.882 0.8391 0.8388
5 4 15 27.941 0.9661 0.9661

Table 6 reports the tabulated and empirical powers for {T2
i ≥ cα} with c0.05 = 14.67 and with non-centrality parameter

λi =
r
nδ
′
iΣ
−1δi. The shifts δ′i = [δ1, . . . , δ4] used a common value δi and were added to the residuals for row i=20.

5. Conclusions

The objectives set forth in the Introduction now have been met, namely, the construction of dispersion mixtures of matrix
distributions under direct products of the type V(Y0)=Ω⊗Σ, together with the invariance of null and nonnull distributions
of T2

i under such mixtures. Additional findings establish the null distribution of T2
i to be invariant under left–spherical

symmetry, encompassing matrix stable and Cauchy distributions as special cases. These findings do expand considerably
the theoretical bases validating the use of T2

i in practice.

To place this study in perspective, users long have recognized that classical Gaussian models often are inadequate under
the exigencies of contemporary research. Early remedial efforts focused on spherical and elliptical symmetries in Rn, gen-
erating many well known research papers and monographs. More recent studies examine additional structural properties
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in Rn; examples include Arnold et al. (2008), Kamiya et al. (2008), Sarabia and Gómez-Déniz (2008), Richter (2013),
and Richter (2014). These include mixtures, asymmetries, and various star–contoured densities in Rn. Among the latter
are the dispersion mixtures of Jensen and Ramirez (2015), having the remarkable feature that the distributions of t2

i and
those of Dixon (1950), Grubbs (1950), and Ferguson (1961) are all invariant and thus identical to their normal theory
forms.

The present study breaks new ground in extending the n–dimensional mixture distributions of Jensen and Ramirez (2015)
to include star–contoured matrix distributions in Fn×k, together with invariance of the distribution of T2

i . The case studies
offer further insight regarding the extended uses of T2

i in practice.

A Appendix

A.1 Matrix Distributions

We collect basics for matrix distributions essential to the present study. First partition Y0 by columns as Y0= [Y1, . . . ,Yk]∈
Fn×k. Alternatively, if instead we row–partition as Y′0 = [Z1, . . . , Zn], then we adopt the convention that V(Y0)=Ω⊗Σ, so
that {V(Zi) = ωiiΣ, 1≤ i≤n}. Moreover, if V(Y) =Ω ⊗Σ of order (nk×nk), then for fixed (A, B) and for U = AYB′, the
corresponding moment arrays are as follow.

Remark 3. E(Z)= AMB′ and V(Z)= AΩA′⊗BΣB′.

(i) Gaussian Distributions

Designate the distribution of Y ∈Fn×k as L(Y)=Nn×k(M,Ω ⊗Σ), the matrix Gaussian distribution in Fn×k having E(Y)=M
and V(Y)=Ω ⊗Σ. Its pdf is

fnk(Y) = (2π)−
nk
2 |Ω|− k

2 |Σ|− n
2 exp

[
−1

2
trΩ−1(Y−M)Σ−1(Y−M)′

]
. (13)

Next partition Y=[Y1,Y2], M= [M1, M2], and Σ= [Σi j; i, j=1, 2]. Here (Y1, M1) are of order (n×r); (Y2, M2) are of order
(n×s); and elements of Σ are {Σ11(r×r), σ12(r×s), σ21(s×r)}, σ22(s×s)}. Then

• Marginals: L(Y1)=Nn×r(M1,Ω⊗Σ11); L(Y2)=Nn×s(M2,Ω⊗σ22).

• Conditional: L(Y1|Y2= y2)=Nn×r(M1·2,Ω ⊗Σ11·2) with M1·2=M1 + (y2−M2)R′ and R=σ12σ
−1
22 .

