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Abstract

A new five-parameter lifetime distribution called the exponentiated Kumaraswamy-Weibull distribution is introduced.
It includes several important sub-models as special cases such as exponentiated Weibull, Kumaraswamy-Weibull, ex-
ponentiated exponential, exponentiated Rayleigh and Weibull. Essential mathematical and statistical properties for the
distribution are presented. An approximate form of the mode is derived and it can be used to derive mode forms of
other well-known distributions. Important parametric characterizations for probability density and hazard functions are
discussed. The estimation of the parameters by maximum likelihood method is discussed. Three real data sets are used to
show its excellent performance fit over existing popular lifetime models. It is effective model to analyze several positive
data sets.

Keywords: Asymptotes, Order statistics, Mode, Hazard function, Kumaraswamy-Weibull, moments, maximum likeli-
hood method

1. Introduction and Motivation

Kumaraswamy (1980) introduced a two-parameter distribution, defined on (0, 1), known as Kumaraswamy distribution and
its cumulative distribution function (cdf) is defined for a random variable X, as F(x) = 1 — (1 —x%)?,0 < x < 1, a > 0 and
b > 0 are shape parameters. Jones(2009) discussed important background and several advantages of this distribution. For
an arbitrary baseline cdf G(x) of a random variable X, Cordeiro and Castro (2011) defined a new family of Kumaraswamy
generalized (K-G) distributions with cdf F(x) = 1 — [1 — G*(x)]°. Several widely known distributions have been extended
based on K-G distributions by many authors. Paranaiba et al.(2012) introduced the K-BurrXII distribution, Cordeiro et al.
(2010) introduced the K-Weibull (K-W) distribution, Pascoa et al. (2011) proposed the K-generalized gamma distribution,
Gomes et al. (2014) studied the K-generalized Rayleigh (K-Ray) distribution, among others. For an arbitrary baseline
cdf, G(x), of a random variable, X, the cdf of a generalized class of distributions is defined by

F(x)=[1-(1-G*x)")° (1)

and it is called the exponentiated Kumaraswamy generalized (EK-G) family. Huang and Oluyede (2014) have used the
G(x) as the cdf of Dagum distribution to define the exponentiated Kumaraswamy-Dagum distribution. The exponentiated
Kumaraswamy-exponential (EK-E) distribution was introduced by Rodrigues and Silva (2015). In this article, we propose
and study a new generalization for Kumaraswamy-Weibull distribution, named the exponentiated Kumaraswamy-Weibull
(EK-W) distribution. We provide a description of its essential characterizations with the hope that it will be useful
in applications in reliability and other fields of research. The cdf of the EK-W distribution is obtained by combining
Gx)=1- e~ the cdf of the Weibull distribution, and equation (1). This gives the cdf of EK-W distribution as

F(x) = (1= [1=(1 — e @)y )

and the corresponding probability densty function (pdf) is

F() = ABabO(AxyP~ e (1 — WP yamI[] — (1 — @ yap-iy 3
(1= [1 = (1 = @ yappyo!

where x > 0, A is the scale parameter and 3, a, b and 6 are shape parameters of positive real values. A random variable
X following equation (3) is denoted by X ~ EK — W(x; 4,8, a, b, ). For two different groups of the parameters values,
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Figure 1. The estimated pdf of EK-W for simulated data sets.

plots of the fitted EK-W density functions and the histograms of two simulated data sets are displayed in Figure 1. The
motivations for introducing the EK-W distribution are the following: (i) It is a generalization of the most important well-
known distributions such as Kumaraswamy Wiebull, exponentiated Weibull (EW), Wiebull and exponentiated exponential
distributions and it is much more flexible than these distribu tions, as we shall see later in this context. (ii) It could be
an important model in a variety of problems in reliability analysis, since its hazard rate function allows for all hazard
shapes: monotonically increasing and decreasing, bathtub and unimodal hazard rates, as we shall see later. (iii) The EK-
W distribution has physical interpretation in the field of the reliability of systems engineering. Specifically, for 8 = 1,we
have R(x) = RZW(x) where Rpw(x) is the reliability function of the EW distribution. Thus, the reliability of a series
system containing an integer number b components whose independent lifetimes follow EW(A4, 8, a) distribution, can be
modeled as EK-W distribution. For » = 1, we have R(x) = 1 — [1 — Rgw(x)]? or R(x) = 1 = [1 — R,,(x)]1*°, Rw(x) is
the reliability function of the Weibull distribution. Thus, the reliability of a parallel system containing an integer number
6 (af) components whose independent lifetimes follow EW (4,5, a)(W(A,B)) can be modeled as the EK-W distribution.
For a = 1, we have R(x) = Rgw(x) or R(x) = 1 — [1 — R,(x)]’. Thus, the reliability of a component whose lifetime
distributed as EK-W has the same reliability as EW distribution or the reliability of a parallel system of an integer number
6 components whose independent lifetimes follow Weibull distribution. Sub-models of the EK-W distribution are in the
following:

e When 6 = 1 the EK-W reduces to K — W(4,8,a,b),

e When a = b = 1 the EK-W reduces to EW(A,8,0),

e When b = 1 the EK-W reduces to EW(A, 3, af),

e When 8 = 1 the EK-W reduces to EK — E(1,a, b, 0),

e When 8 = b = 1 the EK-W reduces to EE(4, af),

e When 8 =2,b =0 =1 the EK-W reduces to ERay(4, a),
e Whena = b =6 =1 the EK-W reduces to W(4, ),

e When 8 =a=>b=6=1the EK-W reduces to E(1).

The rest of the paper is organized as follows. In Section 3, other representations of the cdf and pdf are derived. Mathemat-
ical properties of the EK-W distribution including quantile and simulation, the shape of the pdf, moments and moment
generating function, mean deviations, Bonferoni and Lorenz curves, Rényi entropy, order statistics are considered through
Section 3 to Section 9. In addition, we study the asymptotes of the hazard rate function, h(x), as x approaches zero and
infinity, and its parametric characterizations are discussed in Section 10. We present the estimation of the parameters by
maximum likelihood method in Section 11. Applications to three real data sets are carried out in Section 12. Conclusions
are given in Section 13.

2. Expansion for the CDF and PDF

Other representations of the cdf and pdf of the EK-W distribution can be helpful in numerical applications. Expanding the
term {1 —[1—-(1- e~ y21°10-1 in equation (3), sequentially, using the binomial theorem, the cdf F(x) and pdf f(x) of the
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EK-W distribution can be written as alinear combination of the cdf, Fy/(x), and pdf , fiy(x), of the well-known Weibull
distribution. For real and non-integers a > 0, b > 0 and 6 > 0, the forms of F(x) and f(x) are, respectively, given by

00

F)= Y S jFw(x: A B) @)
i,jk=0
and
F@ = S, j 0 fw(x A B) 5)
ijk=0
where
A = Ak + 1)#
and

abd(~ 1)@ + DI a(j + 1)]
iJUICO — DL[bG + 1) — jITTa( + ) — kl(k + 1)

S, j.k) =

The sum of the weights S (i, j, k) is equal to one via Mathematica 10.0, say. The form of f(x) in equation (5) can be
helpful to obtain some mathematical properties of the EK-W distribution directly from these of the conventional Weibull
distribution such as the moments, moment generating function and characteristic function.

3. Quantile Function and Simulation Variable
The p-th quantile, x,, of the EK-W distribution is the solution of the equation F(x,) = p,0 < p < 1 and it is given by

{~log[1 —[1 = (1 — p"/%)l/byt/apylie, (6)

1
.xp:z

For p = 0.5, the median, x,,, of f(x) is
1
X = ~{=log[1 = [1 = (1 = 27V e, (7)
Simulating EK-W random variable is easily obtained by considering X = F~!(u). Thus, one can generate EK-W variates
by
1
X = S{=logll = [1 = (1 = UM e, 8)
where U is a uniformly distributed random variable on (0,1) interval.

4. Shape of the PDF

The mode is an important key to identify the shape of the pdf f(x) given by equation (3). We provide the following
theorem for the shape of the density function f(x).

Theorem 1 The pdf of the EK-W distribution is unimodal and has a unique mode at x = x4 when 6a > 1 and the
approximate form of the mode is given by

Bb(6a+1) (9)

172(B0a—1)11
Xy 2l 17 when B6a > 1
when B6a < 1.