(ii) Wishart Distributions

Take L(Y) =Nn×k(M, In⊗Σ); let W = Y′Y; and partition W = [Wi j; i, j = 1, 2] and Σ = [Σi j; i, j = 1, 2] conformably. Here
elements of W are {W11(r×r), W12(r×s), W21(s×r), W22(s×s)}. Define W11·2=W11−W12W−1

22 W21, and Σ11·2 as before.

• W is said to have the Wishart distribution L(W) = Wk(n;Σ,Θ) with n degrees of freedom, the scale parameters Σ,
and the noncentrality matrix Θ=M′M.

• Marginals: L(W11)=m(n;Σ11, M′1M1) and L(W22)=Ws(n,σ22, M′2M2).

• Conditional: L(W11·2|Y2= y2) = m(n− s;Σ11·2,Θ(y2)) with Θ(y2) = M′1·2M1·2 and M1·2 = M1+R(y2−M2) withR =
σ12σ

−1
22 .

• A standard result is that if A is idempotent of rank ν, and if W=Y′AY, then L(W)=Wk(ν,Σ,Θ) with Θ=M′AM.

(iii) A characterization

Fundamental connections link noncentral chi–squared and noncentral Wishart distributions. To wit: The noncentral Chi–
squared and Wishart chf ’s are

ϕZ(t) = (1−2itσ2)−
n
2 exp[ it θ2/(1−2itσ2)]

ϕW(T) = |Ik−2i TΣ|− n
2 exp[ i tr TΘ(Ik−2i TΣ)−1],

respectively. The following is germane.

Theorem 5. Let L(Y)=Nn×k(M, In⊗Σ), and take W=Y′AY such that A is idempotent of rank ν.

(i) If L(W)=Wk(ν,Σ,Θ), then L(u′Wu)=χ2(ν, σ2
u, λ(u)) for every u∈Rk, where σ2

u=u′Σu and λ(u)=u′Θu.

32



http://ijsp.ccsenet.org International Journal of Statistics and Probability Vol. 6, No. 6; 2017

(ii) Conversely, if L(u′Wu)=χ2(ν, σ2
u, λ(u)) for every u∈Rk, then L(W)=Wk(ν,Σ,Θ).

(iii) Define W1 =Y′A1Y and W2 =Y′A2Y with A1 , A2. Then (W1,W2) are mutually independent Wishart matrices if and
only (u′W1u, u′W2u) are mutually independent χ2 variates for every u∈Rk.

Proof. Conclusion (i) follows on substituting t uu′ for T in the chf for W, together with the fact that the nonvanishing
eigenvalue of uu′ is u′u. Conclusion (ii) follows on lifting from R1

+ to S+k ; this may be done using the characterization of
Cramér and Wold (1936), as carried out in Jensen (1982). Conclusion (iii) follows from (i) and (ii) on verifying that the
joint chf ’s of (W1,W2) and of (u′W1u, u′W2u) factor into the product of their marginal chf ’s. �
Remark 4. The central version of conclusions (i) and (ii) was given in Result (ii) of Rao (1973, page 535).

A.2 Running Times Data

The data employed in Section 4.3 are listed here as reported in Morrison (2005, page 102).

Table 7. Running times around first base for k=3 paths and n=22 players.

Player Y1 Y2 Y3 Player Y1 Y2 Y3

1 5.40 5.50 5.55 12 5.65 5.55 5.45
2 5.85 5.70 5.75 13 5.60 5.35 5.45
3 5.20 5.60 5.50 14 5.05 5.00 4.95
4 5.55 5.50 5.40 15 5.50 5.50 5.40
5 5.90 5.85 5.70 16 5.45 5.55 5.50
6 5.45 5.55 5.60 17 5.55 5.55 5.35
7 5.40 5.40 5.35 18 5.45 5.50 5.55
8 5.45 5.50 5.35 19 5.50 5.45 5.25
9 5.25 5.05 5.00 20 5.65 5.60 5.40
10 5.85 5.80 5.70 21 5.70 5.65 5.55
11 5.25 5.20 5.10 22 6.30 6.30 6.25
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