Proof. The mode is the value corresponding to the point at which the slope of the tangent of the curve of f(x) is zero.
Differentiating f(x) wih respect to x, we get

f'(x) = gx)f(x),
g(x) = AB - D(x) ™ = B + AB(a — DA 'u (1 —w)
+ ABab(0 — DAxP ' (1 —w)(1 — u®)’ 1 = (1 = uHP]!

— ABa(b — DA (1 - w1 —u®7.
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Figure 2. The pdfs of EK-W for various parameter values.

where u = u(x) = 1 — e ™. At f’(x) = 0, we have f(x) # 0 and it must be g(x) = 0. Therefore, the mode of f(x) is at
the value of x = x; satisfying g(x) = 0. Consequently, we have

B—1-pB0xF +Ba- DAxPu™' (1 - u)
+ Bab(® — D(AxPu (1 — u)(1 —u)’'[1 = (1 —u)"]! (10)
—Ba(b — DAxPu 1 —uw)1 —u®)' = 0.
For positive real values of the parameters A, 8, a, b and 6, one can obtain an exact value of the mode by solving equation

(10), numerically. On the other hand, after some algebra and approximations for some terms of equation (10), we can
obtain an approximate explicit form of the mode as given in equation (9). This completes the proof. O

This form of the mode is an explicit form in terms of the parameters and it detects information about the shape of the pdf
f(x) of the EK-W distribution in terms of certain combination of the parameters values. The density function f(x) of the
EK-W distribution exhibits two different behaviors. The curve of f(x) is unimodal when Baf > 1 and it is decreasing
when a6 < 1. For selected parameter values, plots of f(x) are displayed in Figure 2 in the cases of Saf < 1 and Saf > 1.
The form of the mode in equation (9) gives explicit formulas of the mode of well-known distributions that have no known
mode forms as special cases. Mathematical formulas of the modes for some sub-models are obtained and presented in
Table 1.

Furthermore, the asymptotes of f(x) can be obtained as
F(x) = ABabb’(AxP* as x—0 (11)

and
fx) ~ /lﬁb@ah(/lx)ﬂ’le’b(mﬁ, as x— oo (12)
In terms of the left and right tails of f(x) curve, we introduce the following theorem.

Theorem 2 The limit of EK — W(A, 8, a, b, 0) density function f(x) is zero as x — oo and its limit as x — 0 is given by

0 when Baf > 1
1in(1) fx)=3ap’ when Baf =1 (13)
00 when Baf < 1.
Proof. From the results obtained in equations (11) and (12), the proof is straightforward to set. O
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Table 1. Mode forms for some distributions.

Distribution Mode Form

K - W(A,B.a,b) L aReB Ve, pa>1
EW(,5,6) LT, o> 1
EW(A,B,a) LREFYE, pa> 1
EK — E(4,a,b,0) HpeD),  a0>1

K - E(d,a,b) el a>1
EE(A, af) 12Dy a1

K — Ray(A,a,b) %[bz(g;{)]l/z, a>1/2
W(A,B) I LA |

The results of Theorem 2 are shown and supported by Figure 2. Figure 2 displays some curves of pdf when Saf > 1 and
Bab < 1. For example, for the case of fafl = 1, we assumed 8 = 2, a = .333,6 = 1.5, 21 = 2 and b = 2.5, Figure 2 shows
that f(0) = 7.9.

5. Moments and Moment Generating Function

The r-th ordering moment of the EK-W distribution can be formed as infinite (finite) weighted linear combination of
those quantities for the well-known Weibull distribution. Other moments such as central and factorial moments can be
calculated too. We have the r-th moment of the W(A,) to be u, = /l"l“(é + 1). Therefore, the r-th moment of EK-W
random variable X can be obtained as

00

pr= 3 SO TG+ D (14)

i,jk=0
where A and the weights S (i, j, k) are defined in equation (4). The summation symbols are abbreviated to one with three
indecises. Equation (14) can be rewritten in the form

,
My =abll' (= + 1)x
B

00

> (=)* L) [b(G + DITa(j + 1)] (15)
HJETO - DIb@GE + 1) — jilTa(j + 1) — k](k + 1)/12'

i,j k=0

The indices i,j and k stop at (8 — 1), b(i + 1) — 1, and a(j + 1) — 1, respectively, when 6, b and a are integers. In particular,
the mean of the EK-W distribution is given by

u=E(x) :ab@l"(é + 1)x
(16)

00

Z (=D*HTOIbG + DICa(j + D]
il JIKIT(0 — DI[bG + 1) — jIT[a(j + 1) — kl(k + DA

i,jk=0
From the first four ordinary moments obtained by using equation (14), one can calculate the measures of skewness, yi,
and kurtosis, y,, using the well-known relationships:
y 3 = 3o + 2u3 and pa — A + Oty — 3py
1 = —-—-—mmee M — 2 =

[z =317 w2 =43P

where u, 2, (3, and g can be calculated from equation (14). Based on the quantile functions, we can also compute the
skewness, as defined by Galton (1983), and kurtosis, as defined by Moors (1988), as

_ 0(6/8) —20(4/8) + 0(2/8)
Q(6/8) — Q(2/8)

Y1
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and

_ 00/8) - 0(5/8) + 0(3/8) — 0(1/8)

- 0(6/8) — 0(2/8) '

where Q(p) = x, is computed from equation (6). Figure 3 and Figure 4 display plots of the skewness (y;) and kurtosis
(y2), as functions of #. The plots are carried out for values of 1 = 2, 8 = 2.5 and selected values for a and b.

The moment generating function (mgf), m(z), is defined by

Y2

0.08 1.26 | a=38
1.24 ¢

& 0.06 »
b 3 1.22
g 004 2 120}

0.02} 1.18}

0.00 1.16 | 1

10 0 2 4 6 8 10
e 6

2 o
[ [
s 2
o 5
) x
10 10
0 6
Figure 4. y, and vy, as functions of 6 for selected values of b.
m(t) = E(e®) = | ™ f(x)dx.
For a random variable X ~ EK — W distribution with pdf f(x) given by equation (3), we get the mgf as
= L. e T t
m(t) = Z SG TG + Dy 1> 0.
i,j,k=0
that can be rewritten in the form
m(t) = abOx
i (=) @)I[b( + DITa(j + )]t l_(r i) a7
0 Ik = Db + 1) = jIla(j + 1) —kl(k+ DA, B

i jkr=
forz > 0.
6. Mean Deviations

The amount of spread in a population is measured to some extent by the totality of deviation from the mean (median)
which is known as the mean deviation about the mean (median). For X ~ EK — W(4, S, a, b, ) with mean u and median
m, the mean deviations about the mean and median are respectively, defined by

61(X) = E(|X —pul) and 62(X) = E(IX — ml)
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where u and m are given by equations (16) and (7). From the definition of the expectation, we can obtain ¢;(X) in the
form

u u
61(X)=2,uff(x)dx—2fxf(x)dx.
0 0

Substituting for f(x) by the form in equation (3), we get
01(X) = 2uF (1) — 2abdx

o (D@6 + DICa(i+ D] (B + 1, (4pw)f) (18)
i JIIC(O — OL[bG + 1) — jITTa( + 1) — k(e + DA

i,jk=0
and in similar way, we get
02(X) = u — 2ab6x

o (=DHT@OL[bG + DICla(+ D] (B + 1, (m)P) (19)
i JIICO — )L[bG + 1) — jITTa(j + 1) — kl(k + DA

Z
where y(a, z) = f ule™du, z > 0, is the incomplete gamma function and A; = A(k + 1)/8.
0

7. Bonferroni and Lorenz Curves

It is well-known that the Bonferoni and Lorenz curves have applications in several fields such as economic, reliability,
medicine and insurance. The Bonferroni and Lorenz curves are respectively, defined by

q q
B(p) = i fxf(x)dx and L(p) = lfxf()c)dx
DU J H J

where ¢ = F~!(p) and F(.) is the distribution function.
For X ~ EK — W(4,8,a,b,6), we get

B(p) = 2
pu
& (—FFTOTbG + DIaG+ 1] y(8™ + 1 (4q)) (20)
i IT(0 — DOTbG + 1) — jI0aG + 1) — KI(k + DAy
and bo
L(p) = x
u
o @1

Z (=D™HT@OTbG + DITa( + D1 yB ' + 1, (4g))
4y iLKITE = DLTbG + 1) = jIlaGj + D =Kk + D

where u is the mean of X, given by equation (16), y(a, z) is the incomplete gamma function and
1
q=F'(p) = F{-logll = [1 = (1 = p!")!P P12,

8. Rényi Entropy

An entropy of a random variable X with pdf f(x), is a measure of variation of the uncertainty. It is a concept encountered
in engineering, physics and other fields such as theory of communication and probability. Rényi entropy is defined by

1
Er(v) = ;— logl f J"(x)dx] (22)

1—
where v > 0 and v # 1. Combining equation (3) and equation (22), Rényi entropy of the EK — W(4, 3, a, b, 6) is given by

Y log(ab) — log(1B) + —

ER(v) = log(e(v)) (23)

1-v 1-v
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= (=D (@ = D\(v(b = 1 + bi)\(v(a—1) + aj
SED 2 i A S

i, j;k=0

where

9. Order Statistics

Order statistics play a prominent role in statistical analysis using empirical data. The order statistics are the values from
a random sample arranged in an increasing order. For a given random sample, we may interest in the smallest, largest
or middle observations, for example: the highest floodwaters, the lowest winter temperature in few past years and the
median price of items. We focus to present the cumulative distribution and pdf order statistics for EK-W distribution. Let
X1, X>,...,X, be a random sample from a population with distribution function F(x) and pdf f(x). The corresponding
order statistics of this sample is X;., < X5, < -+ < Xj.,p. Let fi.,(x) and F,.,,(x) denote, respectively, to the pdf and cdf of
the r-th order statistics X,., (1 < r < n). We have

!
frn(x) = #f(x)F’ {0l = Fo™™"

that can be rewritten as
Jrnl®) = 0= 1),( ),Z<— )( )F’*"(x)f(x).

Also, the cdf is given by

B n! < (=D n=7r\_,.
Fr:n(x)_(r—l)!(n—r)!; r+l( ! )F (-

Considering f(x)and F(x) be the pdf and cdf of the EK-W distribution, we can get, using equation (2) and equation (3)
the pdf of the r-th order statistic X,., as

abl — - .. .
Fral) = g ;)] ; Tii, j, D (s Ae ) (24)
and its cdf as
1 . k(Ax)?

Fra®) = gom ; ; Vidi, j De” (25)

where
Ty D= Y (” , r)x
i=0 j=0
(=D)LL + NBITTbG + DIT[a() + 1)]

iU+ 6 — i0[bG + 1) — jITa(j + 1) — kl(k + 1)

and

Viin=33

i=0 j=0
(=) + 1) + 1Tbi + 1T aj + 1]
iyl + O+ )0 —i+ 1T[bi— j+ Ulaj—k + 1]’

10. Hazard Function

Hazard rate function (hf) measures the conditional probability of failure given the system (component) is currently func-
tioning while the pdf (failure density) measures the overall speed of failures. For a continuous distribution with pdf f(x)
and reliability function R(x), the hazard function, A(x), is defined by

lim P(X < x+6x|X > x) _M

A = lim, ox TR

For the EK-W distribution, the hazard function is given by

ABab(Ax)P e WP ya=1[1 — 2 1p=1(1 - [1 — u91P}0-!

1—[1 =1 —uip) (26)

h(x) =
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where

u=ulx)=1- e

We study the asymptotic behaviors and parametric characterizations of the hazard function of the EK-W distribution.

(i) The asymptote of h(x) as x — 0: We have

. limx~>0 f (X)
limh(x) = —————. 27
b ) = e T R o
The numerator of equation (27) is given by equation (11). The asymptote of R(x) as x approaches zero can be obtained as

lim R(x) ~ 1 - b (Ax)P. (28)

Substituting the results in equations (11) and (28) in equation (27), we get

_ ABafb’(Axy !

h(x) x —— . 2
(%) = b as x—0 29)

Therefore, as x — 0, we have the following cases:

e When Baf = 1, h(x) = AbY,
e When Baf < 1, h(x) = oo,
e When Baf > 1, h(x) = 0.

Comparing these results with the results of equation (13), we can say that 4(0) = f(0).
(i1) The asymptote of A(x) as x — co: We have

R (€ B (€O N
M= I TR TR TGy T RS,

where
g(x) =ABP " = 2B - D)™ = ABla - DA e
— ABab(® — D(AxP e @ a1 (1 — w1 = (1 - w7
+ ABab — D(AxP e @ ya1(1 — oy
andu = u(x) = 1 — e,
A discussion of the limiting of g(x) as x — oo through the following cases, we can see that:
-Atf =1: We get
g(x) = A= Aa - Du;'e™ + dab — De ™ us™ (1 - uf)™!
— dab(® — Ve ™ ud™ (1 — uH)* ' [1 = (1 - uh?]7,

Ax

uy=u(x)=1—-e¢™" -1 as x— oco.

Thus, g(x) ® A+ A(b—1) = Ab.
- At B > (<)1: We have the expansion

1—u? = ae™[1 + (a - D™ — o(e” ]

Using this approximation when 8 > 1 and x — oo, we can finally see that g(x) — oco. Also, it is easy to see that g(x) — 0
as x — co when B8 < 1. From the above discussion, we conclude, as x — oo, that

e Wheng < 1, h(x) = 0,
e When S =1, h(x) = Ab,
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e When S > 1, h(x) =~ oo.

The above results can be summarized in the following theorem.

Theorem 3 The hazard rate function of the EK — W(A, 3, a, b, 6) distribution has the following asymptotes:

0, Babd > 1
}61_)m0 h(x) ={Ab, Bad =1
00, Bab < 1.
and
0, p<1
lim A(x) = { Ab, B=1
" 00, B> 1.

Furthermore, parametric characterizations for A(x) of the EK-W distribution can be adopted in the following theorem.

Theorem 4 The hazard rate function, h(x) of the EK — W(A, 8, a, b, 0) distribution possesses the following behaviors: (i)
h(x) is constant (= Ab) when 3 = a = 0 = 1. (ii) h(x) is increasing (decreasing) when 8 > 1(8 < 1) and Ba6 > 1 (Baf < 1).
(iii) h(x) has bathtub-shape curve when 8 > 1 and Baf < 1. (iv) h(x) is unimodal when 8 < 1 and Ba6 > 1.

Proof. The proof is straightforward from the results of Theorem 3.

Figures 5 and 6 display some plots for /(x) to show and to support these results. Figure 5 displays the monotonic behavior
of the hazard function of EK-W at 8 = 1, Baf = 1. In this figure, the case of constant hf, we considered A =2 and b = 5.
Figure 6 displays the monotonic and non-monotonic behaviors of the hazard function (at 8 # 1, Saf # 1) for selected

values of the parameters 3, a and 6.
12 \ 1
10 1

h(X)

L L L L 1

00 01 02 03 04 05 06
X

Figure 5. Constant, increasing and decreasing hfs, 8 = 1, faf = 1.

11. Maximum Likelihood Estimation

The maximum likelihood as a method of estimation for parameters is the most commonly used in the literature. In this
study, we discuss the maximum likelihood, ML, estimation for the parameters of the EK-W distribution for complete
samples. For a random samples, xi, x5, X3, ..., X, of size n from the EK — W(A,8, a, b, 6), the log-likelihood function,
I(4,B,a, b, 0), given this sample is given by

l(4,B,a,b,0) = nBlnd + ninB + nlna + ninb + nind — (4,8, a, b, 6)

where

n n

(4, B,a,b,0) = Z(/lx,»)ﬂ —B-1) Z Inx; — (a—1) Z Inu;
i=1

i=1 i=1

—(b-1 Z In(1 —u®) — (- 1) Z In[1 = (1 —uh],
i=1 i=1
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Figure 6. Different behaviors for the hazard function, 8 # 1, Baf # 1.

i = ui(x;, ,B) = 1 — e

The ML estimating equations are obtained as follows:

nB —ﬁ;um‘f +Ba—1) Zl V, ~Ba(b — 1) Zl Vit (1 =y

n (30)
+ Bab(@ - 1) Z Vi (1= a1 = (1= uf)’17" = 0,
i=1
;% +nind = 3 A PIn(Ax) + Y Inxi + (@@= 1) | Viln(Ax;)
i=1 i=1 i=1
—ab-1) Z V(1 — u®y " In(Ax;) 31)
i=1
+ab(@-1) Z Vit (1 = u®)’™ 1 = (1 = uh 1 in(ax) = 0,
i=1
g + Z Inu; — (b-1) Z ul(1 - u?)_llnui
i=1 . i=1 (32)
+bO-1) Z w1 —u®" 1= (1= u®?1 i = 0
i=1
Z + Z; In(1 —uf)
- ; (33)
—@=1 D (1 =u)[1 = (1= u)’1 (1 = ) = 0
i=1
g + Zl In[1-—(1-u)’1=0 (34)

where V; = (AxPu; (1 — wy).

Solving this system of equations (30)-(34) simultaneously gives the ML estimates of the five parameters. This system
of nonlinear estimating equations cannot be solved analytically. Numerical technique such as Newton-Raphson iterative
method should be adopted to obtain the ML estimates, A,,a, b, of the different parametrs. For this purpose, the R
project or Matlab software is preferable to use.
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12. Applications to Real Data

In this section, we present some applications of the EK-W distribution using different data sets to demonstrate the flexibil-
ity of the distribution to model these real data. The data sets include a skewed and heavy-tailed data. The data are fitted to
the EK-W distribution and other Kumaraswamy distributions family, the K-W and EK-E distributions, as well as the EW
distribution. The first data set (it is not cited here to save space) represents the sum of skin folds in 202 athletes collected
at the Australian Institute of Sports and previously reported by Weisberg (2005). The second data set taken from Murthy
et al. (2004, page 180) represents the failure times of 50 components (per 1000 hours). The third data set is from Aarset
(1987) and it represents the time to failure of 50 industrial devices put on life test at time zero. The summary statistics
from the three data sets are shown in Table 2. The notations used in Table 2: X, SD, y; and v, are the sample mean,
standard deviation, skewness and kurtosis, respectively.

Data set 2:

0.036,0.058,0.061,0.074,0.078, 0.086,0.102,0.103,0.114,0.116,0.148,0.183, 0.192, 0.254,0.262,0.379, 0.381,
0.538,0.570,0.574,0.590,0.618, 0.645,0.961, 1.228, 1.600, 2.006, 2.054, 2.804, 3.058, 3.076, 3.147, 3.625, 3.704,
3.931,4.037,4.393,4.534,4.893, 6.274, 6.816, 7.896,7.904, 8.022,9.337, 10.940, 11.020, 13.880, 14.730, 15.080.

Data set 3:

0.1,0.2,1,1,1,1,1,2,3,6,7,11, 12,18, 18, 18, 18, 18, 21, 32, 36, 40, 45, 46,47, 50, 55, 60, 63, 63, 67, 67, 67,67, 72,75,
79, 82,82, 83, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86.

We obtain the ML estimates of the parameters of the distribution under consideration by employing and solving the system
of equations 30- 34, numerically, as well as calculate the log-likelihood value (2), the Akaike Information Criterion (AIC),
the Kolmogorov-Smirnov (K-S) test statistic, and the p-value for the K-S statistic for the fitted distributions to the data
sets. We report the results in Tables 3- 8. Figures 7 and 8 display the histograms and the fitted density functions for the
first and second data sets, that support the results in Tables 3 and 5. Figures 9-12 display the Q-Q plots for Aarset data
quantiles and fitted quantiles for the different models. From Tables 3, 5 and 7, the goodness of fit statistics indicate that
the EK-W distribution provides the best fit among the distributions K-W, EK-E and EW, since it has the smallest AIC and
K-S statistics, and the largest log-Likelihood value and p-value of K-S test statistic (at 0.05 significance level).

In view of Theorem 4 and Theorem 1 and in terms of the parameters estimates of EK-W distribution for the different data
sets, we have the following notes:

- The data set 1 has increasing hazard rate function since 8 > 1, and Sa6 > 1, as well as the pdf is unimodal.
- The hazard rate function of data set 2 is decreasing since 8 < 1, and Baf < 1, as well as the pdf is decreasing function.

- The hazard rate function of Aarset data set 3 has bathtub shape curve since 8 > 1, and Saf < 1, as well as the pdf is
decreasing function.

Finally, in the light of the above results, the exponentiated Kumaraswamy-Weibull distribution provides a good fit for
these real data sets as compared to its sub models.

Table 2. Summary statistcs from the data sets.

Data sets x SD Y1 %)

Skin folds 69.027 | 32.560 | 1.175 | 3.366
Failure times of components 3.343 | 4.181 1.417 | 4.085
Life tmes of industrrial devices | 46.686 | 32.835 | -0.138 | 1.414

Table 3. Information criteria for fitting the sum of skin folds data.

Model —{ AIC k=S p — value
EK—-W | 954768 | 1919.54 | 0.0692 0.2751
K-w 958.927 | 1925.85 | 0.0774 0.1685
EK—-E | 958.083 | 1924.17 | 0.0773 0.1694
EW 957.756 | 1921.51 | 0.0920 0.0615
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Table 4. Parameter estimates for the sum of skin folds data.

~ =~ ~

Model A B a b 0
EK—-W | 0.0843 | 1.0018 | 7.2135 | 0.4343 | 2.5291
K-Ww 0.0349 | 1.0206 | 6.8832 | 1.1095 1
EK - E | 0.0049 1 0.9846 | 7.8775 | 8.0012
EW 0.0472 | 0.9128 1 1 9.5333

Table 5. Information criteria for fitting the failure times of 50 components.

Model - AIC k=S | p—value
EK —-W | 100.809 | 210.618 | 0.1141 0.4974
K-Ww 104.061 | 216.122 | 0.1891 0.0487
EK-FE | 102.156 | 212.313 | 0.1341 0.3017
EwW 102.372 | 211.745 | 0.1429 | 0.2351

Table 6. Parameter estimates for the failure times of 50 components.

Model A B a b 0
EK-W | 23142 | 0.9781 | 2.7199 | 0.0644 | 0.3198
K-Ww 1.2615 | 0.9440 | 0.4141 | 0.2134 1
EK-E | 04910 1 1.7365 | 0.3440 | 0.3402
EW 0.1939 | 0.9997 1 1 0.5365

Table 7. Information criteria for fitting the failure times of 50 devices.

Model —£ AIC k—S | p—value
EK - W | 235557 | 481.115 | 0.1661 0.1127
K-w 237.570 | 483.141 | 0.1957 | 0.0375
EK - FE | 239.999 | 488.000 | 0.2010 | 0.0116
EW 239.791 | 485.583 | 0.2228 | 0.0302

Table 8. Parameter estimates for the failure times of 50 devices.

Model A B a b 0
EK—-W | 0.0629 | 1.0925 | 0.0332 | 0.3729 | 5.5715
K-W 0.0598 | 1.1278 | 0.5920 | 0.2845 1
EK-E | 00184 1 0.8817 | 1.0000 | 0.8783
EwW 0.0195 | 1.0626 1 1 0.8221

Conclusion

We proposed a new five-parameter distribution, named the exponentiated Kumaraswamy-Weibull -distribution, which
extends the Kumaraswamy-Weibull distribution and other important well-known distributions such as EW, ERay, EK-E
and Weibull. Various properties for this distribution are studied including the asymptotes and parametric characterizations
for the probability density and hazard functions. Approximate form of the mode is derived. We obtain the moments,
moment generating function, Bonferroni and Lorenz curves, entropy, mean deviations and the probability density and
cumulative distribution functions of order statistics. The estimation of the parameters has been discussed using the ML
method. Analysis for three real data sets reveals that the EK-W distribution is quite flexible and effective model in fitting
real world data compared with its sub models.
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Figure 7. Estimated pdfs of the different models for data set 1.
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Figure 8. Estimated pdfs of the different models for data set 2.
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Figure 9. Q-Q plot of fitted EK-W to Aarset data.
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Figure 10. Q-Q plot of fitted K-W to Aarset data.
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Figure 11. Q-Q plot of fitted EK-E to Aarset data.
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Figure 12. Q-Q plot of fitted EW to Aarset data.
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